
Survey of Deep Q-Network variants in

PyGame Learning Environment
Evalds Urtans

Riga Technical University
Kalku iela 1
Riga, Latvia

+371 26401317

evalds.urtans@rtu.lv

Agris Nikitenko
Riga Technical University

Kalku iela 1
Riga, Latvia

+371 26401317

agris.nikitenko@rtu.lv

ABSTRACT

Q-value function models based on variations of Deep Q-Network

(DQN) have shown good results in many virtual environments. In

this paper, over 30 sub-algorithms were surveyed that influence the

performance of DQN variants. Important stability and repeatability

aspects of state of art Deep Reinforcement Learning algorithms

were found. Multi Deep Q-Network (MDQN) as a generalization

of popular Double Deep Q-Network (DDQN) algorithm was

developed. Visual representations of a learning process as Q-Value

maps were produced using PyGame Learning Environment. Videos

of trained models available in following link:

http://yellowrobot.xyz/mdqn

CCS Concepts

• Theory of computation ➝ Design and analysis of algorithms

• Applied computing

Keywords

Deep Reinforcement Learning; Deep Learning; DQN; DDQN;

MDQN.

1. INTRODUCTION
This paper surveys many of the latest Deep Q-Learning algorithms

in the field of Deep Reinforcement Learning. Notable examples of

Deep Q-Learning (DQN) algorithms are the original DQN [13],

Double Deep Q-Learning (DDQN) [5], Dueling Network [23] and

asynchronous n-step DQN [14]. In addition to these Q-Value based

algorithms, there are two other major branches of development in

this field. One is policy gradient methods, with notable algorithms

like Trust Policy Region Optimization (TRPO) [17] and Proximal

Policy Optimization [19].

Another branch is a combination of Q-Value and policy gradient

models that are called actor-critic model with notable algorithms

like Deep Deterministic Policy Gradient (DDPG) [12],

Asynchronous Advantage Actor-Critic (A3C) [14], GPU A3C [2]

and Actor-Critic with Experience Replay (ACER) [22]. This paper

focuses only on Q-Value function based algorithms.

The paper explores how variations of these algorithms and hyper-

parameters affect performance in PyGame Learning Environment

(PLE) [21]. In this paper generalization of the DDQN algorithm

and extension is proposed. It can use 2, 3 or more decoupled DQN

models.

2. RELATED WORK
Recently some surveys have been conducted to assess a huge

variety of Deep Reinforcement Learning algorithms [11], [3], [9].

Many Deep Reinforcement Learning algorithms suffer from large

variance in results. There have been a number of papers trying to

resolve this issue [1], [18].

Some research also points out problems with repeatability and

identifies random seed as a significant factor that impacts results

[10], [8].

3. METHODOLOGY

3.1 Deep Q-Network variants
All Q-function algorithms share underlying equations: the

calculation of Cumulative Reward Equation 1 and the Bellman

equation for modeling policy 𝜋 through Q-function Equation 2 that

is an approximation of a reward function for a given state 𝑠 and

action 𝑎 at a time step 𝑡.

𝑅 = ∑ 𝛾𝑡𝑟𝑡

𝑛

𝑡=0

 (1)

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡 + 𝑚𝑎𝑥
𝑎′

𝑄𝜋(𝑠𝑡+1, 𝑎′) (2)

DQN algorithm relies on Equation 3 where a parametrized

Q-function is based on a deep neural network. Usually, an input is

a raw pixel representation trained by Convolution Neural Network

(ConvNet/CNN) or a lower dimensionality representation of 𝑠. The

model also usually utilizes Recurrent Neural Network (RNN) like

LSTM or GRU.

𝑄Θ(𝑠𝑡 , 𝑎𝑡) ← 𝑄Θ(𝑠𝑡, 𝑎𝑡)
 +𝛼(∇((𝑟𝑡 + 𝑚𝑎𝑥

𝑎′
𝑄Θ(𝑠𝑡+1, 𝑎′) − 𝑄Θ(𝑠𝑡, 𝑎𝑡)))) (3)

𝑄Θ(𝑠𝑡, 𝑎𝑡) ← 𝑄Θ(𝑠𝑡 , 𝑎𝑡)
 +𝛼(∇((𝑟𝑡 + 𝑚𝑎𝑥

𝑎′
𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡+1, 𝑎′)

− 𝑄Θ(𝑠𝑡, 𝑎𝑡))))

(4)

DDQN algorithm is similar to DQN, but it utilizes theory from

Double Q-Learning [7] by using two decoupled Q-functions like

shown in Equation 4. 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 function parameters are copied from

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ICDLT '18, June 27–29, 2018, Chongqing, China

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6473-7/18/06…$15.00

https://doi.org/10.1145/3234804.3234816

http://yellowrobot.xyz/mdqn
mailto:Permissions@acm.org
https://doi.org/10.1145/3234804.3234816

𝑄Θ with a given time step interval thereby achieving two decoupled

Q-functions.

3.2 Multiple Deep Q-Networks
There are some differences of DDQN (Double Deep Q-Network

via Target network) [6] and original DQL (Double Q-Learning) [7].

In case of DDQN 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 is used as decoupled function whereas in

pure DQL there should be 𝑄1 and 𝑄2 that are used intermittently.

DDQN is simpler and should preserve same properties as pure

DQL.

The paper explores this simplification impacts performance and

implemented a pure version of DDQN and compared it with a

standard DDQN. DQL algorithm was generalized to use any

number of decoupled functions in Bellman equation and call it

MDQN (Multiple Deep Q-Network). MDQN with 2 decoupled

functions is listed in Algorithm 1, but this could be easily

expendable to more decoupled function pairs.

Algorithm 1: MDQN (2 decoupled functions)

1: procedure Train

2: while Training == True do

3: if random(0.0, 1.0) < 0.5 then

4: if 𝑠𝑡 ≠ terminal state then

5: 𝑄1(𝑎𝑡 , 𝑠𝑡) ← 𝑅𝑡 + 𝛾𝑚𝑎𝑥
𝑎

𝑄2(𝑎, 𝑠𝑡+1)

6: else

7: 𝑄1(𝑎𝑡 , 𝑠𝑡) ← 𝑅𝑡

8: else

9: if 𝑠𝑡 ≠ terminal state then

10: 𝑄2(𝑎𝑡, 𝑠𝑡) ← 𝑅𝑡 + 𝛾𝑚𝑎𝑥
𝑎

𝑄1(𝑎, 𝑠𝑡+1)

11: else

12: 𝑄2(𝑎𝑡, 𝑠𝑡) ← 𝑅𝑡

13: 𝑎𝑡 ← 𝑚𝑎𝑥𝑎𝑎𝑣𝑒𝑟𝑎𝑔𝑒({𝑄1(𝑎, 𝑠𝑡), 𝑄2(𝑎, 𝑠𝑡)})

14: …

3.3 Other algorithmic improvements
Some algorithmic improvements have been made that can be

applied to other deep reinforcement learning algorithms.

One of the improvements was to use the cumulative reward for

training actions that were observed in an offline rollout of a

episode. For example, if the offline state contains {𝑠𝑡, 𝑎𝑡} and

calculated cumulative reward for {𝑠𝑡+1, 𝑎𝑡+1} then it is possible to

train the model using cumulative reward value instead of Bellman

equation. And when {𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑎𝑡+1} is not observed in an

episode it is possible to use a value from Bellman equation.

Principle is shown in in Algorithm 2.

In this research, RNN (Recurrent Neural Networks) were used as

models of DQN variants. These models take as input observation

from 5 previous frames. To speed up training, RNN-ReLU were

used instead of LSTM or GRU. LSTM and GRU perform better

than RNN-ReLU, but also take up to 7 times longer to train. Label

smoothing were implemented to prevent vanishing gradients in

RNN-ReLU [15].

All source code used to test algorithms in this paper is open-source.

Prioritized replay buffer is implemented as a separate library that

can be used with a completely different set of reinforcement

1 https://github.com/evaldsurtans/dqn-prioritized-experience-

replay

learning algorithms1. It includes both types of prioritized replay

buffer algorithms: proportional and ranked [16].

The main part of source code that contains variants of algorithms

that were tested and is also available as an open-source project2.

Code was implemented it in a way that it could utilize High-

Performance Cluster (HPC) architecture. Every training using

sample of random seed were executed as a separate task on a node

in a cluster. Each sample of random seed was a complete training

of 107 frames with specified hyper-parameters.

Algorithm 2: MDQN with a cumulative reward boost

1: procedure Train

2: while Training == True do

3: // Offline variant of an algorithm

4: while 𝑠𝑡 ≠ terminal state do

5: 𝑎𝑡 ← 𝑚𝑎𝑥𝑎𝑎𝑣𝑒𝑟𝑎𝑔𝑒({𝑄1(𝑎, 𝑠𝑡), 𝑄2(𝑎, 𝑠𝑡)})

6: …

7: store {𝑎𝑡 , 𝑠𝑡, 𝑠𝑡+1, 𝑟𝑡} in 𝑅𝑒𝑝𝑙𝑎𝑦𝐵𝑢𝑓𝑓𝑒𝑟

8:

9: for {𝑎𝑡 , 𝑠𝑡, 𝑠𝑡+1} sample from 𝑅𝑒𝑝𝑙𝑎𝑦𝐵𝑢𝑓𝑓𝑒𝑟 do

10: 𝑎′𝑡 ← 𝑚𝑎𝑥𝑎𝑎𝑣𝑒𝑟𝑎𝑔𝑒({𝑄1(𝑎, 𝑠𝑡), 𝑄2(𝑎, 𝑠𝑡)})

11: if {𝑎′𝑡 , 𝑠𝑡 , 𝑠𝑡+1} in 𝑅𝑒𝑝𝑙𝑎𝑦𝐵𝑢𝑓𝑓𝑒𝑟 then

12: if random(0.0, 1.0) < 0.5 then

13: 𝑄1(𝑎𝑡 , 𝑠𝑡) ← ∑ 𝛾𝑡𝑅𝑡
𝑡+1

𝑡=0

14: else

15: 𝑄2(𝑎𝑡, 𝑠𝑡) ← ∑ 𝛾𝑡𝑅𝑡
𝑡+1

𝑡=0

16: else

17: if random(0.0, 1.0) < 0.5 then

18: if 𝑠𝑡 ≠ terminal state then

19: 𝑄1(𝑎𝑡 , 𝑠𝑡) ← 𝑅𝑡 + 𝛾𝑚𝑎𝑥
𝑎

𝑄2(𝑎, 𝑠𝑡+1)

20: else

21: 𝑄1(𝑎𝑡 , 𝑠𝑡) ← 𝑅𝑡

22: else

23: if 𝑠𝑡 ≠ terminal state then

24: 𝑄2(𝑎𝑡, 𝑠𝑡) ← 𝑅𝑡 + 𝛾𝑚𝑎𝑥
𝑎

𝑄1(𝑎, 𝑠𝑡+1)

25: else

26: 𝑄2(𝑎𝑡, 𝑠𝑡) ← 𝑅𝑡

4. EXPERIMENTS

4.1 PyGame Learning Environment
In this research to evaluate results, an open-source game

environments "PyGame Learning Environment" (PLE)3 were used.

PLE contains many different games including Flappy Bird, 3D

Maze, Doom, and others. For most of the game environments it is

possible to get low dimensional representations of a state, which

are useful for testing deep reinforcement algorithms with limited

computational resources. Of course, it is also possible to train

agents using high dimensional pixel representations of a state.

Another very desirable feature is that game environments can be

manipulated while running because full source code for each game

is easily accessible.

Curriculum learning were implemented for the 3D raycast maze,

where target moves away from starting point in later stages of

training. Method to produce Q-value map (Q-map) were

2 https://bitbucket.org/evaldsurtans/dqn-research

3 https://github.com/ntasfi/PyGame-Learning-Environment

https://github.com/evaldsurtans/dqn-prioritized-experience-replay
https://github.com/evaldsurtans/dqn-prioritized-experience-replay
https://bitbucket.org/evaldsurtans/dqn-research
https://github.com/ntasfi/PyGame-Learning-Environment

implemented by manipulating a position of a game character in an

environment and getting Q-value for every artificial state in a game.

For example, in a game of flappy bird, the bird character is moved

across all pixels in a frame and a Q-function value is calculated that

is overlaid as a heat map like in Figure 1. This kind of

representation helps to understand what DQN model has learned.

In fact, we found and fixed a bug in a Flappy Bird environment by

using Q-map when we noticed that DQN model learned to cross an

obstacle over the top of the screen. In case of 3D raycast maze, we

implemented Q-map by teleporting a player to all walkable squares

and rotating incrementally player's camera around the center of

each square. For every frame, it is possible to calculate average Q-

Value of all actions available and then make a heat map of a maze

like in Figure 2.

4.2 Random seed and repeatability
Our research highlights a problem that all DQN, DDQN and

MDQN variants are very sensitive to seed randomization. In this

research method to restore all random seeds and repeat results were

implemented, but this is not desirable because it can lead to

misleading results when comparing different hyper-parameters. A

better approach is to increase the sample size of random seeds. This

means that every training configuration should be rerun multiple

times with different randomization seeds as shown in Figure 3.

Large variance between different samples of random seed were

observed. To make accurate comparisons, it is necessary to choose

a random seed size of 10, since we observed that this resulted in

similar variances to sample sizes 20 and 40. Whereas using a

sample size of 5 produced a much lower variance of results.

To complete this research, we had quite limited computing

resources and even random seed size of 10 took considerable time

to test. It is one of the reasons why we chose experimentally initial

hyper-parameter values that we changed one by one, instead of

performing full grid search.

Often it is advised to reduce variance by reducing the model

complexity [4]. Our results confirm this hypothesis Figure 4,

however by reducing model complexity also a maximal average

score of testing set reduces as well. When constructing such

models, it is necessary to find the compromise between model

complexity, repeated random seed test set size and a variance.

Another widely used method to reduce variance is to use

regularization. Again, our results confirm that it reduces variance,

but again it also reduces average scores as shown in Figure 5.

As for batch normalization, no significant improvement was found

as shown in results in an appendix.

Figure 1. Q-Maps of sequential training of Flappy Bird from first frame on left till 𝟏𝟎𝟕 frame on right.

Green is highest value state. Red is lowest value state.

Figure 2. 3D Raycast maze Q-map for each position in map from top down view. Each Q-map represents sequential frame

checkpoint during training. On left first frame and on right 𝟏𝟎𝟕 frame.

Notice that map increases in size thus using curriculum learning principle.

Figure 3. Sample size of random seeds and variance of average score for Flappy Bird environment.

Figure 4. Comparison of different hidden unit vector sizes and variance of average score for Flappy Bird environment.

Figure 5. Effect of L1 (Lasso) and L2 (Ridge) regularization on variance of average score for Flappy Bird environment.

Table 1. Default hyper-parameters that other parameters were measured against in all environments

parameters

batch norm: false mini-batch: 32

bellman gamma: 0.99 model: 1 states to n actions

beta replay buffer: true offline prebatch: false

cumulative reward: true online: false

diff. states: false optimizer: rmsprop

dropout: 0.0 pixels input: none

dueling arch.: false priority replay buffer: ranked

epsilon greedy: true reg.: none

epsilon start-end: 1e-3 - 1e-6 replay buffer: 5e5

epsilon stuck: false rnn: relu

extra frame reward: 1e-5 sarsa: false

frames back: 5 state prev. act. reward: false

frames before: 5e4 target network alpha: 1.0

grad clip.: 0.0 terminal reward: -1e3

Table 2. Top 15 hyper-parameters of DDQN for Flappy Bird environment

parameter lr avg. score max. score var. score time (min.)

rnn: gru 0.0001 42.97024986 264.1 549 2603.809

rnn: lstm 0.0001 28.60916534 264.1 99.2 3246.475

optimizer: adam 0.001 16.96737049 264.1 36.9 351.827

grad clip.: 1.0 0.001 12.45431387 254.096 19 399.956

optimizer: adam 0.0001 10.19414131 207.07831 21.7 367.396

grad clip.: 10.0 0.0001 9.765907544 184.06991 19.2 361.19

grad clip.: 10.0 0.001 8.694875819 156.05916 12.8 364.509

grad clip.: 1.0 0.0001 7.633139692 140.05331 17.1 357.085

rnn: lstm 0.001 6.614351436 182.06913 21.5 3770.588

optimizer: adam 0.00001 1.929185929 47.0181 1.81 375.648

mini-batch: 8 0.00001 1.922057009 40.0155 0.414 505.778

bellman gamma: 0.90 0.00001 1.916720841 47.01799 1.19 366.701

grad clip.: 10.0 0.00001 1.783358575 32.01237 0.322 400.212

beta replay buffer: false 0.00001 1.647591408 60.02323 1.02 423.562

default 0.00001 1.533690858 32.01236 0.308 377.689

Table 3. Top 15 hyper-parameters of MDQN3 for Flappy Bird environment

parameter lr avg. score max. score var. score time (min.)

rnn: gru 0.0001 24.6588361 264.1 70.62906959 2735.039

rnn: lstm 0.0001 16.17153479 224.08495 31.69684243 3041.107

optimizer: adam 0.001 12.14972485 148.05634 8.572064894 357.792

rnn: lstm 0.001 6.362237775 161.06122 10.33771355 3052.423

grad clip.: 10.0 0.001 6.148186995 130.0494 11.12354631 380.245

grad clip.: 10.0 0.0001 5.774537436 104.03959 11.92569845 361.402

optimizer: adam 0.0001 5.541812022 124.0473 18.46937444 379.416

grad clip.: 1.0 0.0001 4.706386259 119.04543 11.58234856 374.33

grad clip.: 1.0 0.001 2.676778874 65.02486 4.486235409 456.614

rnn: gru 0.001 1.117617436 64.02454 1.294722902 2537.775

target network alpha: 0.0 0.00001 1.047481234 19.00759 0.298771101 745.303

model: n states to n act. 0.00001 0.881531711 12.00483 0.101958401 600.168

epsilon stuck: true 0.00001 0.878962391 11.00452 0.013849234 384.174

grad clip.: 10.0 0.00001 0.86220963 21.00828 0.183416314 402.766

mdqn: min 0.00001 0.740644674 10.0041 0.05608085 376.083

Table 4. Comparison of DQN, DDQN and MDQN models for Flappy Bird environment. Decimal number after abbreviation like

mdqn3 1.0 denotes coefficient of target network. Coefficient 0.0 denotes that algorithm do not use target network.

model type lr avg. score max. score var. score time (min.)

dqn 1.0 0.001 28.78679352 264.1 303.0517411 500.211

mdqn2 1.0 0.001 17.19567935 264.1 50.58413201 421.452

ddqn 1.0 0.001 16.96737049 264.1 36.9 351.827

mdqn2 0.0 0.001 14.07828206 212.08043 18.74729045 493.78

mdqn3 1.0 0.001 12.14972485 148.05634 8.572064894 357.792

mdqn3 0.0 0.001 9.328698486 179.06784 24.94178454 635.494

mdqn2 0.0 0.0001 9.311841471 202.07645 13.39635414 521.696

mdqn2 1.0 0.0001 5.351493407 127.04827 14.07459022 384.702

mdqn3 0.0 0.0001 4.406378303 102.03882 5.088549631 776.327

mdqn2 0.0 0.00001 1.603283236 61.02341 0.715069292 642.106

mdqn3 0.0 0.00001 0.872432773 12.00487 0.087176378 713.332

mdqn2 1.0 0.00001 0.692394861 12.00513 0.221167891 389.493

Figure 6. Comparison between DQN model types for Pong environment.

Table 5. Comparison of DQN, DDQN and MDQN models for 3D Raycast maze environment.

model type lr avg. score var. score time (min.)

mdqn2 0.0 0.00001 3.904359232 0.728045918 1213.991

dqn 0.00001 3.88654262 2.124993494 484.859

mdqn2 1.0 0.000001 3.7166532 0.154117942 533.389

ddqn 0.000001 3.713829593 1.524318234 524.65

ddqn 0.00001 3.638360789 1.662039807 521.975

mdqn2 0.0 0.00001 3.506246831 1.746571203 809.374

mdqn2 0.0 0.000001 3.345749731 2.749636472 978.638

ddqn 0.0001 3.267777864 2.889255991 523.012

mdqn2 1.0 0.0000001 3.247272282 0.576931468 500.424

mdqn2 1.0 0.00001 3.180342964 2.016163812 523.085

mdqn3 1.0 0.00001 3.056116361 2.339890159 872.317

dqn 0.000001 3.026868771 2.028895348 534.022

mdqn3 0.0 0.00001 2.807473511 2.395394139 1212.21

mdqn3 1.0 0.000001 2.770128326 0.714132328 864.442

mdqn3 0.0 0.000001 2.629530288 1.724929361 1152.146

mdqn2 0.0 0.0001 2.545370799 4.120312752 623.82

dqn 0.0001 2.24425396 2.153779645 516.078

mdqn3 1.0 0.0001 2.174641347 3.541216037 775.408

mdqn2 0.0 0.0001 2.157170755 3.235455294 899.93

mdqn2 1.0 0.0001 1.959047125 2.688871288 479.06

mdqn3 0.0 0.0001 1.678048035 3.272271359 1117.217

mdqn2 0.0 0.000001 1.452786487 1.887540531 809.63

mdqn2 1.0 0.00000001 1.399096696 1.827157866 495.813

mdqn2 0.0 0.0000001 0.178030303 0 463.67

4.3 Flappy Bird
Initially to test more than 28 hyper-parameters of DQN variants

partial grid searches were done on combinations of parameters.

Then benchmarking for one step changes were dome in each of

hyper-parameters against initial parameters that are shown in

Table 1.

Each set of parameters were repeated for at least 10 times to

ensure repeatability as described in 4.2 section. By run, we mean

full training of 107 frames with a defined set of hyper-

parameters. RNN-ReLU were used as Q-value model in order to

speed up training and compared DQN, DDQN and MDQN

algorithms with full set of hyper-parameters as shown in Table 2,

Table 3 and Table 4.

Original DQN outperformed DDQN and MDQN, but our version

of MDQN slightly outperformed DDQN. This is nothing

particularly surprising that DQN outperforms more advanced

DDQN and MDQN because in previous studies it has also been

shown that different algorithms excel in different environments.

In some environments, DQN is more effective, but in others

DDQN.

No significant improvements were found by applying some of

more interesting architectures like Dueling Network or different

activation functions in RNN like Leaky ReLU, ELU, and PreLU.

Regularization methods such as L1, L2, Dropout or Batch

Normalization didn't improve performance. This could be the

case because huge data set that is gathered from training

environment in itself accomplishes normalization [4].

Because of the flexibility of open-source environments in PLE it

was possible to produce Q-Value maps to track and compare the

progress of different sets of hyper-parameters. An example of Q-

Value maps is given in Figure 1.

4.4 Pong
For Pong and 3D raycast maze environments, in initial hyper-

parameters optimizer was changed from "rmsprop" to "adam",

because it gave better results without increasing processing time.

In case of Pong again DQN slightly outperformed MDQN and

DDQN, but MDQN slightly outperformed DDQN as shown in

Figure 6.

Q-Value maps were generated by manipulating the position of the

ball in Pong environment on the frozen Q-Value model at

checkpoints during training as shown in Figure 7.

Figure 7. Pong Q-map before and after training. After

training possible to see path of a ball trajectory.

4.5 3D Raycast maze
Finally, algorithms were benchmarked on "3D Raycast Maze"

environment where instead of a low dimensional representation

of a state, RGB 48x48 pixel input was used. In many

environments, to save resources pixel grayscale representation

would be recommended, but to make sure that exit door have a

distinguishable difference in color form walls two channels were

used per pixel red and green. The model consisted of ConvNet

embedding and RNN layers.

All pixel inputs were normalized in a range 0.0 − 1.0 instead of

using byte value of 0 − 255.

After the model has been trained GradCAM maps [20] were

generated to visualize highest gradients in ConvNet as shown in

Figure 8. These maps are more informative than Saliency Maps

used in other Deep Reinforcement Learning papers [24]. These

maps help us to understand what part of input pixel array is the

most important for training. In this case, it was the exit door that

gives the reward when reached.

Another way to reduce the dimensionality of the problem was to

remove some of the actions available to an agent. Agent was

allowed only to move ahead and make turns left and right, but not

to go back and wait (do nothing).

Again Q-Value maps were constructed to visualize the progress

of learning as shown in Figure 2. In this case, we manipulated a

position of player around the maze and recorded Q-Values by

rotating player's view around this position. Visual representation

is a 2D top view for 3D maze.

Again, slight performance improvement were found using

MDQN in a more complex environments like 3D Raycast maze

as shown in Table 5.

Figure 8. GradCAM maps of trained MDQN agent in

3D Raycast maze environment.

 Images show attention on target in a 3D maze.

5. CONCLUSIONS
MDQN, a new Deep Reinforcement Learning algorithm was

introduced that slightly outperforms DDQN in some

environments. Still, in others, original DQN work better than both

MDQN and DDQN.

Most of DQN variants that were tested have little or no significant

effect on performance. New method to construct Q-Value maps

were introduced by manipulating training environment. Q-Value

maps are useful for assessing the progress of training. Results

show that it is essential to run a sufficient number of repeated

training runs for every set of parameters, because of the impact of

random seed initialization and large variance in results.

6. APPENDIX
With this paper, spreadsheet is published of an average score in a

game of Flappy Bird after 107 frames for each hyper-parameter

with different learning rates. All hyper-parameters have been

tested for DQN, DDQN and MDQN variants of algorithms.

Results are available in public domain4.

7. ACKNOWLEDGMENTS
Research has been completed with a support from High-

Performance Computing Center of Riga Technical University.

8. REFERENCES
[1] Anschel, O., Baram, N. and Shimkin, N. 2016. Deep

Reinforcement Learning with Averaged Target DQN. NIPS

Workshop. (2016).

[2] Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J. and

Kautz, J. 2017. GA3C: GPU-based A3C for Deep

Reinforcement Learning. ICLR. (2017).

[3] Duan, Y., Chen, X., Houthooft, R., Schulman, J. and

Abbeel, P. 2016. Benchmarking Deep Reinforcement

Learning for Continuous Control. ICML. 48, (2016), 1329–

1338.

[4] Geron, A. 2017. Hands-On Machine Learning with Scikit-

Learn and TensorFlow: Concepts, Tools, and Techniques to

Build Intelligent Systems. O’Reilly Media.

[5] Hasselt, H. van, Guez, A. and Silver, D. 2015. Deep

Reinforcement Learning with Double Q-learning. CoRR.

abs/1509.06461, (2015).

[6] Hasselt, H. van, Guez, A. and Silver, D. 2016. Deep

Reinforcement Learning with Double Q-learning.

Proceedings of AAAI. 13, (2016), 2094–2100.

[7] Hasselt, H.V. 2010. Double Q-learning. Advances in Neural

Information Processing Systems 23. J.D. Lafferty, C.K.I.

Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, eds.

Curran Associates, Inc. 2613–2621.

[8] Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,

D. and Meger, D. 2018. Deep Reinforcement Learning that

Matters. (AAAI, 2018).

[9] Hessel, M., Modayil, J., van Hasselt, H., Schaul, T.,

Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M.G.

and Silver, D. 2017. Rainbow: Combining Improvements in

Deep Reinforcement Learning. CoRR. abs/1710.02298,

(2017).

[10] Islam, R., Henderson, P., Gomrokchi, M. and Precup, D.

2017. Reproducibility of Benchmarked Deep

Reinforcement Learning Tasks for Continuous Control.

ICML. (2017).

4 http://yellowrobot.xyz/full-survey-flappybird.pdf

[11] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage

and Anil Anthony Bharath 2017. A Brief Survey of Deep

Reinforcement Learning. IEEE Signal Processing

Magazine. (2017).

[12] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T.,

Tassa, Y., Silver, D. and Wierstra, D. 2015. Continuous

control with deep reinforcement learning. US Patent

20170024643 A1. (2015).

[13] Mnih, V. et al. 2015. Human-level control through deep

reinforcement learning. Nature. 518, 7540 (2015), 529–533.

[14] Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P.,

Harley, T., Silver, D. and Kavukcuoglu, K. 2016.

Asynchronous Methods for Deep Reinforcement Learning.

ICML. 48, (2016), 1928–1937.

[15] Pfau, D. and Vinyals, O. 2016. Connecting Generative

Adversarial Networks and Actor-Critic Methods. NIPS

Workshop on Adversarial Training. (2016).

[16] Schaul, T., Quan, J., Antonoglou, I. and Silver, D. 2016.

Prioritized Experience Replay. ICLR. (2016).

[17] Schulman, J., Levine, S., Moritz, P., Jordan, M.I. and

Abbeel, P. 2015. Trust Region Policy Optimization. ICML.

(2015), 1889–1897.

[18] Schulman, J., Moritz, P., Levine, S., Jordan, M.I. and

Abbeel, P. 2016. High-Dimensional Continuous Control

Using Generalized Advantage Estimation. ICLR. (2016).

[19] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and

Klimov, O. 2017. Proximal Policy Optimization

Algorithms. CoRR. abs/1707.06347, (2017).

[20] Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M.,

Parikh, D. and Batra, D. 2017. Grad-CAM: Why did you say

that? Visual Explanations from Deep Networks via

Gradient-based Localization. ICCV. (2017).

[21] Tasfi, N. 2016. PyGame Learning Environment. GitHub

repository. (2016).

[22] Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,

Kavukcuoglu, K. and de Freitas, N. 2017. Sample Efficient

Actor-Critic with Experience Replay. ICLR. (2017).

[23] Wang, Z., Freitas, N. de and Lanctot, M. 2015. Dueling

Network Architectures for Deep Reinforcement Learning.

CoRR. abs/1511.06581, (2015).

[24] Wang, Z., Freitas, N. de and Lanctot, M. 2016. Dueling

Network Architectures for Deep Reinforcement Learning.

ICML. 16, (2016), 1995–2003.

http://yellowrobot.xyz/full-survey-flappybird.pdf

	1. INTRODUCTION
	2. RELATED WORK
	3. METHODOLOGY
	3.1 Deep Q-Network variants
	3.2 Multiple Deep Q-Networks
	3.3 Other algorithmic improvements

	4. EXPERIMENTS
	4.1 PyGame Learning Environment
	4.2 Random seed and repeatability
	4.3 Flappy Bird
	4.4 Pong
	4.5 3D Raycast maze

	5. CONCLUSIONS
	6. APPENDIX
	7. ACKNOWLEDGMENTS
	8. REFERENCES

