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ABSTRACT 

Q-value function models based on variations of Deep Q-Network 

(DQN) have shown good results in many virtual environments. In 

this paper, over 30 sub-algorithms were surveyed that influence the 

performance of DQN variants. Important stability and repeatability 

aspects of state of art Deep Reinforcement Learning algorithms 

were found. Multi Deep Q-Network (MDQN) as a generalization 

of popular Double Deep Q-Network (DDQN) algorithm was 

developed. Visual representations of a learning process as Q-Value 

maps were produced using PyGame Learning Environment. Videos 

of trained models available in following link: 

http://yellowrobot.xyz/mdqn   
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Deep Reinforcement Learning; Deep Learning; DQN; DDQN; 
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1. INTRODUCTION 
This paper surveys many of the latest Deep Q-Learning algorithms 

in the field of Deep Reinforcement Learning. Notable examples of 

Deep Q-Learning (DQN) algorithms are the original DQN [13], 

Double Deep Q-Learning (DDQN) [5], Dueling Network [23] and 

asynchronous n-step DQN [14]. In addition to these Q-Value based 

algorithms, there are two other major branches of development in 

this field. One is policy gradient methods, with notable algorithms 

like Trust Policy Region Optimization (TRPO) [17] and Proximal 

Policy Optimization [19]. 

Another branch is a combination of Q-Value and policy gradient 

models that are called actor-critic model with notable algorithms 

like Deep Deterministic Policy Gradient (DDPG) [12],  

Asynchronous Advantage Actor-Critic (A3C) [14], GPU A3C [2] 

and Actor-Critic with Experience Replay (ACER) [22]. This paper 

focuses only on Q-Value function based algorithms.

The paper explores how variations of these algorithms and hyper-

parameters affect performance in PyGame Learning Environment 

(PLE) [21]. In this paper generalization of the DDQN algorithm 

and extension is proposed. It can use 2, 3 or more decoupled DQN 

models. 

2. RELATED WORK 
Recently some surveys have been conducted to assess a huge 

variety of Deep Reinforcement Learning algorithms [11], [3], [9].  

Many Deep Reinforcement Learning algorithms suffer from large 

variance in results. There have been a number of papers trying to 

resolve this issue [1], [18]. 

Some research also points out problems with repeatability and 

identifies random seed as a significant factor that impacts results 

[10], [8]. 

3. METHODOLOGY 

3.1 Deep Q-Network variants 
All Q-function algorithms share underlying equations: the 

calculation of Cumulative Reward Equation 1 and the Bellman 

equation for modeling policy 𝜋 through Q-function Equation 2 that 

is an approximation of a reward function for a given state 𝑠 and 

action 𝑎 at a time step 𝑡. 

𝑅 = ∑ 𝛾𝑡𝑟𝑡

𝑛

𝑡=0

 (1) 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡 + 𝑚𝑎𝑥
𝑎′

𝑄𝜋(𝑠𝑡+1, 𝑎′) (2) 

DQN algorithm relies on Equation 3 where a parametrized  

Q-function is based on a deep neural network. Usually, an input is 

a raw pixel representation trained by Convolution Neural Network 

(ConvNet/CNN) or a lower dimensionality representation of 𝑠. The 

model also usually utilizes Recurrent Neural Network (RNN) like 

LSTM or GRU. 

𝑄Θ(𝑠𝑡 , 𝑎𝑡) ← 𝑄Θ(𝑠𝑡, 𝑎𝑡) 
                   +𝛼(∇((𝑟𝑡 + 𝑚𝑎𝑥

𝑎′
𝑄Θ(𝑠𝑡+1, 𝑎′) − 𝑄Θ(𝑠𝑡, 𝑎𝑡)))) (3) 

𝑄Θ(𝑠𝑡, 𝑎𝑡) ← 𝑄Θ(𝑠𝑡 , 𝑎𝑡) 
            +𝛼(∇((𝑟𝑡 + 𝑚𝑎𝑥

𝑎′
𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡+1, 𝑎′)

− 𝑄Θ(𝑠𝑡, 𝑎𝑡)))) 

(4) 

DDQN algorithm is similar to DQN, but it utilizes theory from 

Double Q-Learning [7] by using two decoupled Q-functions like 

shown in Equation 4. 𝑄𝑡𝑎𝑟𝑔𝑒𝑡  function parameters are copied from 
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𝑄Θ with a given time step interval thereby achieving two decoupled 

Q-functions. 

3.2 Multiple Deep Q-Networks 
There are some differences of DDQN (Double Deep Q-Network 

via Target network) [6] and original DQL (Double Q-Learning) [7]. 

In case of DDQN 𝑄𝑡𝑎𝑟𝑔𝑒𝑡  is used as decoupled function whereas in 

pure DQL there should be 𝑄1 and 𝑄2 that are used intermittently. 

DDQN is simpler and should preserve same properties as pure 

DQL.  

The paper explores this simplification impacts performance and 

implemented a pure version of DDQN and compared it with a 

standard DDQN.  DQL algorithm was generalized to use any 

number of decoupled functions in Bellman equation and call it 

MDQN (Multiple Deep Q-Network). MDQN with 2 decoupled 

functions is listed in Algorithm 1, but this could be easily 

expendable to more decoupled function pairs. 

Algorithm 1: MDQN (2 decoupled functions) 

1: procedure Train 

2:    while Training == True do 

3:        if random(0.0, 1.0) < 0.5 then 

4:            if 𝑠𝑡 ≠ terminal state then 

5:                𝑄1(𝑎𝑡 , 𝑠𝑡) ← 𝑅𝑡 + 𝛾𝑚𝑎𝑥
𝑎

𝑄2(𝑎, 𝑠𝑡+1) 

6:            else 

7:                𝑄1(𝑎𝑡 , 𝑠𝑡) ← 𝑅𝑡 

8:        else 

9:            if 𝑠𝑡 ≠ terminal state then 

10:              𝑄2(𝑎𝑡, 𝑠𝑡) ← 𝑅𝑡 + 𝛾𝑚𝑎𝑥
𝑎

𝑄1(𝑎, 𝑠𝑡+1) 

11:          else 

12:              𝑄2(𝑎𝑡, 𝑠𝑡) ← 𝑅𝑡 

13:       𝑎𝑡 ← 𝑚𝑎𝑥𝑎𝑎𝑣𝑒𝑟𝑎𝑔𝑒({𝑄1(𝑎, 𝑠𝑡), 𝑄2(𝑎, 𝑠𝑡)}) 

14:       … 

 

3.3 Other algorithmic improvements 
Some algorithmic improvements have been made that can be 

applied to other deep reinforcement learning algorithms. 

One of the improvements was to use the cumulative reward for 

training actions that were observed in an offline rollout of a 

episode. For example, if the offline state contains {𝑠𝑡, 𝑎𝑡}  and 

calculated cumulative reward for {𝑠𝑡+1, 𝑎𝑡+1} then it is possible to 

train the model using cumulative reward value instead of Bellman 

equation. And when {𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑎𝑡+1}  is not observed in an 

episode it is possible to use a value from Bellman equation. 

Principle is shown in in Algorithm 2. 

In this research, RNN (Recurrent Neural Networks) were used as 

models of DQN variants. These models take as input observation 

from 5 previous frames. To speed up training, RNN-ReLU were 

used instead of LSTM or GRU. LSTM and GRU perform better 

than RNN-ReLU, but also take up to 7 times longer to train. Label 

smoothing were implemented to prevent vanishing gradients in 

RNN-ReLU [15]. 

All source code used to test algorithms in this paper is open-source. 

Prioritized replay buffer is implemented as a separate library that 

can be used with a completely different set of reinforcement 

                                                                 

1 https://github.com/evaldsurtans/dqn-prioritized-experience-

replay 

learning algorithms1. It includes both types of prioritized replay 

buffer algorithms: proportional and ranked [16]. 

The main part of source code that contains variants of algorithms 

that were tested and is also available as an open-source project2. 

Code was implemented it in a way that it could utilize High-

Performance Cluster (HPC) architecture. Every training using 

sample of random seed were executed as a separate task on a node 

in a cluster. Each sample of random seed was a complete training 

of 107 frames with specified hyper-parameters. 

Algorithm 2: MDQN with a cumulative reward boost 

1: procedure Train 

2:    while Training == True do 

3:        // Offline variant of an algorithm 

4:        while 𝑠𝑡 ≠ terminal state do 

5:            𝑎𝑡 ← 𝑚𝑎𝑥𝑎𝑎𝑣𝑒𝑟𝑎𝑔𝑒({𝑄1(𝑎, 𝑠𝑡), 𝑄2(𝑎, 𝑠𝑡)}) 

6:            … 

7:            store {𝑎𝑡 , 𝑠𝑡, 𝑠𝑡+1, 𝑟𝑡} in 𝑅𝑒𝑝𝑙𝑎𝑦𝐵𝑢𝑓𝑓𝑒𝑟 

8:     

9:        for {𝑎𝑡 , 𝑠𝑡, 𝑠𝑡+1} sample from 𝑅𝑒𝑝𝑙𝑎𝑦𝐵𝑢𝑓𝑓𝑒𝑟 do 

10:          𝑎′𝑡 ← 𝑚𝑎𝑥𝑎𝑎𝑣𝑒𝑟𝑎𝑔𝑒({𝑄1(𝑎, 𝑠𝑡), 𝑄2(𝑎, 𝑠𝑡)}) 

11:          if {𝑎′𝑡 , 𝑠𝑡 , 𝑠𝑡+1} in 𝑅𝑒𝑝𝑙𝑎𝑦𝐵𝑢𝑓𝑓𝑒𝑟 then 

12:               if random(0.0, 1.0) < 0.5 then 

13:                        𝑄1(𝑎𝑡 , 𝑠𝑡) ← ∑ 𝛾𝑡𝑅𝑡
𝑡+1

𝑡=0
 

14:               else 

15:                        𝑄2(𝑎𝑡, 𝑠𝑡) ← ∑ 𝛾𝑡𝑅𝑡
𝑡+1

𝑡=0
 

16:          else 

17:               if random(0.0, 1.0) < 0.5 then 

18:                    if 𝑠𝑡 ≠ terminal state then 

19:                         𝑄1(𝑎𝑡 , 𝑠𝑡) ← 𝑅𝑡 + 𝛾𝑚𝑎𝑥
𝑎

𝑄2(𝑎, 𝑠𝑡+1) 

20:                    else 

21:                         𝑄1(𝑎𝑡 , 𝑠𝑡) ← 𝑅𝑡 

22:               else 

23:                    if 𝑠𝑡 ≠ terminal state then 

24:                         𝑄2(𝑎𝑡, 𝑠𝑡) ← 𝑅𝑡 + 𝛾𝑚𝑎𝑥
𝑎

𝑄1(𝑎, 𝑠𝑡+1) 

25:                   else 

26:                         𝑄2(𝑎𝑡, 𝑠𝑡) ← 𝑅𝑡 

 

4. EXPERIMENTS 

4.1 PyGame Learning Environment 
In this research to evaluate results, an open-source game 

environments "PyGame Learning Environment" (PLE)3 were used.  

PLE contains many different games including Flappy Bird, 3D 

Maze, Doom, and others. For most of the game environments it is 

possible to get low dimensional representations of a state, which 

are useful for testing deep reinforcement algorithms with limited 

computational resources. Of course, it is also possible to train 

agents using high dimensional pixel representations of a state. 

Another very desirable feature is that game environments can be 

manipulated while running because full source code for each game 

is easily accessible. 

Curriculum learning were implemented for the 3D raycast maze, 

where target moves away from starting point in later stages of 

training. Method to produce Q-value map (Q-map) were 

2 https://bitbucket.org/evaldsurtans/dqn-research 

3 https://github.com/ntasfi/PyGame-Learning-Environment 

https://github.com/evaldsurtans/dqn-prioritized-experience-replay
https://github.com/evaldsurtans/dqn-prioritized-experience-replay
https://bitbucket.org/evaldsurtans/dqn-research
https://github.com/ntasfi/PyGame-Learning-Environment


implemented by manipulating a position of a game character in an 

environment and getting Q-value for every artificial state in a game. 

For example, in a game of flappy bird, the bird character is moved 

across all pixels in a frame and a Q-function value is calculated that 

is overlaid as a heat map like in Figure 1. This kind of 

representation helps to understand what DQN model has learned. 

In fact, we found and fixed a bug in a Flappy Bird environment by 

using Q-map when we noticed that DQN model learned to cross an 

obstacle over the top of the screen. In case of 3D raycast maze, we 

implemented Q-map by teleporting a player to all walkable squares 

and rotating incrementally player's camera around the center of 

each square. For every frame, it is possible to calculate average Q-

Value of all actions available and then make a heat map of a maze 

like in Figure 2. 

4.2 Random seed and repeatability 
Our research highlights a problem that all DQN, DDQN and 

MDQN variants are very sensitive to seed randomization. In this 

research method to restore all random seeds and repeat results were 

implemented, but this is not desirable because it can lead to 

misleading results when comparing different hyper-parameters. A 

better approach is to increase the sample size of random seeds. This 

means that every training configuration should be rerun multiple 

times with different randomization seeds as shown in Figure 3. 

Large variance between different samples of random seed were 

observed. To make accurate comparisons, it is necessary to choose 

a random seed size of 10, since we observed that this resulted in 

similar variances to sample sizes 20 and 40. Whereas using a 

sample size of 5 produced a much lower variance of results.  

To complete this research, we had quite limited computing 

resources and even random seed size of 10 took considerable time 

to test. It is one of the reasons why we chose experimentally initial 

hyper-parameter values that we changed one by one, instead of 

performing full grid search. 

Often it is advised to reduce variance by reducing the model 

complexity [4]. Our results confirm this hypothesis Figure 4, 

however by reducing model complexity also a maximal average 

score of testing set reduces as well. When constructing such 

models, it is necessary to find the compromise between model 

complexity, repeated random seed test set size and a variance. 

Another widely used method to reduce variance is to use 

regularization. Again, our results confirm that it reduces variance, 

but again it also reduces average scores as shown in Figure 5. 

As for batch normalization, no significant improvement was found 

as shown in results in an appendix. 

 

 

Figure 1. Q-Maps of sequential training of Flappy Bird from first frame on left till 𝟏𝟎𝟕 frame on right.  

Green is highest value state. Red is lowest value state. 

 

 
Figure 2. 3D Raycast maze Q-map for each position in map from top down view. Each Q-map represents sequential frame 

checkpoint during training. On left first frame and on right 𝟏𝟎𝟕 frame.  

Notice that map increases in size thus using curriculum learning principle. 

 



 
Figure 3. Sample size of random seeds and variance of average score for Flappy Bird environment. 

 

 
Figure 4. Comparison of different hidden unit vector sizes and variance of average score for Flappy Bird environment. 

 



 
Figure 5. Effect of L1 (Lasso) and L2 (Ridge) regularization on variance of average score for Flappy Bird environment. 

 

 

Table 1. Default hyper-parameters that other parameters were measured against in all environments 

parameters   

batch norm: false mini-batch: 32 

bellman gamma: 0.99 model: 1 states to n actions 

beta replay buffer: true offline prebatch: false 

cumulative reward: true online: false 

diff. states: false optimizer: rmsprop 

dropout: 0.0 pixels input: none 

dueling arch.: false priority replay buffer: ranked 

epsilon greedy: true reg.: none 

epsilon start-end: 1e-3 - 1e-6 replay buffer: 5e5 

epsilon stuck: false rnn: relu 

extra frame reward: 1e-5 sarsa: false 

frames back: 5 state prev. act. reward: false 

frames before: 5e4 target network alpha: 1.0 

grad clip.: 0.0 terminal reward: -1e3 

 

  



 

Table 2. Top 15 hyper-parameters of DDQN for Flappy Bird environment 

parameter lr avg. score max. score var. score time (min.) 

rnn: gru 0.0001 42.97024986 264.1 549 2603.809 

rnn: lstm 0.0001 28.60916534 264.1 99.2 3246.475 

optimizer: adam 0.001 16.96737049 264.1 36.9 351.827 

grad clip.: 1.0 0.001 12.45431387 254.096 19 399.956 

optimizer: adam 0.0001 10.19414131 207.07831 21.7 367.396 

grad clip.: 10.0 0.0001 9.765907544 184.06991 19.2 361.19 

grad clip.: 10.0 0.001 8.694875819 156.05916 12.8 364.509 

grad clip.: 1.0 0.0001 7.633139692 140.05331 17.1 357.085 

rnn: lstm 0.001 6.614351436 182.06913 21.5 3770.588 

optimizer: adam 0.00001 1.929185929 47.0181 1.81 375.648 

mini-batch: 8 0.00001 1.922057009 40.0155 0.414 505.778 

bellman gamma: 0.90 0.00001 1.916720841 47.01799 1.19 366.701 

grad clip.: 10.0 0.00001 1.783358575 32.01237 0.322 400.212 

beta replay buffer: false 0.00001 1.647591408 60.02323 1.02 423.562 

default 0.00001 1.533690858 32.01236 0.308 377.689 

 

 

Table 3. Top 15 hyper-parameters of MDQN3 for Flappy Bird environment 

parameter lr avg. score max. score var. score time (min.) 

rnn: gru 0.0001 24.6588361 264.1 70.62906959 2735.039 

rnn: lstm 0.0001 16.17153479 224.08495 31.69684243 3041.107 

optimizer: adam 0.001 12.14972485 148.05634 8.572064894 357.792 

rnn: lstm 0.001 6.362237775 161.06122 10.33771355 3052.423 

grad clip.: 10.0 0.001 6.148186995 130.0494 11.12354631 380.245 

grad clip.: 10.0 0.0001 5.774537436 104.03959 11.92569845 361.402 

optimizer: adam 0.0001 5.541812022 124.0473 18.46937444 379.416 

grad clip.: 1.0 0.0001 4.706386259 119.04543 11.58234856 374.33 

grad clip.: 1.0 0.001 2.676778874 65.02486 4.486235409 456.614 

rnn: gru 0.001 1.117617436 64.02454 1.294722902 2537.775 

target network alpha: 0.0 0.00001 1.047481234 19.00759 0.298771101 745.303 

model: n states to n act. 0.00001 0.881531711 12.00483 0.101958401 600.168 

epsilon stuck: true 0.00001 0.878962391 11.00452 0.013849234 384.174 

grad clip.: 10.0 0.00001 0.86220963 21.00828 0.183416314 402.766 

mdqn: min 0.00001 0.740644674 10.0041 0.05608085 376.083 

 

  



 

Table 4. Comparison of DQN, DDQN and MDQN models for Flappy Bird environment. Decimal number after abbreviation like 

mdqn3 1.0 denotes coefficient of target network. Coefficient 0.0 denotes that algorithm do not use target network. 

model type lr avg. score max. score var. score time (min.) 

dqn 1.0 0.001 28.78679352 264.1 303.0517411 500.211 

mdqn2 1.0 0.001 17.19567935 264.1 50.58413201 421.452 

ddqn 1.0 0.001 16.96737049 264.1 36.9 351.827 

mdqn2 0.0 0.001 14.07828206 212.08043 18.74729045 493.78 

mdqn3 1.0 0.001 12.14972485 148.05634 8.572064894 357.792 

mdqn3 0.0 0.001 9.328698486 179.06784 24.94178454 635.494 

mdqn2 0.0 0.0001 9.311841471 202.07645 13.39635414 521.696 

mdqn2 1.0 0.0001 5.351493407 127.04827 14.07459022 384.702 

mdqn3 0.0 0.0001 4.406378303 102.03882 5.088549631 776.327 

mdqn2 0.0 0.00001 1.603283236 61.02341 0.715069292 642.106 

mdqn3 0.0 0.00001 0.872432773 12.00487 0.087176378 713.332 

mdqn2 1.0 0.00001 0.692394861 12.00513 0.221167891 389.493 

 

 

 

Figure 6. Comparison between DQN model types for Pong environment. 

  



 

Table 5. Comparison of DQN, DDQN and MDQN models for 3D Raycast maze environment. 

model type lr avg. score var. score time (min.) 

mdqn2 0.0 0.00001 3.904359232 0.728045918 1213.991 

dqn 0.00001 3.88654262 2.124993494 484.859 

mdqn2 1.0 0.000001 3.7166532 0.154117942 533.389 

ddqn 0.000001 3.713829593 1.524318234 524.65 

ddqn 0.00001 3.638360789 1.662039807 521.975 

mdqn2 0.0 0.00001 3.506246831 1.746571203 809.374 

mdqn2 0.0 0.000001 3.345749731 2.749636472 978.638 

ddqn 0.0001 3.267777864 2.889255991 523.012 

mdqn2 1.0 0.0000001 3.247272282 0.576931468 500.424 

mdqn2 1.0 0.00001 3.180342964 2.016163812 523.085 

mdqn3 1.0 0.00001 3.056116361 2.339890159 872.317 

dqn 0.000001 3.026868771 2.028895348 534.022 

mdqn3 0.0 0.00001 2.807473511 2.395394139 1212.21 

mdqn3 1.0 0.000001 2.770128326 0.714132328 864.442 

mdqn3 0.0 0.000001 2.629530288 1.724929361 1152.146 

mdqn2 0.0 0.0001 2.545370799 4.120312752 623.82 

dqn 0.0001 2.24425396 2.153779645 516.078 

mdqn3 1.0 0.0001 2.174641347 3.541216037 775.408 

mdqn2 0.0 0.0001 2.157170755 3.235455294 899.93 

mdqn2 1.0 0.0001 1.959047125 2.688871288 479.06 

mdqn3 0.0 0.0001 1.678048035 3.272271359 1117.217 

mdqn2 0.0 0.000001 1.452786487 1.887540531 809.63 

mdqn2 1.0 0.00000001 1.399096696 1.827157866 495.813 

mdqn2 0.0 0.0000001 0.178030303 0 463.67 

 

 

  



4.3 Flappy Bird 
Initially to test more than 28 hyper-parameters of DQN variants 

partial grid searches were done on combinations of parameters. 

Then benchmarking for one step changes were dome in each of 

hyper-parameters against initial parameters that are shown in 

Table 1. 

Each set of parameters were repeated for at least 10 times to 

ensure repeatability as described in 4.2 section. By run, we mean 

full training of 107  frames with a defined set of hyper-

parameters. RNN-ReLU were used as Q-value model in order to 

speed up training and compared DQN, DDQN and MDQN 

algorithms with full set of hyper-parameters as shown in Table 2, 

Table 3 and Table 4. 

Original DQN outperformed DDQN and MDQN, but our version 

of MDQN slightly outperformed DDQN.  This is nothing 

particularly surprising that DQN outperforms more advanced 

DDQN and MDQN because in previous studies it has also been 

shown that different algorithms excel in different environments. 

In some environments, DQN is more effective, but in others 

DDQN. 

No significant improvements were found by applying some of 

more interesting architectures like Dueling Network or different 

activation functions in RNN like Leaky ReLU, ELU, and PreLU. 

Regularization methods such as L1, L2, Dropout or Batch 

Normalization didn't improve performance.  This could be the 

case because huge data set that is gathered from training 

environment in itself accomplishes normalization [4].  

Because of the flexibility of open-source environments in PLE it 

was possible to produce Q-Value maps to track and compare the 

progress of different sets of hyper-parameters. An example of Q-

Value maps is given in Figure 1. 

4.4 Pong 
For Pong and 3D raycast maze environments, in initial hyper-

parameters optimizer was changed from "rmsprop" to "adam", 

because it gave better results without increasing processing time. 

In case of Pong again DQN slightly outperformed MDQN and 

DDQN, but MDQN slightly outperformed DDQN as shown in 

Figure 6. 

Q-Value maps were generated by manipulating the position of the 

ball in Pong environment on the frozen Q-Value model at 

checkpoints during training as shown in Figure 7. 

 

Figure 7. Pong Q-map before and after training. After 

training possible to see path of a ball trajectory. 

4.5 3D Raycast maze 
Finally, algorithms were benchmarked on "3D Raycast Maze" 

environment where instead of a low dimensional representation 

of a state, RGB 48x48 pixel input was used. In many 

environments, to save resources pixel grayscale representation 

would be recommended, but to make sure that exit door have a 

distinguishable difference in color form walls two channels were 

used per pixel red and green. The model consisted of ConvNet 

embedding and RNN layers. 

All pixel inputs were normalized in a range 0.0 − 1.0 instead of 

using byte value of 0 − 255. 

After the model has been trained GradCAM maps [20] were 

generated to visualize highest gradients in ConvNet as shown in 

Figure 8. These maps are more informative than Saliency Maps 

used in other Deep Reinforcement Learning papers [24]. These 

maps help us to understand what part of input pixel array is the 

most important for training. In this case, it was the exit door that 

gives the reward when reached. 

Another way to reduce the dimensionality of the problem was to 

remove some of the actions available to an agent. Agent was 

allowed only to move ahead and make turns left and right, but not 

to go back and wait (do nothing). 

Again Q-Value maps were constructed to visualize the progress 

of learning as shown in Figure 2. In this case, we manipulated a 

position of player around the maze and recorded Q-Values by 

rotating player's view around this position. Visual representation 

is a 2D top view for 3D maze. 

Again, slight performance improvement were found using 

MDQN in a more complex environments like 3D Raycast maze 

as shown in Table 5. 

 

Figure 8. GradCAM maps of trained MDQN agent in  

3D Raycast maze environment. 

 Images show attention on target in a 3D maze. 

  



5. CONCLUSIONS 
MDQN, a new Deep Reinforcement Learning algorithm was 

introduced that slightly outperforms DDQN in some 

environments. Still, in others, original DQN work better than both 

MDQN and DDQN. 

Most of DQN variants that were tested have little or no significant 

effect on performance. New method to construct Q-Value maps 

were introduced by manipulating training environment. Q-Value 

maps are useful for assessing the progress of training. Results 

show that it is essential to run a sufficient number of repeated 

training runs for every set of parameters, because of the impact of 

random seed initialization and large variance in results. 

6. APPENDIX 
With this paper, spreadsheet is published of an average score in a 

game of Flappy Bird after 107 frames for each hyper-parameter 

with different learning rates. All hyper-parameters have been 

tested for DQN, DDQN and MDQN variants of algorithms. 

Results are available in public domain4. 
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