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Abstract—Value Iteration Algorithm is iterative and can’t be
parallelized. Computation time grows exponentially when the
size of the input maps is increased. We propose UNet-RNN-
Skip artificial neural network architecture that can be used
to parallelize Value Iteration Algorithm results. The proposed
model can solve Value Iteration problem in fewer iterations than
the original algorithm and computation time increases by only
a small amount when increasing the size of the input map.
Fundamental UNet-RNN-Skip architecture can be used also to
solve and parallelize other sequential problems. With this paper
synthetic dataset of maps and generator has been published to
enable further studies in mapping and path planning tasks.

Index Terms—ResNet, ConvNet, RNN, Value Iteration Algo-
rithm

I. INTRODUCTION

Value Iteration Algorithm (VI) is widely used to generate
navigation maps and policies for a wide range of problems
where each state can have different value [1].

For navigation task policy for movement is calculated to the
direction of the gradient of adjacent grid cell values within
a discretized map. Value Iteration Algorithm is an iterative
process where the values of each grid cell depend on the values
of the previous iteration of adjacent grid cells. Within Value
Iteration Algorithm given in (1) for each state s value V (s) is
calculated by choosing action a that maximizes sum of reward
with given action Ra, multiplied by transition probability Pa

and added adjacent state values V (s′) multiplied by γ discount
factor. Formally state s consists of the state that includes all
gird cells in the map, but for a simplified explanation, we can
assume that each grid cell has its own state.

Value Iteration Algorithm ensures optimal policy within
fully observable environment Fig. 1. In this case, it ensures
that a positive terminal state is reachable from every cell in
the map by following a policy that guides by the closest path
to the target.

Using Value Iteration Algorithm for path planning in real-
time is often limited to its performance as it becomes expo-
nentially slower as the map becomes larger.

Vi+1(s) := max
a

{
∑
s′

Pa(s, s
′)(Ra(s, s

′) + γVi(s
′))} (1)

An alternative approach is to use heuristic-based approaches
for path planning such as Dijkstra or A* algorithms [1]. These
are much faster than VI and are widely used in simulations
and computer games, but they do not ensure optimal policy.

Another approach is to utilize the latest research in Deep
Artificial Neural Networks hence we propose Value Iteration
Solver Network model. Currently, similar models have been
applied to a wide range of problems starting with image
classification, image segmentation and policy selection of
agent in the reinforcement learning.

Architectures of these models are different depending on
the task, but basic concepts are common in between them.
Convolutional artificial neural network architectures that we
are proposing in this research are based upon AlexNet [2],
VGG [3], InceptionNet [4], ResNet [5], DenseNet [6] and
UNet [7].

Fig. 1. Visualization of Value Iteration Algorithm’s consecutive iterations.
After convergence, it is possible to derive optimal policy from every state to
reach the terminal state with highest cumulative reward.

II. RELATED WORK

Value iteration algorithm is a variation of the Markov
decision process (MDP) for finding the optimal policy in
discrete state-action space.

Recently Value Iteration Networks has been proposed as a
novel neural model-based algorithm that focuses on mimicking
the behaviour of Value Iteration Algorithm by iterating over
values multiple times in the inner loop of convolutional
architecture [8]. Even though the inner workings of such
model have high research value, the results produced by this
method are not robust enough for practical use. Other research
has been done in solving Value Iteration problem by using
reinforcement learning. ”Second Order Value Iteration in Rein-
forcement Learning” proposes using Newton-Raphson method



for second-value iteration algorithm for faster convergence to
almost optimal values [9].

Also, there have been other developments in this field of
research like ”Value Iteration Networks on Multiple Levels
of Abstraction” that extends the work of original ”Value
Iteration Networks” by processing input in multiple levels of
abstraction. With multiple levels of abstraction, they increase
the success value metric for larger maps. [10]

III. METHODOLOGY

Within this research, we developed a novel artificial neural
network architecture that can be used for different problems,
and to achieve the same results as Value Iteration Algorithm
for map navigation task. These models are based on ResNet
and UNet architectures as well as on Recurrent Neural Net-
works.

A. UNet variant

UNet architecture was first introduced to solve biomedical
image segmentation [7].

Solving the value iteration algorithm task is similar to
the segmentation task, a network output should retain a lot
of features from the input image like walls and obstacles
in a map. Solving value iteration with convolutional neural
networks using UNet architecture helps the network to learn
how value iteration values propagate through the map because
all of the information doesn’t have to be encoded in the
latent vector. UNet skip connections allow passing different
abstraction latent representations from encoder to decoder
Fig. 2.

While using ResNet or UNet architectures it is possible to
concatenate or add the values of skip connections [11]. In
our network we are using addition operation, so all of the
information from the encoder is used by the decoder and
gradient from error through back-propagation is distributed
evenly. Concatenating the values would cause some of the
values to be used more than others by the network. This model
is similar to the denoising auto-encoder task, but instead of
encoding features, we use it as the single iteration filter to get
the map of state values and policies.

B. UNet-RNN variant

With UNet-RNN variant we introduced recurrent neural net-
work cell and slightly changed the definition of the task Fig. 3.
With recurrent models, we are modelling value iterations not
within a single step, but within multiple iterations where an
output of a previous iteration is fed into the next iteration. In
fact the model learns to include in a single iteration multiple
steps of the value iteration algorithm thus reducing, even more,
the time needed to generate the value map. For recurrent part,
we tested different versions of LSTM and GRU and found out
that single-layer LSTM had the best performance [12].

With the use of the recurrent layer, models task is simplified
because the model can do multiple iterations on the same
map. In theory, this allows the model to produce better value
predictions for map places with narrow corridors or obstacles.
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Fig. 2. Residual UNet architecture. Colors denote different building blocks
used for model.
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Fig. 3. UNet-RNN architecture. Colors denote different building blocks used
for model.



C. UNet-RNN-Skip variant

With UNet-RNN-Skip variant we introduced a novel model
architecture that is built on UNet-RNN. It is similar to the
approach used in DenseNet architecture [6], but applied to
UNet-RNN. In this model’s architecture, we propose to add
skip connections within the encoder and the decoder part
itself Fig. 4. For the encoder and the decoder, we use 2 skip
connections, each going over 3 residual blocks within the same
part of the model. These skip connections, in theory, allows
the model to maintain details of the map at different scales and
different feature abstractions. For joining skip connections we
used addition operation as before.
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Fig. 4. UNet-RNN-Skip architecture. Colors denote different building blocks
used for model.

IV. EXPERIMENTS

A. Data set

While there are some available synthetic data-set generation
tools available [8], we created our grid map generator of vary-
ing complexity. The grid map generator can generate maps of
different sizes and different coverage of obstacles in the map.
It is possible to choose between different obstacle types and
map types, for example, rectangular obstacles or obstacles gen-
erated from the maze patterns Fig. 5. Source code is available

at https://gitlab.com/VVecins/OccupancyMapGenerator.git. On
synthetically generated grid maps we applied the value it-
eration algorithm to create the ground truth data-set for
the training of the model. For the value iteration algorithm
generator, changeable parameters include the map size, the
discount value, allowed movement types and environment
type (deterministic or stochastic). In this research, iterations
were saved when the delta for values between iterations
was higher than predefined constant (0.1). Not saving all
iterations was for training RNN model to solve the multiple
value iterations in one iteration. Source code available at
https://gitlab.com/VVecins/ValueIterationGridmap.git.

Fig. 5. Examples of synthetic maps generated by OccupancyMapGenerator.

B. Implementation details

All of the source code of our models are open-source and
have been implemented using pytorch library. With pytorch
it is possible to execute UNet-RNN-Skip mostly in a parallel
manner as we processed all data of encoder and decoder parts
together. Some parts of the training process of the model like
our metrics ”success score” and ”success rate” are also made
to be executed in a parallel manner using multiprocessing [13].

C. Metrics

For the loss function, we were using MSE loss and modified
MSE loss function. Modified MSE loss function consists of
average MSE from output and error for the grid cell value
of the positive terminal state. Modified MSE loss function
was introduced because by using regular MSE models tend
to get good values by copying obstacles and then reach a
plateau when learning gradient of values. An added loss for
the terminal state decreases iteration count for when the model
to correctly predict gradient values Fig. 6.

We introduce two metrics for evaluating the model per-
formance, success rate metric Fig. 7 and score metric. By
calculating from how many states we can reach the positive
terminal state following the gradient of adjacent values of the
grid, we calculate success rate and by calculating the sum
of all transitions needed to reach the positive terminal state
from every state of the map, we calculate score metric. If by
following the gradient of the values from a particular state we
never reach the positive terminal state then the value of score
metric is equal to the number of walkable gird cells in the
map.

https://gitlab.com/VVecins/OccupancyMapGenerator.git
https://gitlab.com/VVecins/ValueIterationGridmap.git


An interesting feature that we observed in UNet and Unet-
RNN type of models is the ability to successfully use models
that have been trained on smaller maps like 32x32 on much
larger maps like 64x64 without need to retrain them and
maintaining high success rate values. This is possible because
UNet model is a fully convolutional model and after learning
the value iteration algorithm can generalize it on any size of
the map. Unet-RNN type of models can achieve this because
they have pooling layer before RNN cell in the middle.

Fig. 6. Mean Squared Error test loss depending on training epoch.

Fig. 7. Success rate metric for test data-set depending on training epoch.
Value of 1.0 means that from all states in the map it is possible to reach the
the positive terminal state.

D. UNet variant

The experimental results of the simple UNet variant were
somewhat good with the success rate of 0.996 as seen in
Table I. Looking with the eye it is almost impossible to
distinguish the difference between value maps produced by
neural network-based models and the Value Iteration algorithm
as seen in Fig. 8. Although in order to have an optimal policy
in any state of the map it would be necessary to have success
rate metric of value 1.0.

In the Table II are shown a comparison between different
types of non-recurrent models. Starting with Convolutional
Auto-Encoder (Conv-AE), ResNet, UNet with concatenation
type of skip connections and UNet v2 with addition type of
skip connections.

E. UNet-RNN variant

The experimental results of the UNet-RNN variant yielded
better results than UNet variant. Advantage of recurrent mod-
els is the ability to pass output map multiple times through
the model to further improve precision until polices converge.

UNet-RNN, when applied to the map, are changing only a
few of the closest grid cells to the wave-front of values. By
changing only part of the map and not all of it at the same
time, the model can predict better values than models without

Fig. 8. On the left ground truth generated by Value Iteration algorithm. In
the middle UNet generated map. Gradients of these maps indicate state values
that lead to a positive terminal state. On the right, UNet generated success
map. White cells in the success map indicate that there exists a path to a
positive terminal state.

TABLE I
UNET PERFORMANCE ON 32X32 SIZE MAPS.

Learning rate Batch size Loss Success rate Epoch (min)
0.001 4 3.88E-06 0.996 4.244
0.0006 4 3.38E-06 0.996 4.415
0.003 8 5.08E-06 0.996 2.719
0.002 16 6.17E-06 0.995 2.030
0.003 16 3.67E-06 0.995 2.020
0.002 8 4.12E-06 0.995 2.735
0.001 8 4.05E-06 0.995 3.076
0.001 16 4.04E-06 0.994 2.013
0.0006 8 3.25E-06 0.994 3.075
0.003 4 5.11E-06 0.994 3.698
0.002 4 4.50E-06 0.994 4.214
0.0006 16 3.97E-06 0.990 1.733

TABLE II
COMPARISON BETWEEN DIFFERENT TYPES OF MODELS FOR EMULATING

VALUE ITERATION ALGORITHM.

Model Loss Success rate Epoch (min)
Conv-AE 0.073 0.014 0.958
ResNet 0.002 0.054 1.195
UNet 0.001 0.956 1.807
UNet v2 0.001 0.996 2.020

recurrent layers. This can be observed by watching activations
of layers using Grad-CAM [14] method that allows seeing
what parts of the map model gives more attention at different
abstraction layers of the model.

F. UNet-RNN-Skip variant

Finally, we achieved close to optimal policy results with
success rate of 0.998 using UNet-RNN-Skip model Fig. 9.
We also compared UNet-RNN-Skip model with standard con-
volutional RNN auto-encoder shown in Table III as Conv-
AE-RNN. It is possible to observe that skip connections
have significant importance on the performance of the model.
Adding additional skip connections to the architecture of the
model reduced epochs needed to have the convergence of the
policy.

In Table IV are shown results for UNet-RNN-Skip with
different hyper-parameters. All training instances achieved
success rate metric higher than 0.95. Best training instance
with success rate 0.998 and loss value 3.04E-06 was with
learning rate 0.001 and batch size 4. For all of the models,
we used small batch sizes because it affected the stability of
convergence.



TABLE III
COMPARISON OF PERFORMANCE OF UNET-RNN MODELS.

Model Loss Success rate Epoch (min)
Conv-AE-RNN 8.58E-06 0.598 10.862
UNet-RNN-Skip 3.04E-06 0.998 15.833

TABLE IV
UNET-RNN-SKIP MODEL PERFORMANCE.

Learning rate Batch size Loss Success rate Epoch (min)
0.001 4 3.04E-06 0.998 19.959
0.001 8 5.20E-06 0.998 17.650
0.002 8 5.43E-06 0.997 17.459
0.003 8 1.01E-05 0.992 17.464
0.002 16 1.24E-05 0.991 15.833
0.003 4 1.92E-05 0.985 19.944
0.002 4 3.16E-05 0.983 19.753
0.001 16 1.81E-05 0.970 15.605
0.003 16 2.77E-05 0.966 15.505

a) b) c)

d) e) f)
Fig. 9. UNet-RNN-Skip maps generated by progressive iterations (a, b, c),
last iteration (d), ground truth (e) and success map (f).

G. Speed of convergence

Our proposed UNet-RNN-Skip model is more salable than
Value Iteration Algorithm in terms of execution speed as seen
in Table V. It means that the model can be used for real-
time applications where recalculation of value map should be
done multiple times in a second. As shown in Fig. 10 for
the smallest tested map size of 32, Value Iteration Algorithm
needs much more time to produce the output than UNet-RNN-
Skip model. As map size increases the delta of processing
time increases by average multiplier of 8 for Value Iteration
Algorithm, but only by average multiplier of 3 for UNet-RNN-
Skip model.

TABLE V
COMPARISON OF EXECUTION TIME IN SECONDS BETWEEN MODELS.

Model / Map Size 32 64 128 256
VI 2.95 24.873 195.902 1473.108
UNet-RNN-Skip 0.031 0.071 0.236 0.833

H. Experiments on mobile robot platform

We also tested UNet-RNN-Skip model on real-life data
gathered from mobile platform using LIDAR as shown in
Fig. 11 and Fig. 12. The proposed model can be used for real-

Fig. 10. Comparison of time to convergence between models on different
size maps (log scale).

time path planning and obstacle avoidance on GPU powered
robotic platforms like nVidia Jetson.

Fig. 11. Map generated from LIDAR point cloud on 2D plane from mobile
robot platform.

Fig. 12. Discretized map from LIDAR point cloud on 2D plane on the left.
The map of values of states after passing through UNet-RNN-Skip model on
the right.

V. FURTHER RESEARCH

The proposed model could be used also in other applications
where input is sequential data and the task is to transform part



of it or to segment it depending on previous time steps. It can
be used to model all sorts of sequential algorithms with input
that could be represented as a matrix with spatial features.
Some example use-cases could be colouring task of movies
or tracking and segmentation of moving objects in between
frames. Also, these models have been successfully used in
spectral processing tasks within the realm of audio processing
in commercial product http://www.asya.ai.

Our synthetic data-set generator could be used in other path
planning or mapping problems research.

Another line of research could be the development of
models that work on different size maps. Currently, our models
have been tested on 64x64 maps when they have been trained
on 32x32 maps, but it would be interesting to research the
limits of such model ability to generalize on even larger maps.

VI. CONCLUSIONS

This research shows that UNet-RNN-Skip models can be
used to parallelize Value Iteration algorithm and achieve
comparable results in shorter execution time. New synthetic
data-set has been introduced and source code to generate even
more data-sets that could be used in further research. Results
show that on GPU powered robotic platforms UNet-RNN-Skip
models could be used in real-time whereas sequential Value
Iteration algorithm would be impractical.
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