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ABSTRACT
This paper introduces a novel variant of the Triplet Loss function
that converges faster and gives better results. This function can sep-
arate class instances homogeneously through the whole embedding
space. With Exponential Triplet Loss function we also introduce
a novel type of embedding space regularization Unit-Range and
Unit-Bounce that utilizes euclidean space more efficiently and re-
sembles features of the cosine distance. We also examined factors
for choosing the best embedding vector size for specific embedding
spaces. Finally, we also demonstrate how new function can train
models for one-shot learning and re-identification tasks.

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms;
• Applied computing;

KEYWORDS
Triplet loss, Feature embedding, Sample mining, One-shot learning,
Identification, Re-identification

1 INTRODUCTION
Models that are capable of creating embedding representation that
is somewhat disentangled and can be interpreted using distance
metrics empowers many kinds of deep learning fields tasks starting
with representation learning [1] [2], one-shot learning [3] [4], auto-
encoders, generative models and reinforcement learning.

Nowadays, it is often not feasible to store all raw data from
sensors and method for extracting and compressing only valuable
data in the form of embedding is needed. Also, edge cases in data can
be found using embedding queries thereby improving the quality
of training data. Using the same queries these models can perform
classification tasks on novel classes that have not been seen during
training. Contrary to standard classification models, the precision
of these models can be adjusted using cluster radiuses and other
proximity metrics after they have been trained. These models also
learn to generalize well and fewer samples to identify novel classes
whereas classic classification models need a lot more data samples
[5].
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Sample-based methods like triplet loss [6], contrastive loss [7]
[8] and N-tuple loss [8] has a goal to reduce the distance in embed-
ding space between same class samples and increase the distance
between different class samples. These methods require extensive
sample mining methods and sample selection constraints to con-
verge class representations into clusters. In this paper, we propose
a new type of function to replace triplet loss that does not need
sample selection constraints. This new function has an exponential
shape to help converge faster samples that are further away from
the desired state.

Figure 1. t-SNE embeddings of CIFAR10 trained with Lexp .
Colors denote different classes of samples. Exponential

Triplet Loss decreases the distance between anchor ya and
positive same class sample yp and increases the distance
between different class sample yn . Zoomed area shows
sample from horse class that looks very similar to deer

class samples.

2 RELATEDWORK
Important research papers in Triplet Loss come from applications
in face identification and re-identification tasks [6] [9].
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Many variations of Triplet Loss have been explored by scientific
community, notable mentions include Lifted Structured Loss [2],
Histogram Loss [10], PDDM [11], n-pair loss [12], Triplet Ranking
Loss [13], Additive Angular Margin Loss [14], Lossless Triplet Loss
[15], N-Tuple Loss [8]. Similarly to our research, Margin Ranking
Loss [16] worked on loss function shaping and described several
shortcomings in standard Triplet Loss. One of the recent advances
in Triplet Loss is Margin loss [17] that has some similar properties
to our proposed loss function.

There has been a number of recent advances also in sample
mining methods. Distance weighted sampling improves sample
distributions in mini-batches [17], but is more useful in tandem
with Margin Loss function. Doppelganger Mining [18] that takes
into account most similar samples but with different classes. Hard
example mining with auxiliary embeddings focuses on additional
class features that can be used for better sampling strategy [19].

3 METHODOLOGY
Standard Triplet loss function (1) works with distances between
embedding vectors yp of same class as anchor embedding vector
ya and embedding vectors yn of a different class than anchor em-
bedding vector. Within the function, α is used as a margin between
classes to not push them too far away and not to have them too
close to each other.

Lstd = |∥ya − yp ∥
2
2 − ∥ya − yn ∥

2
2 + α |+ (1)

In Figure 2 of function Lstd it is possible to see that many pairs
in lower bound of loss function converge inconsistently.

Figure 2. Lstd function depending on positive pair
∥ya − yp ∥

2
2 (pos) and negative pair ∥ya − yn ∥

2
2 (neg) of

embedding vectors

To have stable convergence of Lstd so that negative embedding
vector pairs are further away and positive are closer to each other
at least one of two constraints must be enforced [9] [6] [20]:

(1) "Hard constraint" ∥ya − yp ∥
2
2 + α < ∥ya − yn ∥

2
2

(2) "Semi-hard constraint" ∥ya − yn ∥
2
2 < ∥ya − yp ∥

2
2

After applying constraints in Figure 3 of function Lstd it is
possible to observe that area of sample combinations that guides

model to converge is very small. To have convergence using Lstd
function it is necessary to have sample mining procedure before
each mini-batch. Common approach is to use "batch hard" or "batch
all" sample mining [21].

Figure 3. Lstd function with constraints depending on
positive pair ∥ya − yp ∥

2
2 (pos) and negative pair ∥ya − yn ∥

2
2

(neg) of embedding vectors

Our proposed Exponential Triplet Loss functionLexp has higher
area where it can converge as seen in Figure 4. It also exploits ex-
ponential shape of function so that samples further away from
desirable locations have much higher loss value. Lexp has asym-
metric plateau where it does not draw closer pairs that are within
half of embedding space maximum distance max(femb (x). As this
loss function have a lot larger area of convergence it is less depen-
dent on sample mining. Hyper-parameters Cpos and Cneд can be
usually set to 1.0.

Lexp = −Cpos · loд(1.0 −
|embp − cn |+

1 − cn
+ ϵ)

−Cneд · loд(1.0 −
|0.5 − embn |+

0.5
+ ϵ)

embp =
yp

max(femb (x))
embn =

yn
max(femb (x))

(2)

It is not beneficial to push embedding vectors too far away from
each other when the model would be used for the one-shot learning
task. Sample of an unseen class that has not been introduced dur-
ing training would "jump" between modalities of training data-set
distribution. For one-shot learning task, homogeneous distribution
of classes withing embedding space would be desirable. In order to
enforce this, we propose overlap coefficient co that describes how
much instances of different classes in data-set should overlap with
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each other. Good value of co for clean data-sets is 1.5 that produces
partial overlap in between all classes.

Figure 4. Lexp function depending on positive pair
∥ya − yp ∥

2
2 (pos) and negative pair ∥ya − yn ∥

2
2 (neg) of

embedding vectors

Figure 5. On the top example of overlapping class clusters
in 1D with homogeneous embedding space. On the bottom
example of non-homogeneous embedding space where new

class samples will "jump" between clusters.

Function (3) evenly splits space into cd embedding distances for
each class in data-set. The number of classes in training data-set isK .
When themodel is used in the inference stage then the sameK value
is used as in the training stage even though the number of classes in
inference might differ from training. Lexp can be used with cosine
distance that has upper bound of femb = 2. It enables calculation
of overlap distance that is calculated dividing this upper bound
of distance by the number of classes and multiplied by overlap
coefficient.

cd =
co · K

max(femb (x))
(3)

To use euclidean distances with Lexp it is necessary to have the
upper bound of distance. It can be solved either by applying L2
normalization in which case it will always be femb = 2 · cs depend-
ing on scale the maximum distance. But it constrains embedding
vector positions within spherical space. We propose to use hybrid
space that behaves as euclidean space when it is closer to the centre
and when it reaches the radius of L2 then it behaves like spherical
space. We call this function Unit-Range (4). Looking at embedding
vectors using simple PCA it is possible to observe that Unit-Range
space is more homogeneous than spherical space enforced by L2
normalization.

femb (x) =

{
cs

x
|x |2 , if |x |2 ≥ 1

x , otherwise
(4)

Another function to normalize embedding space that is intro-
duced by this paper is called Unit-Bounce (5). It resembles features
of cosine distance as when embedding vector reaches the edge of
a sphere it bounces back towards the centre of embedding space.
When embedding reaches the opposite side of the sphere with a
radius of cs it bounces back towards centre again, similarly how
the maximum angle between two vectors is always 180 degrees
when calculating cosine distance.

f ′emb (x) =

{
fbounce (x), if |x |2 ≥ 1
x , otherwise

(5)

fbounce (x) =


|x |2 −

⌊
|x |2
cs

⌋
− cs

x
|x |2 , if

⌊
|x |
cs

⌋
mod 2 = 0

cs
x
|x |2 − |x |2 −

⌊
|x |2
cs

⌋
, otherwise

(6)

Figure 6. Illustration of Unit-Bounce embedding
normalization function within L2 spherical space.
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4 EXPERIMENTS
Proposed exponential triplet loss function Lexp has been tested on
several image data-sets: MNIST, Fassion-MNIST, EMNIST, CIFAR10,
CIFAR100 and VGGFace2 [22]. VGGFace2 dataset is typically used
for face re-identification and verification tasks as well as one-shot
learning evaluation. Implementation in PyTorch is available as
an open-source code repository: https://github.com/evaldsurtans/
exp-triplet-loss.

As an architecture of models we used pre-trained DenseNet-121
on ImageNet [23]. At the end of the model, we added the global
average pooling function and max-out function with 16 linear units.

For all Lexp and Lstd experiments grid search of best hyper-
parameters were done to compare best results for each method.
Experiments were repeated 5 times with the same set of hyper-
parameters because in some cases convergence is sensitive to ini-
tialization.

For measuring accuracy two metrics were used:

• Closest accuracy (nearest neighbour) - after each epoch class
cluster centres were calculated and each sample was assigned
to the class closest to its embedding vector [24].

• Range accuracy - during each epoch class cluster centres
were calculated and also their maximum distances within
a class. Each sample added value of 1 to the class one-hot
encoded vector so that embedding vector is in class cluster
range. Afterwards, a one-hot encoded vector was L1 normal-
ized to have probabilistic representation.

4.1 The dimensionality of a embedding vector
From empirical tests depending on an initialization method and the
embedding space, we concluded that there is a dimension size limit
for each combination these two parameters at which it does not
improve performance of embedding models. It matches a simple
experiment done by initializing different size vectors with a chosen
pair of parameters shown in Figure 7. For example in L2 normalized
spherical embedding space using cosine distances there are very
small differences between vector size of 256 and 1024. For euclidean
distances when L2 or Unit-Range even smaller embedding vector
could be used at the size of in between 32 and 128. Experiments
with training models with different embedding sizes confirmed this
finding as shown in Figure 8. Intuitive explanation to this is that
once distances between all samples at the beginning of training
are same by random initialization then it is a good starting point
for converging samples into homogeneous clusters covering the
whole embedding space. At this point, it does not improve results

to increase the dimension count of embedding vector. The same
behaviour applies to cosine space as well as Euclidean space.

Figure 7. Cosine distances between 1000 sampled vectors
that have been initialized by uniform distribution

depending on dimension size.

Figure 8. Accuracy of EMINST test data-set depending on
dimension size of embedding vector. Unit-range and

euclidean distances has been used in training.

4.2 Initialization of embedding vector
From empirical tests, we noticed that cd had a higher effect on train-
ing if linear units of the embedding vector have been initialized
using a uniform distribution. Such initialization yielded more uni-
form distribution of class clusters in the embedding space thanmore
uni-modal initialization distributions. In Figure 9 distances between
a sample and closest class cluster centre has been displayed. On left,
there are distances before training, middle during training and on
right after training. On top embedding, vectors are initialized using

https://github.com/evaldsurtans/exp-triplet-loss
https://github.com/evaldsurtans/exp-triplet-loss
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Xavier initialization, but on the bottom using uniform initialization.
Measurements have been taken from CIFAR10 data-set.

Figure 9. Comparison of xavier initialization on top and
uniform initialization on bottom of embedding vectors. On

left before training, in middle mid-part of training, on
right after training.

4.3 Composite loss function
In order to improve performance of embedding models compos-
ite loss function were used. For all comparisons between Lexp
and Lstd composite loss functions were used. We introduced L2-
constrained Softmax [25] with cross entropy Lclass and center loss
Lcenter . We extended center loss (8) adding margin or radius of
desired cluster to maintain (9). The idea is to discourage the col-
lapse of embedding into one point in the embedding space. Within
Lclass input in Softmax function f (x) is L2 normalized and scaled
by s . WithinLclass during training class instances are accumulated
and cyi is calculated centre of cluster.

Lclass = −

M∑
i=1

yi loд
eW

T
i s |f (xi ) |22+bi∑C

j=1 e
W T

j s |f (xi ) |22+bj
(7)

Lcenter ′ =

M∑
i=1

| |xi − cyi | |
2
2 (8)

Lcenter =

M∑
i=1

| | |xi − cyi | |
2
2 −

cd
2
|+ (9)

L⌋≀⇕√ = Lexp +CcenterLcenter +CclassLclass (10)

4.4 One-shot learning
A model trained for one-shot learning task or re-identification task
will work with novel classes in the test phase that has not been seen
in the training phase. As Lexp models shown in Figure 10 and Fig-
ure 11 tend to have homogeneous embedding space they are able to
cluster unseen class samples in between classes that have been seen
during the training phase. Uniform initialization mentioned in the
previous section is also beneficial for one-shot learning task where

novel samples would be more evenly distributed in the embedding
space.

Figure 10. PCA of 2D of embeddings of class clusters seen
in training. Model trained using Lexp and EMINST.

Figure 11. PCA of 2D of embeddings of class clusters
not-seen in training. Model trained using Lexp and

EMINST.
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4.5 Results
Comparisons were made using the identification task wherein the
inference phase there were the same classes as in the training
phase. For each set of methods, hyper-parameters were tuned and
multiple repeat training runs were made to compare only the best-
performing model. All models were trained using state-of-the-art
optimizer algorithm RAdam [26]. For some models, accuracy is
close of those achieved by state of the art classification models.
After analysis of mislabeled samples in the embedding space, it was
possible to find many indistinguishable and wrong samples within
training data-sets. All results of VGGFace2 have been obtained from
re-identification task and one-shot learning task where test data-set
classes were not included in train data-set. For VGGFace2 we used

only 1000 samples of each class in training and testing data-sets
with lower resolution of 128x128 pixels.

Figure 12. Comparison of convergence speed between Lexp
and Lstd on Fassion-MINST data-set.

Figure 13. t-SNE of 50 color-coded samples of VGGFace2 test data-set trained by Lexp . In lower-left corner sample given
where model clusters together close samples of similar Asian woman face with dark hair.
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Table 1. Comparison of accuracy between models trained with different types of loss functions. Accuracy calculated by
closest cluster centre to a sample. All models use best fitted hyper-parameters and superior Unit-Range type of embedding

normalization.

Loss func. / Accuracy % MNIST Fassion-MNIST EMINST CIFAR10 VGGFace2
Lstd 99.6 91.4 82.0 56.2 77.4
Lstd + Lclass 99.6 92.1 85.0 79.8 76.3
Lstd + Lcenter 97.5 71.5 61.7 52.1 76.4
Lstd + Lcenter + Lclass 97.7 82.0 70.9 62.8 78.6
Lexp 99.6 92.7 82.7 85.7 85.0
Lexp + Lclass 99.6 93.1 85.2 87.2 84.1
Lexp + Lcenter 99.6 93.1 85.7 85.3 84.0
Lexp + Lcenter + Lclass 99.6 93.1 86.0 87.3 85.7

5 CONCLUSIONS
Proposed Exponential Triplet Loss function provides an easier way
to train embedding models. With this function, models converge
faster and have higher accuracy and class separation. They produce
embeddings in better utilized and more homogeneous Unit-Range
and Unit-Bounce embedding spaces than in L2 spherical embed-
ding space. The embedding normalization function Unit-Bounce
resembled the same properties as cosine distances but using eu-
clidean distances. Also, the training relies on less sample mining
as the convergence space covers more of the sample space. The
embedding models in this paper generalizes well also in one-shot
learning task where novel class samples grouped in clusters even
though they were not seen during the training phase.
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