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 Welcome  
Thank you for purchasing the MEAP for Deep Learning with Python. If you are looking 
for a resource to learn about deep learning from scratch and to quickly become able to use 
this knowledge to solve real-world problems, you have found the right book. *Deep 
Learning with Python* is meant for engineers and students with a reasonable amount of 
Python experience, but no significant knowledge of machine learning and deep learning. It 
will take you all the way from basic theory to advanced practical applications. However, if 
you already have experience with deep learning, you should still be able to find value in 
the latter chapters of this book. 

Deep learning is an immensely rich subfield of machine learning, with powerful 
applications ranging from machine perception to natural language processing, all the way up 
to creative AI. Yet, its core concepts are in fact very simple. Deep learning is often 
presented as shrouded in a certain mystique, with references to algorithms that “work like 
the brain”, that “think” or “understand”. Reality is however quite far from this science-
fiction dream, and I will do my best in these pages to dispel these illusions. I believe that 
there are no difficult ideas in deep learning, and that’s why I started this book, based on 
premise that all of the important concepts and applications in this field could be taught to 
anyone, with very few prerequisites. 

This book is structured around a series of practical code examples, demonstrating on real-
world problems every the notions that gets introduced. I strongly believe in the value of 
teaching using concrete examples, anchoring theoretical ideas into actual results and 
tangible code patterns. These examples all rely on Keras, the Python deep learning library. 
When I released the initial version of Keras almost two years ago, little did I know that it 
would quickly skyrocket to become one of the most widely used deep learning frameworks. 
A big part of that success is that Keras has always put ease of use and accessibility front and 
center. This same reason is what makes Keras a great library to get started with deep 
learning, and thus a great fit for this book. By the time you reach the end of this book, you 
will have become a Keras expert. 

I hope that you will this book valuable —deep learning will definitely open up new 
intellectual perspectives for you, and in fact it even has the potential to transform your 
career, being the most in-demand scientific specialization these days. I am looking forward 
to your reviews and comments. Your feedback is essential in order to write the best possible 
book, that will benefit the greatest number of people. 

 
— François Chollet 
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1
In the past few years, Artificial Intelligence (AI) has been a subject of intense media
hype. Machine learning, deep learning, and AI come up in countless articles, often
outside of technology-minded publications. We are being promised a future of intelligent
chatbots, self-driving cars, and virtual assistants—a future sometimes painted in a grim
light, and sometimes as an utopia, where human jobs would be scarce and most economic
activity would be handled by robots or AI agents.

As a future or current practitioner of machine learning, it is important to be able to
recognize the signal in the noise, to tell apart world-changing developments from what
are merely over-hyped press releases. What is at stake is our future, and it is a future in
which you have an active role to play: after reading this book, you will be part of those
who develop the AIs. So let’s tackle these questions—what has deep learning really
achieved so far? How significant is it? Where are we headed next? Should you believe
the hype?

First of all, we need to define clearly what we are talking about when we talk about
AI. What is artificial intelligence, machine learning, and deep learning? How do they
relate to each other?

Figure 1.1 Artificial Intelligence, Machine Learning and Deep Learning

What is Deep Learning?

1.1 Artificial intelligence, machine learning and deep learning
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Artificial intelligence was born in the 1950s, as a handful of pioneers from the nascent
field of computer science started asking if computers could be made to "think"—a
question whose ramifications we are still exploring today. A concise definition of the
field would be: .the effort to automate intellectual tasks normally performed by humans
As such, AI is a very general field which encompasses machine learning and deep
learning, but also includes many more approaches that do not involve any learning. Early
chess programs, for instance, only involved hard-coded rules crafted by programmers,
and did not qualify as "machine learning". In fact, for a fairly long time many experts
believed that human-level artificial intelligence could be achieved simply by having
programmers handcraft a sufficiently large set of explicit rules for manipulating
knowledge. This approach is known as "symbolic AI", and it was the dominant paradigm
in AI from the 1950s to the late 1980s. It reached its peak popularity during the "expert
systems" boom of the 1980s.

Although symbolic AI proved suitable to solve well-defined, logical problems, such
as playing chess, it turned out to be intractable to figure out explicit rules for solving
more complex, fuzzy problems, such as image classification, speech recognition, or
language translation. A new approach to AI arose to take its place: machine learning.

In Victorian England, Lady Ada Lovelace was a friend and collaborator of Charles
Babbage, the inventor of the "Analytical Engine", the first known design of a
general-purpose computer—a mechanical computer. Although visionary and far ahead of
its time, the Analytical Engine wasn’t actually meant as a general-purpose computer
when it was designed in the 1830s and 1840s, since the concept of general-purpose
computation was yet to be invented. It was merely meant as a way to use mechanical
operations to automate certain computations from the field of mathematical
analysis—hence the name "analytical engine". In 1843, Ada Lovelace remarked on the
invention:

"The Analytical Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform… Its province is to assist us in making
available what we are already acquainted with."

This remark was later quoted by AI pioneer Alan Turing as "Lady Lovelace’s
objection" in his landmark 1950 paper "Computing Machinery and Intelligence", which
introduced the "Turing test" as well as key concepts that would come to shape AI. Turing
was quoting Ada Lovelace while pondering whether general-purpose computers could be
capable of learning and originality, and he came to the conclusion that they could.

Machine learning arises from this very question: could a computer go beyond "what
we know how to order it to perform", and actually "learn" on its own how to perform a
specified task? Could a computer surprise us? Rather than crafting data-processing rules
by hand, could it be possible to automatically learn these rules by looking at data?

1.1.1 Artificial intelligence

1.1.2 Machine Learning
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This question opens up the door to a new programming paradigm. In classical
programming, the paradigm of symbolic AI, humans would input rules (a program), data
to be processed according to these rules, and out would come answers. With machine
learning, humans would input data as well as the answers expected from the data, and out
would come the rules. These rules could then be applied to new data to produce original
answers.

Figure 1.2 Machine learning: a new programming paradigm

A machine learning system is "trained" rather than explicitly programmed. It is
presented with many "examples" relevant to a task, and it finds statistical structure in
these examples which eventually allows the system to come up with rules for automating
the task. For instance, if you wish to automate the task of tagging your vacation pictures,
you could present a machine learning system with many examples of pictures already
tagged by humans, and the system would learn statistical rules for associating specific
pictures to specific tags.

Although machine learning only started to flourish in the 1990s, it has quickly
become the most popular and most successful subfield of AI, a trend driven by the
availability of faster hardware and larger datasets. Machine learning is tightly related to
mathematical statistics, but it differs from statistics in several important ways. Unlike
statistics, machine learning tends to deal with large, complex datasets (e.g. a dataset of
millions of images, each consisting of tens of thousands of pixels) for which "classical"
statistical analysis such as bayesian analysis would simply be too impractical to be
possible. As a result, machine learning, and especially deep learning, exhibits
comparatively little mathematical theory—maybe too little—and is very
engineering-oriented. It is a hands-on discipline where ideas get proven empirically much
more often than theoretically.

To define deep learning, and understand the difference between deep learning and other
machine learning approaches, first we need to get some idea of what machine learning
algorithms really . We just stated that machine learning discovers rules to execute ado
data-processing task, given examples of what is expected. So, to do machine learning, we
need three things:

Input data points. For instance, if the task is speech recognition, these data points could
be sound files of people speaking. If the task is image tagging, they could be picture files.
Examples of the expected output. In a speech recognition task, these could be

1.1.3 Learning representations from data
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human-generated transcripts of our sound files. In an image task, expected outputs could
tags such as "dog", "cat", and so on.
A way to measure if the algorithm is doing a good job, to measure the distance between
its current output and its expected output. This is used as a feedback signal to adjust the
way the algorithm works. This adjustment step is what we call "learning".

A machine learning model transforms its input data into a meaningful output, a
process which is "learned" from exposure to known examples of inputs and outputs.
Therefore, the central problem in machine learning and deep learning is to meaningfully

, or in other words, to learn useful "representations" of the input data attransform data
hand, representations that get us closer to the expected output. Before we go any further:
what’s a representation? At its core, it’s a different way to look at your data—to
"represent", or "encode" your data. For instance, a color image can be encoded in the
RGB format ("red-green-blue") or in the HSV format ("hue-saturation-value"): these are
two different representations of the same data. Some tasks that may be difficult with one
representation can become easy with another. For example, the task "select all red pixels
in the image" is simpler in the RBG format, while "make the image less saturated" is
simpler in the HSV format. Machine learning models are all about finding appropriate
representations for their input data, transformations of the data that make it more
amenable to the task at hand, such as a classification task.

Let’s make this concrete. Let’s consider an x axis, and y axis, and some points
represented by their coordinates in the (x, y) system: our data, as illustrated in figure 3
1.3.

Figure 1.3 Some sample data

As you can see we have a few white points and a few black points. Let’s say we want
to develop an algorithm that could take the coordinates  of a point, and output(x, y)

whether the point considered is likely to be black or to be white. In this case:

The inputs are the coordinates of our points.
The expected outputs are the colors of our points.
A way to measure if our algorithm is doing a good job could be, for instance, the
percentage of points that are being correctly classified.

What we need here is a new  of our data that cleanly separates therepresentation
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white points from the black points. One transformation we could use, among many other
possibilities, would be a coordinate change, illustrated in figure 1.4.

Figure 1.4 Coordinate change

In this new coordinate system, the coordinates of our points can be said to be a new
"representation" of our data. And it’s a good one! With this representation, the
black/white classification problem can be expressed as a simple rule: black points are
such that x 0 or "white points are such that x < 0". Our new representation basically
solves the classification problem.

In this case, we defined our coordinate change by hand. But if instead we tried
systematically searching for different possible coordinate changes, and used as feedback
the percentage of points being correctly classified, then we would be doing machine
learning. "Learning", in the context of machine learning, describes an automatic search
process for better representations.

All machine learning algorithms consist of automatically finding such
transformations that turn data into more useful representations for a given task. These
operations could sometimes be coordinate changes, as we just saw, or could be linear
projections (which may destroy information), translations, non-linear operations (such as
select all points such that x 0), etc. Machine learning algorithms are not usually very
creative in finding these transformations, they are merely searching through a predefined
set of operations, called an "hypothesis space".

So that’s what machine learning is, technically: searching for useful representations
of some input data, within a pre-defined space of possibilities, using guidance from some
feedback signal. This simple idea allows for solving a remarkably broad range of
intellectual tasks, from speech recognition to autonomous car driving.

Now that you understand what we mean by , let’s take a look at what makes learning
 special.deep learning
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Deep learning is a specific subfield of machine learning, a new take on learning
representations from data which puts an emphasis on learning successive "layers" of
increasingly meaningful representations. The "deep" in "deep learning" is not a reference
to any kind of "deeper" understanding achieved by the approach, rather, it simply stands
for this idea of successive layers of representations—how many layers contribute to a
model of the data is called the "depth" of the model. Other appropriate names for the field
could have been "layered representations learning" or "hierarchical representations
learning". Modern deep learning often involves tens or even hundreds of successive
layers of representation—and they are all learned automatically from exposure to training
data. Meanwhile, other approaches to machine learning tend to focus on learning only
one or two layers of representation of the data. Hence they are sometimes called "shallow
learning".

In deep learning, these layered representations are (almost always) learned via models
called "neural networks", structured in literal layers stacked one after the other. The term
"neural network" is a reference to neurobiology, but although some of the central
concepts in deep learning were developed in part by drawing inspiration from our
understanding of the brain, deep learning models are  models of the brain. There is nonot
evidence that the brain implements anything like the learning mechanisms in use in
modern deep learning models. One might sometimes come across pop-science articles
proclaiming that deep learning works "like the brain", or was "modeled after the brain",
but that is simply not the case. In fact, it would be confusing and counter-productive for
new-comers to the field to think of deep learning as being in any way related to the
neurobiology. You don’t need that shroud of "just like our minds" mystique and mystery.
So you might as well forget anything you may have read so far about hypothetical links
between deep learning and biology. For our purposes, deep learning is merely a
mathematical framework for learning representations from data.

Figure 1.5 A deep neural network for digit classification

1.1.4 The "deep" in deep learning
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What do the representations learned by a deep learning algorithm look like? Let’s
look at how a 3-layer deep network transforms an image of a digit in order to recognize
what digit it is:

Figure 1.6 Deep representations learned by a digit classification model

As you can see, the network transforms the digit image into representations that are
increasingly different from the original image, and increasingly informative about the
final result. You can think of a deep network as a multi-stage information distillation
operation, where information goes through successive filters and comes out increasingly
"purified" (i.e. useful with regard to some task).

So that is what deep learning is, technically: a multi-stage way to learn data
representations. A simple idea—but as it turns out, very simple mechanisms, sufficiently
scaled, can end up looking like magic.

At this point, you know that machine learning is about mapping inputs (e.g. images) to
targets (e.g. the label "cat"), which is done by observing many examples of input and
targets. You also know that deep neural networks do this input-to-target mapping via a
deep sequence of simple data transformations (called "layers"), and that these data
transformations are learned by exposure to examples. Now let’s take a look at how this
learning happens, concretely.

The specification of what a layer does to its input data is stored in the layer’s
"weights", which in essence are a bunch of numbers. In technical terms, you would say
that the transformation implemented by a layer is "parametrized" by its weights. In fact,
weights are also sometimes called the "parameters" of a layer. In this context, "learning"
will mean finding a set of values for the weights of all layers in a network, such that the
network will correctly map your example inputs to their associated targets. But here’s the
thing: a deep neural network can contain tens of millions of parameters. Finding the

1.1.5 Understanding how deep learning works in three figures
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correct value for all of them may seem like a daunting task, especially since modifying
the value of one parameter will affect the behavior of all others!

Figure 1.7 A neural network is parametrized by its weights

To control something, first, you need to be able to observe it. To control the output of
a neural network, you need to be able to measure how far this output is from what you
expected. This is the job of the "loss function" of the network, also called "objective
function". The loss function takes the predictions of the network and the true target (what
you wanted the network to output), and computes a distance score, capturing how well
the network has done on this specific example.

Figure 1.8 A loss function measures the quality of the network’s output

The fundamental trick in deep learning is to use this score as a feedback signal to
adjust the value of the weights by a little bit, in a direction that would lower the loss
score for the current example. This adjustment is the job of the "optimizer", which
implements what is called the "backpropagation" algorithm, the central algorithm in deep
learning. In the next chapter we will explain in more detail how backpropagation works.
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Figure 1.9 The loss score is used as a feedback signal to adjust the weights

Initially, the weights of the network are assigned random values, so the network
merely implements a series of random transformations --naturally its output is very far
from what it should ideally be, and the loss score is accordingly very high. But with
every example that the network processes, the weights get adjusted just a little in the right
direction, and the loss score decreases. This is the "training loop", which, repeated a
sufficient number of times (typically tens of iterations overs thousands of examples),
yields weight values that minimize the loss function. A network with a minimal loss is
one for which the outputs are as close as they can be to the targets: a trained network.

Once again: a very simple mechanism, which once scaled ends up looking like magic.

Although deep learning is a fairly old subfield of machine learning, it only rose to
prominence in the early 2010s. In the few years since, it has achieved nothing short of a
revolution in the field, with remarkable results on all  problems, such asperceptual
"seeing" and "hearing"—problems which involve skills that seem very natural and
intuitive to humans but have long been elusive for machines.

In particular, deep learning has achieved the following breakthroughs, all in
historically difficult areas of machine learning:

Near-human level image classification.
Near-human level speech recognition.
Near-human level handwriting transcription.
Improved machine translation.
Improved text-to-speech conversion.
Digital assistants such as Google Now or Amazon Alexa.
Near-human level autonomous driving.
Improved ad targeting, as used by Google, Baidu, and Bing.
Improved search results on the web.
Answering natural language questions.
Superhuman Go playing.

In fact, we are still just exploring the full extent of what deep learning can do. We

1.1.6 What deep learning has achieved so far
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have started applying it to an even wider variety of problems outside of machine
perception and natural language understanding, such as formal reasoning. If successful,
this might herald an age where deep learning assists humans in doing science, developing
software, and more.

Although deep learning has led to remarkable achievements in recent years, expectations
for what the field will be able to achieve in the next decade tend to run much higher than
what will actually turn out to be possible. While some world-changing applications like
autonomous cars are already within reach, many more are likely to remain elusive for a
long time, such as believable dialogue systems, human-level machine translation across
arbitrary languages, and human-level natural language understanding. In particular, talk
of "human-level general intelligence" should not be taken too seriously. The risk with
high expectations for the short term is that, as technology fails to deliver, research
investment will dry up, slowing down progress for a long time.

This has happened before. Twice in the past, AI went through a cycle of intense
optimism followed by disappointment and skepticism, and a dearth of funding as a result.
It started with symbolic AI in the 1960s. In these early days, projections about AI were
flying high. One of the best known pioneers and proponents of the symbolic AI approach
was Marvin Minsky, who claimed in 1967: "Within a generation […] the problem of
creating 'artificial intelligence' will substantially be solved". Three years later, in 1970, he
also made a more precisely quantified prediction: "in from three to eight years we will
have a machine with the general intelligence of an average human being". In 2016, such
an achievement still appears to be far in the future, so far in fact that we have no way to
predict how long it will take, but in the 1960s and early 1970s, several experts believed it
to be right around the corner (and so do many people today). A few years later, as these
high expectations failed to materialize, researchers and government funds turned away
from the field, marking the start of the first "AI winter" (a reference to a nuclear winter,
as this was shortly after the height of the Cold War).

It wouldn’t be the last one. In the 1980s, a new take on symbolic AI, "expert
systems", started gathering steam among large companies. A few initial success stories
triggered a wave of investment, with corporations around the world starting their own
in-house AI departments to develop expert systems. Around 1985, companies were
spending over a billion dollar a year on the technology, but by the early 1990s, these
systems had proven expensive to maintain, difficult to scale, and limited in scope, and
interest died down. Thus began the second AI winter.

It might be that we are currently witnessing the third cycle of AI hype and
disappointment—and we are still in the phase of intense optimism. The best attitude to
adopt is to moderate our expectations for the short term, and make sure that people less
familiar with the technical side of the field still have a clear idea of what deep learning
can and cannot deliver.

1.1.7 Don’t believe the short-term hype
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Although we might have unrealistic short-term expectations for AI, the long-term picture
is looking bright. We are only just getting started in applying deep learning to many
important problems in which it could prove transformative, from medical diagnoses to
digital assistants. While AI research has been moving forward amazingly fast in the past
five years, in large part due to a wave of funding never seen before in the short history of
A.I, so far relatively little of this progress has made its way into the products and
processes that make up our world. Most of the research findings of deep learning are not
yet applied, or at least not applied to the full range of problems that they can solve across
all industries. Your doctor doesn’t yet use AI, your accountant doesn’t yet use AI.
Yourself, you probably don’t use AI technologies in your day-to-day life. Of course, you
can ask simple questions to your smartphone and get reasonable answers. You can get
fairly useful product recommendations on Amazon.com. You can search for "birthday"
on Google Photos and instantly find those pictures of your daughter’s birthday party from
last month. That’s a far cry from where such technologies used to stand. But such tools
are still just accessory to our daily lives. AI has yet to transition to become central to the
way we work, think and live.

Right now it may seem hard to believe that AI could have a large impact on our
world, because at this point AI is not yet widely deployed—much like it would have been
difficult to believe in the future impact of the Internet back in 1995. Back then most
people did not see how the Internet was relevant to them, how it was going to change
their lives. The same is true for deep learning and AI today. But make no mistake: AI is
coming. In a not so distant future, AI will be your assistant, even your friend; it will
answer your questions, it will help educate your kids, and it will watch over your health.
It will deliver your groceries to your door and it will drive you from point A to point B. It
will be your interface to an increasingly complex and increasingly information-intensive
world. And even more importantly, AI will help humanity as a whole move forwards, by
assisting human scientists in new breakthrough discoveries across all scientific fields,
from genomics to mathematics.

On the road to get there, we might face a few setbacks, and maybe a new AI
winter—in much the same way that the Internet industry got overhyped in 1998-1999 and
suffered from a crash that dried up investment throughout the early 2000s. But we will
get there eventually. AI will end up being applied to nearly every process that makes up
our society and our daily lives, much like the Internet today.

Don’t believe the short-term hype, but do believe in the long-term vision. It may take
a while for AI to get deployed to its true potential—a potential the full extent of which no
one has yet dared to dream—but AI is coming, and it will transform our world in a
fantastic way.

1.1.8 The promise of AI
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Deep learning has reached a level of public attention and industry investment never seen
before in the history of AI, but it isn’t the first successful form of machine learning. In
fact, it’s a safe bet to say that most of the machine learning algorithms in use in the
industry today are still not deep learning algorithms. Deep learning isn’t always the right
tool for the job—sometimes there just isn’t enough data for deep learning to be
applicable, and sometimes the problem is simply better solved by a different algorithm. If
deep learning is your first contact with machine learning, then you may find yourself in a
situation where all you have is the deep learning hammer and every machine learning
problem starts looking like a nail for this hammer. The only way not to fall into this trap
is to be familiar with other approaches and practice them when appropriate.

A detailed exposure of classical machine learning approaches is outside of the scope
of this book, but we will briefly go over them and describe the historical context in which
they were developed. This will allow us to place deep learning in the broader context of
machine learning, and better understand where deep learning comes from and why it
matters.

Probabilistic modeling is the application of the principles of statistics to data analysis. It
was one of the earliest forms of machine learning, yet it is still widely used to this day.
One of the best-known algorithms in this category is the Naive Bayes algorithm.

Naive Bayes is a type of machine learning classifier based on applying the Bayes
Theorem while assuming that the features in the input data are all independent (a strong,
or "naive" assumption, which is where the name comes from). This form of data analysis
actually predates computers, and was applied by hand decades before its first computer
implementation (most likely dating back to the 1950s). The Bayes Theorem and the
foundations of statistics themselves date back to the 18th century, and these are all you
need to start using Naive Bayes classifiers.

A closely related model is the Logistic Regression (logreg for short), which is
sometimes considered to be the "hello world" of modern machine learning. Don’t be
misled by its name—logreg is in fact a classification algorithm rather than a regression
algorithm. Much like Naive Bayes, logreg predates computing by a long time, yet it is
still very useful to this day, thanks to its simple and versatile nature. It is often the first
thing a data scientist will try on a dataset to get a feel for the classification task at hand.

1.2 Before deep learning: a brief history of machine learning

1.2.1 Probabilistic modeling
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Early iterations of neural networks have been completely supplanted by the modern
variants that we cover in these pages; however, it is helpful to be aware of how deep
learning originated. Although the core ideas of neural networks were investigated in toy
forms as early as the 1950s, the approach took decades to really get started. For a long
time, the missing piece was a lack of an efficient way to train large neural networks. This
changed in the mid-1980s, as multiple people independently rediscovered the
"backpropagation" algorithm, a way to train chains of parametric operations using
gradient descent optimization (later in the book, we will go on to precisely define these
concepts), and started applying it to neural networks.

The first successful practical application of neural nets came in 1989 from Bell Labs,
when Yann LeCun combined together the earlier ideas of convolutional neural networks
and backpropagation, and applied them to the problem of handwritten digits
classification. The resulting network, dubbed "LeNet", was used by the US Post Office in
the 1990s to automate the reading of ZIP codes on mail envelopes.

As neural networks started gaining some respect among researchers in the 1990s thanks
to this first success, a new approach to machine learning rose to fame and quickly sent
neural nets back to oblivion: kernel methods.

Kernel methods are a group of classification algorithms, the best known of which is
the Support Vector Machine (SVM). The modern formulation of SVM was developed by
Vapnik and Cortes in the early 1990s at Bell Labs and published in 1995, although an
older linear formulation was published by Vapnik and Chervonenkis as early as 1963.

SVM aims at solving classification problems by finding good "decision boundaries"
(Figure 1.10) between two sets of points belonging to two different categories. A
"decision boundary" can be thought of as a line or surface separating your training data
into two spaces corresponding to two categories. To classify new data points, you just
need to check which side of the decision boundary they fall on.

Figure 1.10 A decision boundary

1.2.2 Early neural networks

1.2.3 Kernel methods
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SVMs proceed to find these boundaries in two steps:

First, the data is mapped to a new high-dimensional representation where the decision
boundary can be expressed as an hyperplane (if the data is two-dimensional like in our
example, an "hyperplane" would simply be a straight line).
Then a good decision boundary (a separation hyperplane) is computed by trying to
maximize the distance between the hyperplane and the closest data points from each
class, a step called "maximizing the margin". This allows the boundary to generalize well
to new samples outside of the training dataset.

The technique of mapping data to a high-dimensional representation where a
classification problem becomes simpler may look good on paper, but in practice it is
often computationally intractable. That’s where the "kernel trick" comes in, the key idea
that kernel methods are named after. Here’s the gist of it: for finding good decision
hyperplanes in the new representation space, you don’t have to explicitly compute the
coordinates of your points in the new space, you just need to compute the distance
between pairs of points in that space, which can be done very efficiently using what is
called a "kernel function". A kernel function is a computationally tractable operation that
maps any two points in your initial space to the distance between these points in your
target representation space, completely by-passing the explicit computation of the new
representation. Kernel functions are typically crafted by hand rather than learned from
data—in the case of SVM, only the separation hyperplane is learned.

At the time they were developed, SVMs exhibited state of the art performance on
simple classification problems, and were one of the few machine learning methods
backed by extensive theory and amenable to serious mathematical analysis, making it
well-understood and easily interpretable. Because of these useful properties, it became
extremely popular in the field for a long time.

However, SVM proved hard to scale to large datasets and did not provide very good
results for "perceptual" problems such as image classification. Since SVM is a "shallow"
method, applying SVM to perceptual problems requires first extracting useful
representations manually (a step called "feature engineering"), which is difficult and
brittle.

Decision trees are flowchart-like structures that can allow to classify input data points or
predict output values given inputs. They are easy to visualize and interpret. Decisions
trees learned from data started getting significant research interest in the 2000s, and by
2010 they were often preferred to kernel methods.

1.2.4 Decision trees, Random Forests and Gradient Boosting Machines
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Figure 1.11 A decision tree: the parameters that are learned are the questions about the
data. A question could be, for instance, "is coefficient 2 in the data higher than 3.5?".

In particular, the "Random Forest" algorithm introduced a robust and practical take on
decision tree learning that involves building a large number of specialized decision trees
then ensembling their outputs. Random Forests are applicable to a very wide range of
problems --you could say that they are almost always the second-best algorithm for any
shallow machine learning task. When the popular machine learning competition website
Kaggle.com got started in 2010, Random Forests quickly became a favorite on the
platform—until 2014, when Gradient Boosting Machines took over. Gradient Boosting
Machines, much like Random Forests, is a machine learning technique based on
ensembling weak prediction models, generally decision trees. It leverages "gradient
boosting", a way to improve any machine learning model by iteratively training new
models that specialize in addressing the weak points of the previous models. Applied to
decision trees, the use of the "gradient boosting" technique results in models that strictly
outperform Random Forests most of the time, while having very similar properties. It
may be one of the best, if not the best, algorithm for dealing with non-perceptual data
today. Alongside deep learning, it is one of the most commonly used technique in Kaggle
competitions.

Around 2010, while neural networks were almost completely shunned by the scientific
community at large, a number of people still working on neural networks started making
important breakthroughs: the groups of Geoffrey Hinton at the University of Toronto,
Yoshua Bengio at the University of Montreal, Yann LeCun at New York University, and
IDSIA in Switzerland.

In 2011, Dan Ciresan from IDSIA started winning academic image classification
competitions with GPU-trained deep neural networks—the first practical success of
modern deep learning. But the watershed moment came in 2012, with the entry of
Hinton’s group in the yearly large-scale image classification challenge ImageNet. The
ImageNet challenge was notoriously difficult at the time, consisting in classifying
high-resolution color images into 1000 different categories after training on 1.4 million
images. In 2011, the top-5 accuracy of the winning model, based on classical approaches

1.2.5 Back to neural networks
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to computer vision, was only 74.3%. Then in 2012, a team led by Alex Krizhevsky and
advised by Geoffrey Hinton was able to achieve a top-5 accuracy of 83.6%—a significant
breakthrough. The competition has been dominated by deep convolutional neural
networks every year since. By 2015, we had reached an accuracy of 96.4%, and the
classification task on ImageNet was considered to be a completely solved problem.

Since 2012, deep convolutional neural networks ("convnets") have become the go-to
algorithm for all computer vision tasks, and generally all perceptual tasks. At major
computer vision conferences in 2015 or 2016, it had become nearly impossible to find
presentations that did not involve convnets in some form. At the same time, deep learning
has also found applications in many other types of problems, such as natural language
processing. It has come to completely replace SVMs and decision trees in a wide range of
applications. For instance, for several years, the European Organization for Nuclear
Research, CERN, used decision tree-based methods for analysis of particle data from the
ATLAS detector at the Large Hadron Collider (LHC), but they eventually switched to
Keras-based deep neural networks due to their higher performance and ease of training
on large datasets.

The reason why deep learning took off so quickly is primarily that it offered better
performance on many problems. But that’s not the only reason. Deep learning is also
making problem-solving much easier, because it completely automates what used to be
the most crucial step in a machine learning workflow: "feature engineering".

Previous machine learning techniques, "shallow" learning, only involved
transforming the input data into one or two successive representation spaces, usually via
very simple transformations such as high-dimensional non-linear projections (SVM) or
decision trees. But the refined representations required by complex problems generally
cannot be attained by such techniques. As such, humans had to go to great length to make
the initial input data more amenable to processing by these methods, i.e. they had to
manually engineer good layers of representations for their data. This is what is called
"feature engineering". Deep learning, on the other hand, completely automates this step:
with deep learning, you  all features in one pass rather than having to engineer themlearn
yourself. This has greatly simplified machine learning workflows, often replacing very
sophisticated multi-stage pipelines with a single, simple, end-to-end deep learning model.

You may ask, if the crux of the issue is to have multiple successive layers of
representation, could shallow methods be applied repeatedly to emulate the effects of
deep learning? In practice, there are fast-diminishing returns to successive application of
shallow learning methods, because the optimal first representation layer in a 3-layer

. What is transformativemodel is not the optimal first layer in a 1-layer or 2-layer model
about deep learning is that it allows a model to learn all layers of representation , atjointly
the same time, rather than in succession ("greedily", as it is called). With joint feature
learning, whenever the model adjusts one of its internal features, all other features that
depend on it will automatically adapt to the change, without requiring human

1.2.6 What makes deep learning different

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and 
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders. 

https://forums.manning.com/forums/deep-learning-with-python

16

Licensed to Bram van Ginneken <bramvanginneken@gmail.com>

https://forums.manning.com/forums/deep-learning-with-python
Rudolfs
Highlight

Rudolfs
Highlight

Rudolfs
Highlight

Rudolfs
Highlight

Rudolfs
Highlight



intervention. Everything is supervised by a single feedback signal: every change in the
model serves the end goal. This is much more powerful than greedily stacking shallow
models, as it allows for very complex and abstract representations to be learned by
breaking them down into long series of intermediate spaces (layers), each space only a
simple transformation away from the previous one.

These are the two essential characteristics of how deep learning learns from data: the 
incremental, layer-by-layer way in which increasingly complex representations are

, and the fact developed these intermediate incremental representations are learned
, each layer being updated both to follow the representational needs of the layerjointly

above and the needs of the layer below. Together, these two properties have made deep
learning vastly more successful than previous approaches to machine learning.

A great way to get a sense of the current landscape of machine learning algorithms and
tools is to look at machine learning competitions on . Due to its highlyKaggle.com

competitive environment (some contests have thousands of entrants and million-dollar
prizes) and to the wide variety of machine learning problems covered, Kaggle offers a
realistic way to assess what works and what doesn’t. So, what kind of algorithm is
reliably winning competitions? What tools do top entrants use?

In 2016, Kaggle is dominated by two approaches: gradient boosting machines, and
deep learning. Specifically, gradient boosting is used for problems where structured data
is available, while deep learning is used for perceptual problems such as image
classification. Practitioners of the former almost always use the excellent XGB library,
which offers support for the two most popular languages of data science: Python and R.
Meanwhile, most of the Kaggle entrants leveraging deep learning use the Keras library,
due to its easy of use, flexibility and support of Python.

These are the two techniques that you should be the most familiar with in order to be
successful in applied machine learning today: gradient boosting machines (for shallow
learning problems), and deep learning (for perceptual problems). In technical terms, this
means that you will need to be familiar with XGB and Keras—the two libraries that are
currently dominating Kaggle competitions. With this book in hand, you are already one
big step closer.

The two key ideas of deep learning for computer vision, namely convolutional neural
networks and backpropagation, were already well-understood in 1989. The LSTM
algorithm, fundamental to deep learning for time series, was developed in 1997 and has
barely changed since. So why did deep learning only take off after 2012? What changed
in these two decades?

In general, there are three technical forces that are driving advances in machine
learning:

Hardware.

1.3 Why deep learning, why now?

1.2.7 The modern machine learning landscape

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and 
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders. 

https://forums.manning.com/forums/deep-learning-with-python

17

Licensed to Bram van Ginneken <bramvanginneken@gmail.com>

https://forums.manning.com/forums/deep-learning-with-python
Rudolfs
Highlight

Rudolfs
Highlight

Rudolfs
Highlight

Rudolfs
Highlight

Rudolfs
Highlight

Rudolfs
Highlight

Rudolfs
Highlight

Rudolfs
Highlight

Rudolfs
Sticky Note
Long Short Term Memory

Rudolfs
Highlight



Datasets and benchmarks.
Algorithmic advances.

Because the field is guided by experimental findings rather than by theory,
algorithmic advances only become possible when appropriate data and hardware is
available to try new ideas (or just scale up old ideas, as is often the case). Machine
learning is not mathematics or physics, where major advances can be done with a pen and
a piece of paper. It is an engineering science.

So the real bottleneck throughout the 1990s and 2000s was data and hardware. But
here is what happened during that time: the Internet took, and high-performance graphics
chips were developed for the needs of the gaming market.

Between 1990 and 2010, off-the shelf CPUs have gotten faster by a factor of
approximately 5,000. As a result, nowadays it’s possible to run small deep learning
models on your laptop, whereas this would have been intractable 25 years ago.

However, typical deep learning models used in computer vision or speech recognition
require orders of magnitude more computational power than what your laptop can
deliver. Throughout the 2000s, companies like NVIDIA and AMD have been investing
billions of dollars into developing fast, massively parallel chips (graphical processing
units, GPUs) for powering the graphics of increasingly photorealistic video games.
Cheap, single-purpose supercomputers designed to render complex 3D scenes on your
screen, in real-time. This investment came to benefit the scientific community when, in
2007, NVIDIA launched CUDA, a programming interface for its line of GPUs. A small
number of GPUs started replacing massive clusters of CPUs in a number of various
highly-parallelizable applications, starting with physics modeling. Deep neural networks,
consisting mostly of many small matrix multiplications, are also highly parallelizable,
and around 2011, some researchers started writing CUDA implementations of neural
nets—Dan Ciresan and Alex Krizhevsky were some of the first among them.

So what happened is that the gaming market has subsidized supercomputing for the
next generation of artificial intelligence applications. Sometimes, big things start as
games. Today, the NVIDIA Titan X, a gaming GPU that cost $1000 at the end of 2015,
can deliver a peak of 6.6 TLOPS in single-precision, i.e. 6.6 trillion of float32
operations per second. That’s about 350 times more than what you can get out of a
modern laptop. On a Titan X, it only takes a couple of days to train an ImageNet model
of the sort that would have won the competition a few years ago. Meanwhile, large
companies train deep learning models on clusters of hundreds of GPUs of a type
developed specifically for the needs of deep learning, such as the NVIDIA K80. The
sheer computational power of such clusters is something that would never have been
possible without modern GPUs.

What’s more, the deep learning industry is even starting to go beyond GPUs, and is
investing into increasingly specialized and efficient chips for deep learning. In 2016, at
its annual I/O convention, Google revealed its "TPU" project (tensor processing unit), a

1.3.1 Hardware
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new chip design developed from the ground-up to run deep neural networks, reportedly
10x faster and far more energy-efficient than top-of-line GPUs.

Artificial Intelligence is sometimes heralded as the new industrial revolution. If deep
learning is the steam engine of this revolution, then data is its coal. The raw material that
powers our intelligent machines, without which nothing would be possible. When it
comes to data, besides the exponential progress in storage hardware over the past twenty
years, following Moore’s law, the game-changer has been the rise of the Internet, making
it feasible to collect and distribute very large datasets for machine learning. Today, large
companies work with image datasets, video datasets, and natural language datasets that
could not have been collected without the Internet. User-generated image tags on Flickr,
for instance, have been a treasure trove of data for computer vision. So were YouTube
videos. And Wikipedia is a key dataset for natural language processing.

If there is one dataset that has been a catalyst for the rise of deep learning, it is the
ImageNet dataset, consisting in 1.4 million images hand-annotated with 1000 images
categories (one category per image). But what makes ImageNet special is not just its
large size, but also the yearly competition associated with it. As  as beenKaggle.com

demonstrating since 2010, public competitions are an excellent way to motivate
researchers and engineers to push the envelope. Having common benchmarks that
researchers compete to beat has greatly helped the recent rise of deep learning.

Besides hardware and data, up until the late 2000s, we were still missing a reliable way to
train very deep neural networks. As a result, neural networks were still fairly shallow,
leveraging only one or two layers of representations, and so they were not able to shine
against more refined shallow methods such as SVMs or Random Forests. The key issue
was that of "gradient propagation" through deep stacks of layers. The feedback signal
used to train neural networks would fade away as the number of layers increased.

This changed around 2009-2010 with the development of several simple but
important algorithmic improvements that allowed for better gradient propagation:

Better "activation functions" for neural layers.
Better "weight initialization schemes". It started with layer-wise pre-training, which was
quickly abandoned.
Better "optimization schemes", such as  and .RMSprop Adam

It is only when these improvements started allowing for training models with ten or
more layers that deep learning really started to shine.

Finally, in 2014, 2015 and 2016, even more advanced ways to help gradient
propagation were discovered, such as batch normalization, residual connections, and
depthwise separable convolutions. Today we can train from scratch models that are
thousands of layers deep.

1.3.2 Data

1.3.3 Algorithms
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As deep learning became the new state of the art for computer vision in 2012-2013, and
eventually for all perceptual tasks, industry leaders took note. What followed was a
gradual wave of industry investment far beyond anything previously seen in the history
of AI.

In 2011, right before deep learning started taking the spotlight, the total venture
capital investment in AI was around $19M, going almost entirely to practical applications
of shallow machine learning approaches. By 2014, it had risen to a staggering $394M.
Dozens of startups launched in these 3 years, trying to capitalize on the deep learning
hype. Meanwhile, large tech companies such as Google, Facebook, Baidu and Microsoft
have invested in internal research departments in amounts that would most likely dwarf
the flow of venture capital money. Only a few numbers have surfaced. In 2013, Google
acquired the deep learning startup DeepMind for a reported $500M—the largest
acquisition of an AI company in history. In 2014, Baidu started a deep learning research
center in Silicon Valley, investing $300M in the project. The deep learning hardware
startup Nervana Systems was acquired by Intel in 2016 for over $400.

In fact, machine learning and in particular deep learning have become central to the
product strategy of these tech giants. In late 2015, Sundar Pichai, Google CEO, stated:

"Machine learning is a core, transformative way by which we’re rethinking how
we’re doing everything. We are thoughtfully applying it across all our products, be it
search, ads, YouTube, or Play. And we’re in early days, but you will see us?-- in a
systematic way—apply machine learning in all these areas."

As a result of this wave of investment, the number of people working on deep
learning went in just 5 years from a few hundreds, to tens of thousands, and research
progress has reached a frenetic pace. There are currently no signs that this trend is going
to slow anytime soon.

One the key factors driving this inflow of new faces in deep learning has been the
democratization of the toolsets used in the field. In the early days, doing deep learning
required significant C++ and CUDA expertise, which few people possessed. Nowadays,
basic Python scripting skills suffice to do advanced deep learning research. This has been
driven most notably by the development of Theano and then TensorFlow, two symbolic
tensor manipulation frameworks for Python that support auto-differentiation, greatly
simplifying the implementation of new models, and by the rise of user-friendly libraries
such as Keras, which makes deep learning as easy as manipulating Lego bricks. After its
release early 2015, Keras has quickly become the go-to deep learning solution for large
numbers of new startups, grad students, and for many researchers pivoting into the field.

1.3.4 A new wave of investment

1.3.5 The democratization of deep learning
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Is there anything special about deep neural networks that makes them the "right"
approach for companies to be investing in and for researchers to flock to? Or is deep
learning just a fashion that might not last? Will we still be using deep neural networks in
20 years?

The short answer is yes—deep learning does have several properties that justify its
status as an AI revolution, and it is here to stay. We may not still be using neural
networks two decades from now, but whatever we use will directly inherit from modern
deep learning and its core concepts.

These important properties can be broadly sorted into 3 categories:

Simplicity. Deep learning removes the need for feature engineering, replacing complex,
brittle and engineering-heavy pipelines with simple end-to-end trainable models typically
built using only 5 or 6 different tensor operations.
Scalability. Deep learning is highly amenable to parallelization on GPUs or TPUs,
making it capable of taking full advantage of Moore’s law. Besides, deep learning models
are trained by iterating over small batches of data, allowing them to be trained on datasets
of arbitrary size (the only bottleneck being the amount of parallel computational power
available, which thanks to Moore’s law is a fast-moving barrier).
Versatility and reusability. Contrarily to many prior machine learning approaches, deep
learning models can be trained on additional data without restarting from scratch, making
them viable for continuous online learning, an important property for very large
production models. Furthermore, trained deep learning models are repurposable and thus
reusable: for instance it is possible to take a deep learning model trained for image
classification and drop it into a video processing pipeline. This allows us to reinvest
previous work into increasingly complex and powerful models. This also makes deep
learning applicable to fairly small datasets.

Deep learning has only been in the spotlight for a few years, and we haven’t yet
established the full scope of what it can do. Every passing month we still come up with
new use cases, or with engineering improvements lifting previously known limitations.
Following a scientific revolution, progress generally follows a sigmoid curve: it starts
with a period of fast progress than gradually stabilizes, as researchers start hitting against
hard limitations and further improvements become more incremental. With deep learning
in 2017, it seems that we are still in the first half of that sigmoid, and there is a lot more
progress yet to come in the next few years.

1.3.6 Will it last?
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2
Understanding deep learning requires familiarity with many simple mathematical
concepts: tensors, tensor operations, differentiation, gradient descent… Our goal in this
chapter will be to build intuition about these notions without getting overly technical. In
particular, we will steer away from mathematical notation, which can be off-putting for
those without any mathematics background, and isn’t strictly necessary to explain things
well.

To put some context around tensors and gradient descent, we will begin the chapter
with our very first practical example of a neural network. Then we will go over every
new concept we have introduced, point by point. Keep in mind that these concepts will
be essential for you to understand the practical examples that will come in the following
chapters!

In this chapter, you will:

Take a look at your first working example of a neural network.
Learn about tensors, the data format underlying all deep learning models.
Learn about tensor operations, the mathematical building blocks of neural networks.
Understand the way neural networks learn from data: via gradient descent optimization.

After reading this chapter, you will have an intuitive understanding of how neural
networks work, and you will be able to move on to practical applications—which will
start with the next chapter.

We will now take a look at a first concrete example of a neural network, which makes
use of the Python library Keras to learn to classify hand-written digits. Unless you
already have experience with Keras or similar libraries, you will not understand
everything about this first example right away. You probably haven’t even installed
Keras yet. Don’t worry, that is perfectly fine. In the next chapter, we will review each
element in our example and explain them in detail. So don’t worry if some steps seem
arbitrary or look like magic to you! We’ve got to start somewhere.

The problem we are trying to solve here is to classify grayscale images of handwritten

Before we start: the mathematical blocks
of neural networks

2.1 A first look at a neural network
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digits (28 pixels by 28 pixels), into their 10 categories (0 to 9). The dataset we will use is
the MNIST dataset, a classic dataset in the machine learning community, which has been
around for almost as long as the field itself and has been very intensively studied. It’s a
set of 60,000 training images, plus 10,000 test images, assembled by the National
Institute of Standards and Technology (the NIST in MNIST) in the 1980s. You can think
of "solving" MNIST as the "Hello World" of deep learning—it’s what you do to verify
that your algorithms are working as expected. As you become a machine learning
practitioner, you will see MNIST come up over and over again, in scientific papers, blog
posts, and so on. You can take a look at some MNIST samples in figure 2.1.

NOTE Note on classes and labels

In machine learning, a "category" in a classification problem is called a
"class". Data points are called "samples". The class associated with a
specific sample is called a "label".

Figure 2.1 MNIST sample digits

You don’t need to try to reproduce this example on your machine just now. If you
wish to, you will first need to set up Keras, which is covered in section 3.3.

The MNIST dataset comes pre-loaded in Keras, in the form of a set of four Numpy
arrays:

Listing 2.1 Loading the MNIST dataset in Keras

train_images and  form the "training set", the data that the modeltrain_labels

will learn from. The model will then be tested on the "test set",  and test_images

. Our images are encoded as Numpy arrays, and the labels are simply antest_labels

array of digits, ranging from 0 to 9. There is a one-to-one correspondence between the
images and the labels.

Let’s have a look at the training data:

Listing 2.2 The training data

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

>>> train_images.shape
(60000, 28, 28)
>>> len(train_labels)
60000
>>> train_labels
array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)
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Let’s have a look at the test data:

Listing 2.3 The test data

Our workflow will be as follow: first we will present our neural network with the
training data,  and . The network will then learn totrain_images train_labels

associate images and labels. Finally, we will ask the network to produce predictions for 
, and we will verify if these predictions match the labels from test_images

.test_labels

Let’s build our network—again, remember that you aren’t supposed to understand
everything about this example just yet.

Listing 2.4 The network architecture

The core building block of neural networks is the "layer", a data-processing module
which you can conceive as a "filter" for data. Some data comes in, and comes out in a
more useful form. Precisely, layers extract  out of the data fed intorepresentations
them—hopefully representations that are more meaningful for the problem at hand. Most
of deep learning really consists of chaining together simple layers which will implement
a form of progressive "data distillation". A deep learning model is like a sieve for data
processing, made of a succession of increasingly refined data filters—the "layers".

Here our network consists of a sequence of two  layers, which areDense

densely-connected (also called "fully-connected") neural layers. The second (and last)
layer is a 10-way "softmax" layer, which means it will return an array of 10 probability
scores (summing to 1). Each score will be the probability that the current digit image
belongs to one of our 10 digit classes.

To make our network ready for training, we need to pick three more things, as part of
"compilation" step:

A loss function: the is how the network will be able to measure how good a job it is
doing on its training data, and thus how it will be able to steer itself in the right direction.
An optimizer: this is the mechanism through which the network will update itself based
on the data it sees and its loss function.
Metrics to monitor during training and testing. Here we will only care about accuracy

>>> test_images.shape
(10000, 28, 28)
>>> len(test_labels)
10000
>>> test_labels
array([7, 2, 1, ..., 4, 5, 6], dtype=uint8)

from keras import models
from keras import layers

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
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(the fraction of the images that were correctly classified).

The exact purpose of the loss function and the optimizer will be made clear
throughout the next two chapters.

Listing 2.5 The compilation step

Before training, we will preprocess our data by reshaping it into the shape that the
network expects, and scaling it so that all values are in the  interval. Previously,[0, 1]

our training images for instance were stored in an array of shape  of(60000, 28, 28)

type  with values in the  interval. We transform it into a  arrayuint8 [0, 255] float32

of shape  with values between 0 and 1.(60000, 28 * 28)

Listing 2.6 Preparing the image data

We also need to categorically encode the labels, a step which we explain in chapter 3:

Listing 2.7 Preparing the labels

We are now ready to train our network, which in Keras is done via a call to the fit
method of the network: we "fit" the model to its training data.

Listing 2.8 Training the network

Two quantities are being displayed during training: the "loss" of the network over the
training data, and the accuracy of the network over the training data.

We quickly reach an accuracy of 0.989 (i.e. 98.9%) on the training data. Now let’s
check that our model performs well on the test set too:

network.compile(optimizer='rmsprop',
                loss='categorical_crossentropy',
                metrics=['accuracy'])

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255

from keras.utils import to_categorical

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

>>> network.fit(train_images, train_labels, epochs=5, batch_size=128)
Epoch 1/5
60000/60000 [==============================] - 9s - loss: 0.2524 - acc: 0.9273
Epoch 2/5
51328/60000 [========================>.....] - ETA: 1s - loss: 0.1035 - acc: 0.9692
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Listing 2.9 Evaluating the network

Our test set accuracy turns out to be 97.8%—that’s quite a bit lower than the training
set accuracy. This gap between training accuracy and test accuracy is an example of
"overfitting", the fact that machine learning models tend to perform worse on new data
than on their training data. Overfitting will be a central topic in chapter 3.

This concludes our very first example—you just saw how we could build and a train a
neural network to classify handwritten digits, in less than 20 lines of Python code. In the
next chapter, we will go in detail over every moving piece we just previewed, and clarify
what is really going on behind the scenes. You will learn about "tensors", the data-storing
objects going into the network, about tensor operations, which layers are made of, and
about gradient descent, which allows our network to learn from its training examples.

In our previous example, we started from data stored in multi-dimensional Numpy arrays,
also called "tensors". In general, all machine learning systems in our time use tensors as
their basic data structure. Tensors are fundamental to the field—so fundamental in fact,
that Google’s TensorFlow was named after them. So what’s a tensor?

At its core, a tensor is a container for data—almost always numerical data. So, a
container for numbers. You may be already familiar with matrices, which are 2D tensors:
tensors are merely a generalization of matrices to an arbitrary number of dimensions
(note that in the context of tensors, "dimension" is often called "axis").

A tensor that contains only one number is called a "scalar" (or "scalar tensor", or
0-dimensional tensor, or 0D tensor). In Numpy, a  or  number is afloat32 float64

scalar tensor (or scalar array). You can display the number of axes of a Numpy tensor via
the  attribute; a scalar tensor has 0 axes ( ). The number of axes of andim ndim == 0

tensor is also called its .rank

Listing 2.10 A Numpy scalar

An array of numbers is called a vector, or 1D tensor. A 1D tensor will be said to have
exactly one "axis":

2.2 Data representations for neural networks

>>> test_loss, test_acc = network.evaluate(test_images, test_labels)
>>> print('test_acc:', test_acc)
test_acc: 0.9785

2.2.1 Scalars (0D tensors)

>>> import numpy as np
>>> x = np.array(12)
>>> x
array(12)
>>> x.ndim
0

2.2.2 Vectors (1D tensors)
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Listing 2.11 A Numpy vector

Here, this vector has 5 entries, and so will be a called a "5-dimensional vector". Do
not confuse a 5D vector with a 5D tensor! A 5D vector has only one axis and has 5
dimensions along its axis, while a 5D tensor has 5 axes (and may have any number of
dimensions along each axis). "Dimensionality" can either denote the number of entries
along a specific axis (e.g. in the case of our 5D vector), or the number of axes in a tensor
(e.g. a 5D tensor), which can be quite confusing at times. In the latter case, it is
technically more correct to talk about "a tensor of rank 5" (the rank of a tensor being the
number of axes), but the ambiguous notation "5D tensor" is very common regardless.

An array of vectors is a matrix, or 2D tensor. A matrix has two axes (often denoted
"rows" and "columns"). You can visually interpret a matrix as a rectangular grid of
numbers:

Listing 2.12 A Numpy matrix

The entries from the first axis are called the "rows", and the entries from the second
axis are called the "columns". In our example above,  is the first[5, 78, 2, 34, 0]

row of , and  is the first column.x [5, 6, 7]

If you pack such matrices in a new array, you obtain a 3D tensor, which you can visually
interpret as a cube of numbers:

Listing 2.13 A Numpy 3D tensor

>>> x = np.array([12, 3, 6, 14])
>>> x
array([12, 3, 6, 14])
>>> x.ndim
1

2.2.3 Matrices (2D tensors)

>>> x = np.array([[5, 78, 2, 34, 0],
                  [6, 79, 3, 35, 1],
                  [7, 80, 4, 36, 2]])
>>> x.ndim
2

2.2.4 3D tensors and higher-dimensional tensors

>>> x = np.array([[[5, 78, 2, 34, 0],
                   [6, 79, 3, 35, 1],
                   [7, 80, 4, 36, 2]],
                  [[5, 78, 2, 34, 0],
                   [6, 79, 3, 35, 1],
                   [7, 80, 4, 36, 2]],
                  [[5, 78, 2, 34, 0],
                   [6, 79, 3, 35, 1],
                   [7, 80, 4, 36, 2]]])
>>> x.ndim
3
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By packing 3D tensors in an array, you can create a 4D tensor. And so on. In deep
learning, you will generally manipulate tensors that are 0D to 4D, although you may go
up to 5D if you process video data.

A tensor is defined by 3 key attributes:

The number of axes it has, its . For instance, a 3D tensor has 3 axes, and a matrix hasrank
2 axes. This is also called the tensor’s , throughout Python libraries such as Numpy.ndim

Its shape. This is a tuple of integers that describes how many dimensions the tensor has
along each axis. For instance, our matrix example above has shape , and our 3D(3, 5)
tensor example had shape . A vector will have a shape with a single element,(3, 3, 5)
such as , while a scalar will have an empty shape, .(5,) ()

Its data type (usually called  throughout Python libraries). This is the type of thedtype
data contained inside the tensor; for instance a tensor’s type could be , ,float32 uint8

… In rare occasions you may witness a  tensor. Note that string tensorsfloat64 char
don’t exist in Numpy (nor in most other libraries), since tensors live in pre-allocated
contiguous memory segments, and strings, being variable-length, would preclude the use
of this implementation.

To make this more concrete, let’s take a look back at the data we processed in our
MNIST example:

Listing 2.14 Let’s load the MNIST dataset

Listing 2.15 Let’s display the number of axes of the tensor : the train_images ndim

attribute

Listing 2.16 Let’s display its shape

Listing 2.17 Let’s display its data type, the  attributedtype

So what we have here is a 3D tensor of 8-bit integers. More precisely, it is an array of
60,000 matrices of 28x28 integers. Each such matrix is a grayscale image, with
coefficients between 0 and 255.

2.2.5 Key attributes

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

>>> print(train_images.ndim)
3

>>> print(train_images.shape)
(60000, 28, 28)

>>> print(train_images.dtype)
uint8
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Let’s display the 4th digit in this 3D tensor, using the library Matplotlib (part of the
standard scientific Python suite):

Listing 2.18 Displaying the 4th digit

Figure 2.2 The 4th sample in our dataset

In the example above, we "selected" a specific digit alongside the first axis using the
syntax . "Selecting" specific elements in a tensor is called "tensortrain_images[i]

slicing". Let’s take a look at the tensor slicing operations that you can do on Numpy
arrays.

The following selects digits #10 to #100 and puts them in an array of shape (90, 28,
:28)

Listing 2.19 Slicing a tensor

It is equivalent to this more detailed notation, where one specifies a start index and
stop index for the slice along each tensor axis. Note that  will simply be equivalent to:

selecting the entire axis.

Listing 2.20 Advanced tensor slicing

digit = train_images[4]

import matplotlib.pyplot as plt
plt.imshow(digit, cmap=plt.cm.binary)
plt.show()

2.2.6 Manipulating tensors in Numpy

>>> my_slice = train_images[10:100]
>>> print(my_slice.shape)
(90, 28, 28)

>>> my_slice = train_images[10:100, :, :]  # equivalent to the above example
>>> my_slice.shape
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In general, one may select between any two indices along each tensor axis. For
instance, in order to select 14x14 pixels in the bottom right corner of all images, one
would do:

Listing 2.21 Advanced tensor slicing (continued)

It is also possible to use negative indices. Much like negative indices in Python lists,
they indicate a position relative to the end of the current axis. In order to crop our images
to patches of 14x14 pixels centered in the middle, one would do:

Listing 2.22 Advanced tensor slicing (continued)

In general, the first axis (axis 0, since indexing starts at 0) in all data tensors you will
come across in deep learning will the be "samples axis" (also called "samples dimension"
sometimes). In the MNIST example, "samples" are simply images of digits.

Besides, deep learning models do not process an entire dataset at once, rather they
break down the data into small batches. Concretely, here’s one batch of our MNIST
digits, with batch size of 128:

Listing 2.23 Slicing a tensor into batches

When considering such a batch tensor, the first axis (axis 0) is called the "batch axis"
or "batch dimension". This is a term you will frequently encounter when using Keras or
other deep learning libraries.

Let’s make data tensors more concrete still with a few examples similar to what you will
encounter later on.

The data you will manipulate will almost always fall into one of the following
categories:

(90, 28, 28)
>>> my_slice = train_images[10:100, 0:28, 0:28]  # also equivalent to the above example
>>> my_slice.shape
(90, 28, 28)

my_slice = train_images[:, 14:, 14:]

my_slice = train_images[:, 7:-7, 7:-7]

2.2.7 The notion of data batch

batch = train_images[:128]

# and here's the next batch
batch = train_images[128:256]

# and the n-th batch:
batch = train_images[128 * n:128 * (n + 1)]

2.2.8 Real-world examples of data tensors
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Vector data: 2D tensors of shape .(samples, features)

Timeseries data or sequence data: 3D tensors of shape (samples, timesteps,
.features)

Images: 4D tensors of shape  or (samples, width, height, channels) (samples,
.channels, width, height)

Video: 5D tensors of shape  or (samples, frames, width, height, channels)
.(samples, frames, channels, width, height)

This is the most common case. In such a dataset, each single data point can be encoded as
a vector, and thus a batch of data will be encoded as a 2D tensor (i.e. an array of vectors),
where the first axis is the "samples axis" and the second axis is the "features axis".

Let’s take a look at a few concrete examples:

An actuarial dataset of people, where we consider for each person their age, zipcode, and
income. Each person can be characterized as a vector of 3 values, and thus an entire
dataset of 100,000 people can be stored in a 2D tensor of shape .(100000, 3)

A dataset of text documents, where we represent each document by the counts of how
many times each word appears in it (out of a dictionary of 20,000 common words). Each
document can be encoded as a vector of 20,000 values (one count per word in our
dictionary), and thus an entire dataset of 500 documents can be stored in a tensor of shape

.(500, 20000)

Whenever time matters in your data (or the notion of sequence order), it makes sense to
store it in a 3D tensor with an explicit time axis. Each sample can be encoded as a
sequence of vectors (a 2D tensor), and thus a batch of data will be encoded as a 3D
tensor.

The time axis will always be the second axis (axis of index 1), by convention. Let’s
have a look at a few examples:

A dataset of stock prices. Every minute, we store the current price of the stock, the
highest price in the past minute and the lowest price in the past minute. Thus every
minute is encoded as a 3D vector, an entire day of trading is encoded as a 2D tensor of
shape  (there are 390 minutes in a trading day), and 250 days worth of data can(390, 3)
be stored in a 3D tensor of shape . Here, each sample would be one day(250, 390, 3)
worth of data.
A dataset of tweets, where we encode each tweet as a sequence of 140 characters out of
an alphabet of 128 unique characters. In this setting, each character can be encoded as a
binary vector of size 128 (an all-zeros vector except for a 1 entry at the index
corresponding to the character). Then each tweet can be encoded as a 2D tensor of shape 

, and a dataset of 1M tweets can be stored in a tensor of shape (140, 128) (1000000,
.140, 128)

2.2.9 Vector data

2.2.10 Timeseries data or sequence data
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Figure 2.3 A 3D timeseries data tensor.

Images typically have 3 dimensions: width, height, and color depth. Although grayscale
images (like our MNIST digits) only have a single color channel and could thus be stored
in 2D tensors, by convention image tensors are always 3D, with a 1-dimensional color
channel for grayscale images.

A batch of 128 grayscale images of size 256x256 could thus be stored in a tensor of
shape , and a batch of 128 color images could be stored in a tensor(128, 256, 256, 1)

of shape .(128, 256, 256, 3)

There are two conventions for shapes of images tensors: the TensorFlow convention
and the Theano convention.

The TensorFlow machine learning framework, from Google, places the color depth
axis at the end, as we just saw: .(samples, width, height, color_depth)

Meanwhile, Theano places the color depth axis right after the batch axis: (samples,
. With the Theano convention, our examples abovecolor_depth, width, height)

would become  and . The Keras framework(128, 1, 256, 256) (128, 3, 256, 256)

provides support for both formats.

2.2.11 Image data
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Figure 2.4 A 4D image data tensor.

Video data is one of the few types of real-world data for which you will need 5D tensors.
A video can be understood as a sequence of frames, each frame being a color image.
Since each frame can be stored in a 3D tensor , then a(width, height, color_depth)

sequence of frames can be stored in 4D tensor (frames, width, height,

, and thus a batch of different videos can be stored in a 5D tensor of shapecolor_depth)

.(samples, frames, width, height, color_depth)

For instance, a 60-second, 256x144 YouTube video clip sampled at 4 frames per
second would have 240 frames. A batch of 4 such video clips would be stored in a tensor
of shape . That’s a total of 106,168,320 values! If the  of(4, 240, 256, 144, 3) dtype

the tensor is , then each value is stored in , so the tensor wouldfloat32 32 bits

represent 425MB. Heavy! Videos you encounter in real life are much lighter because
they are not stored in  and they are typically compressed by a large factor (e.g.float32

in the MPEG format).

Much like any computer program can be ultimately reduced to a small set of binary
operations on binary inputs (such as AND, OR, NOR, etc.), all transformations learned
by deep neural networks can be reduced to a handful of "tensor operations" applied to
tensors of numeric data. For instance, it is possible to add tensors, multiply tensors, and
so on.

In our initial example, we were building our network by stacking  layers on topDense

of each other. A layer instance looks like this:

Listing 2.24 A Keras layer

This layer can be interpreted as a function, which takes as input a 2D tensor and
returns another 2D tensor—a new representation for the input tensor. Specifically, the
following function (where  is a 2D tensor and b is a vector, both attributes of the layer):W

output = relu(dot(W, input) + b)

Let’s unpack this. We have three tensor operations here: a dot product ( ) betweendot

the input tensor and a tensor named , an addition ( ) between the resulting 2D tensorW +

and a vector , and finally a  operation.  is simply .b relu relu(x) max(x, 0)

Although this section deals entirely with linear algebra expressions, you won’t find
any mathematical notation here. We’ve found that mathematical concepts could be more
readily mastered by programmers with no mathematical background if they were
expressed as short Python snippets instead of mathematical equations. So we will use
Numpy code all along.

2.3 The gears of neural networks: tensor operations

2.2.12 Video data

keras.layers.Dense(512, activation='relu')
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The "relu" operation and the addition are element-wise operations, i.e. operations that are
applied independently to each entry in the tensors considered. This means that these
operations are highly amenable to massively parallel implementations (so-called
"vectorized" implementations, a term which come from the "vector processor"
supercomputer architecture from the 1970-1990 period). If you wanted to write a naive
Python implementation of an element-wise operation, you would use a  loop:for

Listing 2.25 A naive implementation of an element-wise "relu" operation

Same for addition:

Listing 2.26 A naive implementation of element-wise addition

On the same principle, you can do element-wise multiplication, subtraction, and so
on.

In practice, when dealing with Numpy arrays, these operations are available as
well-optimized built-in Numpy functions, which themselves delegate the heavy lifting to
a BLAS implementation (Basic Linear Algebra Subprograms) if you have one installed,
which you should. BLAS are low-level, highly-parallel, efficient tensor manipulation
routines typically implemented in Fortran or C.

So in Numpy you can do the following, and it will be blazing fast:

Listing 2.27 Native element-wise operation in Numpy

2.3.1 Element-wise operations

def naive_relu(x):
    # x is 2D Numpy tensor
    assert len(x.shape) == 2

    x = x.copy()  # Avoid overwriting the input tensor
    for i in range(x.shape[0]):
        for j in range(x.shape[1]):
            x[i, j] = max(x[i, j], 0)
    return x

def naive_add(x, y):
    # x and y are 2D Numpy tensors
    assert len(x.shape) == 2
    assert x.shape == y.shape

    x = x.copy()  # Avoid overwriting the input tensor
    for i in range(x.shape[0]):
        for j in range(x.shape[1]):
            x[i, j] += y[i, j]
    return x

import numpy as np

# Element-wise addition
z = x + y

# Element-wise relu
z = np.maximum(z, 0.)
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In our naive implementation of  above, we only support the addition of 2Dnaive_add

tensors with identical shapes. But in the  layer introduced earlier, we were adding aDense

2D tensor with a vector. What happens with addition when the shape of the two tensors
being added differ?

When possible and if there is no ambiguity, the smaller tensor will be "broadcasted"
to match the shape of the larger tensor. Broadcasting consists in two steps:

1) axes are added to the smaller tensor to match the  of the larger tensor (calledndim
broadcast axes).
2) the smaller tensor is then repeated alongside these new axes, to match the full shape of
the larger tensor.

Let’s look at a concrete example: consider  with shape  and  with shape x (32, 10) y

. First, we add an empty first axis to y, whose shape becomes . Then we(10,) (1, 10)

repeat  32 times alongside this new axis, so that we end up with a tensor  with shape y Y

, where  for  in . At this point we can proceed(32, 10) Y[i, :] == y i range(0, 32)

to add  and , since they have the same shape.x Y

In terms of implementation, no new 2D tensor would actually be created since that
would be terribly inefficient, so the repetition operation would be entirely virtual, i.e. it
would be happening at the algorithmic level rather than at the memory level. But thinking
of the vector being repeated 10 times alongside a new axis is a helpful mental model.
Here’s what a naive implementation would look like:

Listing 2.28 A naive implementation of matrix-vector addition

With broadcasting, you can generally apply two-tensor element-wise operations if
one tensor has shape  and the other has shape (a, b, … n, n + 1, … m) (n, n + 1,

. The broadcasting would then automatically happen for axes  to .… m) a n - 1

You can thus do:

Listing 2.29 Applying the element-wise  operation to two tensors ofmaximum

different shapes via broadcasting

2.3.2 Broadcasting

def naive_add_matrix_and_vector(x, y):
    # x is a 2D Numpy tensor
    # y is a Numpy vector
    assert len(x.shape) == 2
    assert len(y.shape) == 1
    assert x.shape[1] == y.shape[0]

    x = x.copy()  # Avoid overwriting the input tensor
    for i in range(x.shape[0]):
        for j in range(x.shape[1]):
            x[i, j] += y[j]
    return x

import numpy as np
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The dot operation, also called "tensor product" (not to be confused with element-wise
product) is the most common, most useful of tensor operations. Contrarily to
element-wise operations, it combines together entries in the input tensors.

Element-wise product is done with the  operator in Numpy, Keras, Theano and*

TensorFlow.  uses a different syntax in TensorFlow, but in both Numpy and Keras itdot

is done using the standard  operator:dot

Listing 2.30 Numpy  operations between two tensorsdot

In mathematical notation, you would note the operation with a dot :.
z = x . y

Mathematically, what does the dot operation do? Let’s start with the dot product of
two vectors x and y. It is computed as such:

Listing 2.31 A naive implementation of dot

You will have noticed that the dot product between two vectors is a scalar, and that
only vectors with the same number of elements are compatible for dot product.

You can also take the dot product between a matrix x and a vector y, which returns a
vector where coefficients are the dot products between y and the rows of x. You would
implement it as such:

Listing 2.32 A naive implementation of matrix-vector dot

# x is a random tensor with shape (64, 3, 32, 10)
x = np.random.random((64, 3, 32, 10))
# y is a random tensor with shape (32, 10)
y = np.random.random((32, 10))

# The output z has shape (64, 3, 32, 10) like x
z = np.maximum(x, y)

2.3.3 Tensor dot

import numpy as np

z = np.dot(x, y)

def naive_vector_dot(x, y):
    # x and y are Numpy vectors
    assert len(x.shape) == 1
    assert len(y.shape) == 1
    assert x.shape[0] == y.shape[0]

    z = 0.
    for i in range(x.shape[0]):
        z += x[i] * y[i]
    return z

import numpy as np

def naive_matrix_vector_dot(x, y):
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You could also be reusing the code we wrote previously, which highlights the
relationship between matrix-vector product and vector product:

Listing 2.33 Alternative naive implementation of matrix-vector dot

Note that as soon as one of the two tensors has a  higher than 1,  is no longerndim dot

symmetric, which is to say that  is not the same as .dot(x, y) dot(y, x)

Of course, dot product generalizes to tensors with arbitrary number of axes. The most
common applications may be the dot product between two matrices. You can take the dot
product of two matrices x and y ( ) if and only if dot(x, y) x.shape[1] ==

. The result is a matrix with shape , wherey.shape[0] (x.shape[0], y.shape[1])

coefficients are the vector products between the rows of x and the columns of y. Here’s
the naive implementation:

Listing 2.34 A naive implementation of matrix-matrix dot

To understand dot product shape compatibility, it helps to visualize the input and

    # x is a Numpy matrix
    # y is a Numpy vector
    assert len(x.shape) == 2
    assert len(y.shape) == 1
    # The 1st dimension of x must be
    # the same as the 0th dimension of y!
    assert x.shape[1] == y.shape[0]

    # This operation returns a vector of 0s
    # with the same shape as y
    z = np.zeros(x.shape[0])
    for i in range(x.shape[0]):
        for j in range(x.shape[1]):
            z[i] += x[i, j] * y[j]
    return z

def naive_matrix_vector_dot(x, y):
    z = np.zeros(x.shape[0])
    for i in range(x.shape[0]):
        z[i] = naive_vector_dot(x[i, :], y)
    return z

def naive_matrix_dot(x, y):
    # x and y are Numpy matrices
    assert len(x.shape) == 2
    assert len(y.shape) == 2
    # The 1st dimension of x must be
    # the same as the 0th dimension of y!
    assert x.shape[1] == y.shape[0]

    # This operation returns a matrix of 0s
    # with a specific shape
    z = np.zeros((x.shape[0], y.shape[1]))
    # We iterate over the rows of x
    for i in range(x.shape[0]):
        # And over the columns of y
        for j in range(y.shape[1]):
            row_x = x[i, :]
            column_y = y[:, j]
            z[i, j] = naive_vector_dot(row_x, column_y)
    return z
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output tensors by aligning them in the following way:

Figure 2.5 Matrix dot product box diagram

x, y and z are pictured as rectangles (literal boxes of coefficients). Because the rows
and x and the columns of y must have the same size, it follows that the width of x must
match the height of y. If you go on to develop new machine learning algorithms, you will
likely be drawing such diagrams a lot.

More generally, you can take the dot product between higher-dimensional tensors,
following the same rules for shape compatibility as outlined above for the 2D case:

(a, b, c, d) . (d,)  (a, b, c)

(a, b, c, d) . (d, e)  (a, b, c, e)

And so on.

A third type of tensor operation that is essential to understand is tensor reshaping.
Although not used in the  layers in our first neural network example, we used itDense

when we pre-processed the digits data before feeding them into our network:

Listing 2.35 MNIST image tensor reshaping

Reshaping a tensor means re-arranging its rows and columns so as to match a target
shape. Naturally the reshaped tensor will have the same total number of coefficients as
the initial tensor. Reshaping is best understood via simple examples:

Listing 2.36 Tensor reshaping examples

2.3.4 Tensor reshaping

train_images = train_images.reshape((60000, 28 * 28))

>>> x = np.array([[0., 1.],
                 [2., 3.],
                 [4., 5.]])
>>> print(x.shape)
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A special case of reshaping that is commonly encountered is the .transposition
"Transposing" a matrix means exchanging its rows and its columns, so that x[i, :]
becomes :x[:, i]

Listing 2.37 Matrix transposition

Because the contents of the tensors being manipulated by tensor operations can be
interpreted as being coordinates of points in some geometric space, all tensor operations
have a geometric interpretation.

For instance, let’s consider addition. We will start from the following vector:
A = [0.5, 1.0]

It is a point in a 2D space:

Figure 2.6 A point in a 2D space

It is common to picture a vector as an arrow linking the origin to the point:

(3, 2)

>>> x = x.reshape((6, 1))
array([[ 0.],
       [ 1.],
       [ 2.],
       [ 3.],
       [ 4.],
       [ 5.]])

 >>> x = x.reshape((2, 3))
 array([[ 0.,  1.,  2.],
        [ 3.,  4.,  5.]])

>>> x = np.zeros((300, 20))  # Creates an all-zeros matrix of shape (300, 20)
>>> x = np.transpose(x)
>>> print(x.shape)
(20, 300)

2.3.5 Geometric interpretation of tensor operations
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Figure 2.7 A point in a 2D space pictured as an arrow

Let’s consider a new point, , which we will add to the previous one.B = [1, 0.25]

This is done geometrically by simply chaining together the vector arrows, with the
resulting location being the vector representing the sum of the previous two vectors:

Figure 2.8 Geometric interpretation of the sum of two vectors

In general, elementary geometric operations such as affine transformations, rotations,
scaling, etc. can be expressed as tensor operations. For instance, a rotation of a 2D vector
by an angle theta can be achieved via dot product with a 2x2 matrix  where R = [u, v] u

and  and both vectors of the plane:  and v u = [cos(theta), sin(theta)] v =

.[-sin(theta), cos(theta)]
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You just learned that neural networks consist entirely in chains of tensors operations, and
that all these tensor operations are really just geometric transformations of the input data.
It follows that you can interpret a neural network as a very complex geometric
transformation in a high-dimensional space, implemented via a long series of simple
steps.

In 3D, the following mental image may prove useful: imagine two sheets of colored
paper, a red one and a blue one. Superpose them. Now crumple them together into a
small paper ball. That crumpled paper ball is your input data, and each sheet of paper is a
class of data in a classification problem. What a neural network (or any other machine
learning model) is meant to do, is to figure out a transformation of the paper ball that
would uncrumple it, so as to make the two classes cleanly separable again. With deep
learning, this would be implemented as a series of simple transformations of the 3D
space, such as those you could apply on the paper ball with your fingers, one movement
at a time.

Uncrumpling paper balls is what all machine learning is about: finding neat
representations for complex, highly folded data manifolds. At this point, you should
already have a pretty good intuition as to why deep learning excels at it: it takes the
approach of incrementally decomposing a very complicated geometric transformation
into a long chain of elementary ones, which is pretty much the strategy a human would
follow to uncrumple a paper ball. Each layer in a deep network applies a transformation
that disentangle the data a little bit—and a deep stack of layers makes tractable an
extremely complicated disentanglement process.

As we saw in the previous section, each neural layer from our first network example
transforms its input data as:

output = relu(dot(W, input) + b)

In this expression,  and  are tensors which are attributes of the layer. They areW b

called the "weights", or "trainable parameters" of the layer (the  and kernel bias

attributes, respectively). These weights contain the information learned by the network
from exposure to training data.

Initially, these weight matrices are filled with small random values (a step called 
). Of course, there is no reason to expect that random initialization relu(dot(W, input)

, when W and b are random, would yield any useful representations. The resulting+ b)

representations are meaningless—but they are a starting point. What comes next, is to
gradually adjust these weights, based on a feedback signal. This gradual adjustment, also
called , is basically the  that  is all about.training learning machine learning

This happens within what is called a , which schematically looks liketraining loop
this:

2.4 The engine of neural networks: gradient-based optimization

2.3.6 A geometric interpretation of deep learning

Repeat as long as needed:
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We eventually end up with a network that has a very low loss on its training data, i.e.
a very low mismatch between predictions  and expected targets : a network thaty_pred y

has "learned" to map its inputs to correct targets. From afar, it may look like magic, but
when you reduce it to elementary steps, it turns out to be really simple.

Step 1 sounds easy enough—just I/O code. Steps 2 and 3 are merely the application
of a handful of tensor operations, so you could implement these steps purely from what
you have learned in the previous section. The difficult part here is how to do step 4, the
update of the weights of the network. Given an individual weight coefficient in the
network, how can we compute whether the coefficient should be increased or decreased,
and by how much?

One naive solution would be to freeze all weights in the network except the one scalar
coefficient considered, and try different values for this coefficient. Let’s say the initial
value of the coefficient is . After the forward pass on a batch of data, the loss of the0.3

network on the batch is . If you change the coefficient’s value to  and re-run the0.5 0.35

forward pass, the loss increases to . But if you lower the coefficient to , the loss0.6 0.25

gets down to . In this case it seems like updating the coefficient by  would0.4 -0.05

contribute to minimizing the loss. This would have to be repeated for all coefficients in
the network.

However, such an approach would be horribly inefficient, since you would need to
compute two forward passes (which are expensive) for every individual coefficient (and
there are many, usually thousands and sometimes up to millions). A much better
approach is to leverage the fact that all operations used in the network are ,differentiable
and compute the  of the loss with regard to the network’s coefficients. We cangradient
them move the coefficients in the direction opposite to the gradient, thus decreasing the
loss.

If you already know what "differentiable" means and what a "gradient" is, you can
skip to the section "Stochastic gradient descent". Otherwise, the two sections below will
help you understand these concepts.

Consider a continuous, smooth function , mapping a real number  to a newf(x) = y x

real number . Because the function is , a small change in  can only result iny continuous x

a small change in —that’s the intuition behind continuity. Let’s say you increase  by ay x

small factor : this results in an small  change to .epsilon_x epsilon_y y

f(x + epsilon_x) = y + epsilon_y

Besides, since our function is "smooth" (i.e. its curve doesn’t have any abrupt angles),

    1) Draw a batch of training samples x and corresponding targets y
    2) Run the network on x (this is called "forward pass"),
        obtain predictions y_pred
    3) Compute the "loss" of the network on the batch,
        a measure of the mismatch between y_pred and y
    4) Update all weights of the network in a way that
        slightly reduces the loss on this batch.

2.4.1 What’s a derivative?
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when  is "small enough", then around a certain point , it is possible toepsilon_x p

approximate  as a linear function of slope , so that  becomes f a epsilon_y a *

:epsilon_x

f(x + epsilon_x) = y + a * epsilon_x

Figure 2.9 Derivative of f in p

Obviously this linear approximation is only valid when x is "close enough" to p.
The slope  is called the "derivative" of  in . If  is negative, it means that a smalla f p a

change of  around  would result in a decrease of  (like in our figure), and if  isx p f(x) a

positive, then a small change in  would result in an increase of . Further, thex f(x)

absolute value of  (the "magnitude" of the derivative) tells us how "fast" this increase ora

decrease would happen.
For every differentiable function  ("differentiable" just means "can be derived",f(x)

e.g. smooth continuous functions can be derived), there exists a derivative function 
 which maps values of  to the slope of the local linear approximation of  in thosef'(x) x f

points. For instance, the derivative of  is , the derivative of cos(x) -sin(x) f(x) = a *

 is , etc.x f'(x) = a

If you are trying to update  by a factor  in order to minimize , andx epsilon_x f(x)

you know the derivative of , then your job is done: the derivative completely describesf

how  evolves as you change . If you want to lower the value of , you just needf(x) x f(x)

to move  by a little bit in the direction opposite to the derivative.x

A "gradient" is the derivative of a tensor operation. It is the generalization of the concept
of derivative to functions of multi-dimensional inputs, i.e. to functions that take tensors
as inputs.

Consider an input vector , a matrix , a target  and a loss function . We use x W y loss W

to compute a target candidate , and we compute the loss, or mismatch, betweeny_pred

the target candidate  and the target :y_pred y

2.4.2 Derivative of a tensor operation: the gradient
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If the data inputs  and  are frozen, then this can be interpreted as a functionx y

mapping values of  to loss values:W

loss_value = f(W)

Let’s say that the current value of  is . Then the derivative of  in the point , is aW W0 f W0

tensor  with the same shape as , where each coefficient gradient(f)(W0) W

 indicates the direction and magnitude of the change in gradient(f)(W0)[i, j]

 you would observe when modifying . That tensor loss_value W0[i, j]

 is the  of the function  in .gradient(f)(W0) gradient f(W) = loss_value W0

We saw earlier that the derivative of a function  of a single coefficient could bef(x)

interpreted as the slope of the curve of . Likewise,  can be interpretedf gradient(f)(W0)

as the tensor describing the  of  around .curvature f(W) W0

For this reason, in much the same way that, for a function , you could lower thef(x)

value of  by moving  by a little bit in the direction opposite to the derivative, with af(x) x

function  of a tensor, you can lower  by moving  in the direction opposite tof(W) f(W) W

the gradient, e.g.  (where  is a small scalingW1 = W0 - step * gradient(f)(W0) step

factor). That simply means "going opposite to the curvature", which intuitively should
get you lower on the curve. Note that the scaling factor  is needed because step

 only approximates the curvature when you are close to , so yougradient(f)(W0) W0

don’t want to get too far away from .W0

Given a differentiable function, it is theoretically possible to find its minimum
analytically: it is known that a function is minimum is a point where the derivative is 0,
so all you would have to do would be to find all the points where in the derivative goes to
0 and check for which of these points the function has the lowest value.

Applied to a neural network, that would mean finding analytically the combination of
weights values that yields the smallest possible loss function. This would be done by
solving the equation:  for . This is a polynomial equation of Ngradient(f)(W) = 0 W

variables, where N is the number of coefficients in the network. While it would be
possible to solve such an equation for for N = 2 or N = 3, it is intractable for real neural
networks, where the number of parameters is never below a few thousands and can often
get to several tens of millions.

So instead, we use the four-step algorithm outlined at the beginning of this section:
we modify the parameters little by little based on the current loss value on a random
batch of data. Since we are dealing with a differentiable function, we can compute its
gradient, which gives us an efficient way to implement step 4: if we update the weights in
the direction opposite to the gradient, the loss will get a little lower every time.

y_pred = dot(W, x)
loss_value = loss(y_pred, y)

2.4.3 Stochastic gradient descent

Repeat as long as needed:
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Easy enough! What we have just described is called "mini-batch Stochastic Gradient
Descent" (minibatch SGD). The term "stochastic" refers to the fact that each batch of
data is drawn at random ("stochastic" is a scientific synonym of "random"). Let’s
visualize what happens in 1D, when our network has only one parameter and we only
have one training sample:

Figure 2.10 SGD down a 1D loss curve (1 learnable parameter).

As you can see from this figure, intuitively it is important to pick a reasonable value
for the  factor. If it’s too small, the descent down the curve will take manystep

iterations, and besides, it could get stuck in a local minimum. If  is too large, yourstep

updates may end up getting your to completely random locations on the curve.
Note that a variant of the mini-batch SGD algorithm would be only draw a single

sample and target at each iteration, rather than drawing a batch of data. This would be
"true" SGD (as opposed to "mini-batch" SGD). Alternatively, going to the opposite
extreme, we could run every step on  data available, which would be called "batchall
SGD". Each update would then be more accurate, but far more expensive. The efficient
compromise between these two extremes is simply to use mini-batches of reasonable
size.

Albeit the figure above illustrates gradient descent in a 1D parameter space, in
practice we operate gradient descent in highly-dimensional spaces: every single weight
coefficient in a neural network is a free dimension in the space, and there may be tens of
thousands or even millions of them. To help you build intuition about loss surfaces, you

    1) Draw a batch of training samples x and corresponding targets y
    2) Run the network on x (this is called "forward pass"),
        obtain predictions y_pred
    3) Compute the "loss" of the network on the batch,
        a measure of the mismatch between y_pred and y
    4.1) Compute the gradient of the loss with regard to
        the parameters of the network (this is called "backward pass")
    4.2) Move the parameters a little in the direction opposite to
        the gradient, e.g. W -= step * gradient,
        thus lowering the loss on the batch by a bit.
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could also visualize gradient descent along a 2D loss surface, as in Figure 2.11. But we
cannot possibly visualize what the actual process of training a neural network looks
like—we cannot represent a 1,000,000-dimensional space in a way that makes sense to
humans. As such, it is good to keep in mind that the intuitions we develop through these
low-dimensional representations may not always be accurate in practice. This has
historically been a source of issues in the world of deep learning research.

Figure 2.11 Gradient descent down a 2D loss surface (2 learnable parameters).

Additionally, there exists multiple variants of SGD that differ by taking into account
previous weight updates when computing the next weight update, rather than just looking
at the current value of the gradients. There is, for instance, "SGD with momentum", but
also "Adagrad", "RMSprop", and several others. Such variants are known as
"optimization methods" or "optimizers". In particular, the concept of , whichmomentum
is used is many of these variants, deserves your attention. Momentum addresses two
issues with SGD: convergence speed, and local minima. Consider the following curve of
a loss as a function of a network parameter:
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Figure 2.12 A local minimum and a global minimum

As you can see, around a certain parameter value, there is a "local minimum": around
that point, going left would result in the loss increasing, but so would going right. If the
parameter considered was being optimized via SGD with a small learning rate, then the
optimization process would get stuck at the local minimum, instead of making its way to
the global minimum.

A way to avoid such issues is to use "momentum", which draws inspiration from
physics. A useful mental image here would be to imagine the optimization process as a
small ball rolling down the loss curve. If it has enough "momentum", the ball would not
get stuck in a ravine and would end up at the global minimum. Momentum is
implemented by moving the ball at each based not only on the current slope value (i.e.
current acceleration) but also based on the current velocity (resulting from past
acceleration). In practice, this means updating the parameter  based not only on thew

current gradient value but also based on the previous parameter update, such as in this
naive implementation:

Listing 2.38 A naive implementation of gradient descent with momentum

In the above algorithm we just casually assumed that since our function was
differentiable, we could explicitly compute its derivative. In practice, a neural network
function consists of many tensor operations chained together, each of them having a
simple, known derivative: for instance, this would be a network  composed of threef

tensor operations , , and , with weight matrices ,  and :a b c W1 W2 W3

past_velocity = 0.
momentum = 0.1  # A constant momentum factor
while loss > 0.01:  # Optimization loop
    w, loss, gradient = get_current_parameters()
    velocity = past_velocity * momentum + learning_rate * gradient
    w = w + momentum * velocity - learning_rate * gradient
    past_velocity = velocity
    update_parameter(w)

2.4.4 Chaining derivatives: the backpropagation algorithm
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f(W1, W2, W3) = a(W1, b(W2, c(W3)))

Calculus tells us that such a chain of functions can be derived using the following
identity, called the "chain rule": . Applying the chainf(g(x)) = f'(g(x)) * g'(x)

rule to the computation of the gradient values of a neural network gives rise to an
algorithm called "backpropagation" (also sometimes called "reverse-mode
differentiation"). Backpropagation starts with the final loss value and works backwards
from the top layers to the bottom layers, applying the chain rule to compute the
contribution that each parameter had in the loss value.

Nowadays and for years to come, people implement their networks in modern
frameworks which are capable of "symbolic differentiation", such as TensorFlow. It
means that, given a chain of operations with a known derivative, they can compute a
gradient  for the chain (by applying the chain rule) which maps networkfunction
parameter values to gradient values. When you have access to such a function, the
"backward pass" is reduced to a call to this gradient function. Thanks to symbolic
differentiation, you will never have to implement the backpropagation algorithm by hand.
For this reason, we won’t waste your time and focus on deriving the exact formulation of
the backpropagation algorithm in these pages. All you need is to have a good intuition for
how gradient-based optimization works.

At this point, you know everything there is to know about how neural networks "learn".
"Learning" simply means a finding a combination of model parameters that minimizes a
loss function for a given set of training data samples and their corresponding targets. This
is done by drawing random batches of data samples and their targets, and computing the 

 of the network parameters with respect to the loss on the batch. The networkgradient
parameters are then moved "a bit" (the magnitude of the move is defined by the learning

) in the direction opposite to the gradient. The whole process is made possible by therate
fact that neural networks are chains of differentiable tensor operations, and thus it is
possible to apply the  of derivation to find the gradient function mapping thechain rule
current parameters and current batch of data to a gradient value.

Two key concepts that you will see come up a lot in the future chapters are that of
"loss" and "optimizer". These are the two things you need to define before you start
feeding data into a network. The "loss" is the quantity that you will attempt to minimize
during training, so it should represent a measure of success on the task you are trying to
solve. The "optimizer" specifies the exact way in which the gradient of the loss will be
used to update parameters: for instance, it could be the "RMSprop" optimizer, "SGD with
momentum", and so on.

2.4.5 In summary: training neural networks using gradient descent
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You’ve reached the end of this chapter, and you should already have a general
understanding of what is going on behind the scenes in a neural network. Let’s go back to
our first example and review each piece of it in the light of what you’ve learned in the
previous three sections.

This was our input data:

Listing 2.39 MNIST input data

Now you understand that our input images are stored in Numpy tensors, which are
here formatted as  tensors of shape  (training data) and float32 (60000, 784) (10000,

 (test data) respectively.784)

This was our network:

Listing 2.40 Our network

Now you understand that this network consists of a chain of two  layers, thatDense

each layer just applies a few simple tensor operations to the input data, and that these
operations involve weight tensors. Weights tensors, which are attributes of the layers, are
where the "knowledge" of the network persists.

This was the network compilation step:

Listing 2.41 The compilation step

Now you understand that  is the loss function which iscategorical_crossentropy

used as feedback signal for learning our weight tensors, that which the training phase will
attempt to minimize. You also understand that this lowering of the loss happens via
mini-batch stochastic gradient descent. The exact rules governing our specific use of
gradient descent are defined by the  optimizer passed as the first argument.rmsprop

Finally, this was the training loop:

2.5 Looking back on our first example

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))

network.compile(optimizer='rmsprop',
                loss='categorical_crossentropy',
                metrics=['accuracy'])
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Listing 2.42 The training loop

Now you understand what is going on when you call : the network will startfit

iterating on the training data in mini-batches of 128 samples, 5 times over (each iteration
over all of the training data is called an "epoch"). At each iteration, the network will
compute the gradients of the weights with regard to the loss on the batch, and update the
weights accordingly. After these 5 epochs, the network will have performed 2,345
gradient updates in total (469 per epoch), and the loss of the network will be sufficiently
low, so that your network will be capable of classifying handwritten digits with high
accuracy.

At this point, you already know most of what there is to know about neural networks.

network.fit(train_images, train_labels, epoch=5, batch_size=128)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and 
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders. 

https://forums.manning.com/forums/deep-learning-with-python

50

Licensed to Bram van Ginneken <bramvanginneken@gmail.com>

https://forums.manning.com/forums/deep-learning-with-python


3
This chapter is designed to get you started with using neural networks to solve real
problems. You will consolidate the knowledge you gained from our very first practical
example, and you apply what you have learned to three new problems covering the three
most common use cases of neural networks: binary classification, multi-class
classification, and scalar regression.

In this chapter, you will:

Take a closer look at the core components of neural networks we introduced in our first
example: layers, networks, objective functions and optimizers.
Get a quick introduction to Keras, the Python deep learning library which we will use
throughout the book.
Set up a workstation for deep learning, with TensorFlow, Theano, Keras, and GPU
support.
Dive into three introductory examples of how to use neural networks to solve real
problems:

classifying movie reviews into positive and negative ones (binary classification).
classifying news wires by their topic (multi-class classification).
estimating the price of a house given real estate data (regression).

By the end of this chapter, you will already be able to use neural networks to solve
simple machine problems such as classification or regression over vector data. You will
then be ready to start building a more principled and theory-driven understanding of
machine learning, in the next chapter.

As we saw in the previous chapters, training a neural network revolves around the
following objects:

Layers, which are combined into a  (or ).network model
The  and corresponding .input data targets
The , which defines the feedback signal which is used for learning.loss function
The , which determines how the learning proceeds.optimizer

You can visualize their interaction in the following way: the , composed of network

Getting started with neural networks

3.1 Anatomy of a neural network
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 chained together, maps the  into . The  thenlayers input data predictions loss function
compares these predictions to the , producing a loss value, a measure how well thetargets
predictions of the network match what was expected. The  uses this loss valueoptimizer
to update the weights of the network.

Figure 3.1 Relationship between network, layers, loss function and optimizer

Let’s take a closer look at layers, networks, loss functions and optimizers.

The fundamental data structure in neural networks is the "layer", to which you have
already been introduced in the previous chapter. A layer is a data-processing module that
takes as input one or more tensors, and outputs one or more tensors. Some layers are
stateless, but more frequently layers have a state: the layer’s "weights", one or several
tensors learned with stochastic gradient descent, and which together contain the
"knowledge" of the network.

Different layers are appropriate for different tensor formats and different types of data
processing. For instance, simple vector data, stored in 2D tensors of shape (samples,

, is often processed by "fully-connected" layers, also calledfeatures)

"densely-connected" or "dense" layers (the  class in Keras). Sequence data, storedDense

in 3D tensors of shape , is typically processed by(samples, timesteps, features)

"recurrent" layers such as a  layer. Image data, stored in 4D tensors, is usuallyLSTM

processed by 2D convolution layers ( ).Conv2D

You can think of layers as the Lego bricks of deep learning, a metaphor which is
made explicit by frameworks like Keras. Building deep learning models in Keras is done
by clipping together compatible layers to form useful data transformation pipelines. The
notion of "layer compatibility" here refers specifically to the fact that every layer will
only accept input tensors of a certain shape, and will return output tensors of a certain
shape. Consider the following example:

3.1.1 Layers: the Lego bricks of deep learning
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Listing 3.1 A layer

We are creating a layer that will only accept as input 2D tensors where the first
dimension is  (the zero-th dimension, the batch dimension, is unspecified and thus784

any value would be accepted). And this layer will return a tensor where the first
dimension has been transformed to be :32

Listing 3.2 Our layer’s output shape

Thus this layer can only be connected to an upstream that expects 32-dimensional
vectors as its input. When using Keras you don’t have to worry about compatibility,
because the layers that you add to your models are dynamically built to match the shape
of the incoming layer. For instance, if you write the following:

Listing 3.3 Automatic shape inference in action

The second layer did not receive an input shape argument—instead it automatically
inferred its input shape as being the output shape of the layer that came before.

A deep learning model is simply a directed acyclic graph of layers. The most common
instance would be a linear stack of layers, mapping a single input to a single output.

However, as you move forward, you will be exposed to a much broader variety of
network topologies. Some common ones include:

Two-branch networks
Multi-head networks
Inception blocks

The topology of a network defines an . You may remember that inhypothesis space
chapter one, we defined machine learning as "searching for useful representations of
some input data, within a pre-defined space of possibilities, using guidance from some
feedback signal". By choosing a network topology, you have constrained your "space of
possibilities" (hypothesis space) to a specific series of tensor operations, mapping input

from keras import layers

# A dense layer with 32 output units
layer = layers.Dense(32, input_shape=(784,))

>>> layer.output_shape
(None, 32)

from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(32, input_shape=(784,)))
model.add(layers.Dense(32))

3.1.2 Models: networks of layers
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data to output data. What you will then be "searching" for, is a good set of values for the
weight tensors involved in these tensor operations.

Picking the right network architecture is more an art than a science, and while there
are some best practices and principles you can rely on, only practice can really help you
become a proper neural network architect. The next few chapters will both teach you
explicit principles for building neural networks, and will help you develop intuition as to
what works or doesn’t work for specific problems.

Once the network architecture is defined, we still have to pick two more things:

The loss function (or objective function), the quantity that will be minimized during
training. It represents a measure of success on the task at hand.
The optimizer, which determines how the network will be updated based on the loss
function. It implements a specific variant of stochastic gradient descent.

A neural network that has multiple outputs may have multiple loss functions (one per
output), however the gradient descent process must be based on a  scalar loss value,single
so what happens for multi-loss networks is that all losses are combined (via averaging)
into a single scalar quantity.

Picking the right objective function for the right problem is extremely important: your
network will take any shortcut it can to minimize it, so if the objective doesn’t fully
correlate with actual success on the task at hand, your network will end up doing things
you may not have wanted. Imagine a stupid omnipotent AI trained via stochastic gradient
descent, with the poorly-chosen objective function of "maximizing the average
well-being of all humans alive". To make its job easier, this AI might choose to kill all
humans except a few, and focus on the well-being on the remaining ones—since average
well-being is not affected by how many humans are left. That might not be what you
intended! Just remember that all neural networks you build will be just as ruthless in
lowering their loss function—so choose the objective wisely.

Thankfully, when it comes to common problems such as classification, regression, or
sequence predictions, there are simple guidelines that you can follow to choose the right
loss: for instance, you will use binary crossentropy for a two-class classification problem,
categorical crossentropy for a many-class classification problem, mean squared error for
a regression problem, CTC for a sequence learning problem… only when you are
working on truly new research problems will you have to develop your own objective
functions.

In the next few chapters, we will detail explicitly which loss functions to pick, for a
wide range of common tasks.

3.1.3 Loss functions and optimizers: keys to configuring the learning
process
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Throughout this book, all of our code examples use Keras. Keras is a deep learning
framework for Python which provides a convenient way to define and train almost any
kind of deep learning model. Keras was initially developed for researchers, aiming at
enabling fast experimentation.

Keras has the following key features:

It allows the same code to run on CPU or on GPU, seamlessly.
It has a user-friendly API which makes it easy to quickly prototype deep learning models.
It has build-in support for convolutional networks (for computer vision), recurrent
networks (for sequence processing), and any combination of both.
It supports arbitrary network architectures: multi-input or multi-output models, layer
sharing, model sharing, etc. This means that Keras is appropriate for building essentially
any deep learning model, from a generative adversarial network to a neural Turing
machine.

Keras is distributed under the permissive MIT license, which means that it can be
freely used in commercial projects. It is compatible with any version of Python from 2.7
to 3.6 (as of mid-2017). Its documentation is available at .keras.io

Keras has well over a hundred of thousands of users, ranging from academic
researchers and engineers at both startups and large companies, to graduate students and
even hobbyists. Keras is used at Google, Netflix, Uber, CERN, Yelp, and at hundreds of
startups working on a wide range of problems. Keras is also very a popular framework on
Kaggle, the machine learning competition website, where almost every recent deep
learning competition has been won using Keras models.

Figure 3.2 Google web search interest for different deep learning frameworks over time

3.2 Introduction to Keras
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Keras is a model-level library, providing high-level building blocks for developing deep
learning models. It does not handle itself low-level operations such as tensor
manipulation and differentiation. Instead, it relies on a specialized, well-optimized tensor
library to do so, serving as the "backend engine" of Keras. Rather than picking one single
tensor library and making the implementation of Keras tied to that library, Keras handles
the problem in a modular way, and several different backend engines can be plugged
seamlessly into Keras. Currently, the three existing backend implementations are the 

 backend, the  backend, and the  backend. In the future, it isTensorFlow Theano CNTK
likely that Keras will be extended to work with even more deep learning execution
engines.

TensorFlow, CNTK, and Theano are some of the main platforms for deep learning
today. Theano is developed by the MILA lab at , whileUniversité de Montréal
TensorFlow is developed by Google, and CNTK is developed by Microsoft. Any piece of
code that you write with Keras can be run with any of these backends without having to
change anything to the code: you can seamlessly switch between the two during
development, which often proves useful, for instance if one of these backends proves to
be faster for a specific task. By default, I would recommend using the TensorFlow
backend for most of your deep learning needs.

Via TensorFlow (or Theano, or CNTK), Keras is able to run on both CPU and GPU
seamlessly. When running on CPU, TensorFlow is itself wrapping a low-level library for
tensor operations called Eigen. On GPU, TensorFlow wraps a library of well-optimized
deep learning operations called cuDNN, developed by NVIDIA.

Figure 3.3 The deep learning software and hardware stack.

You’ve already seen one example of a Keras model: our MNIST example. The typical
Keras workflow looks just like our example:

Define your training data: input tensors and target tensors.
Define a network of layers (or ) that maps your inputs to your targets.model
Configure the learning process by picking a loss function, an optimizer, and some metrics
to monitor.
Iterate on your training data by calling the  method of your model.fit

3.2.1 Keras, TensorFlow, Theano, and CNTK

3.2.2 Developing with Keras: a quick overview
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There are two ways to define a model: using the  class (only for linearSequential

stacks of layers, which is the most common network architecture by far), and the
"functional API" (for directed acyclic graphs of layers, allowing to build completely
arbitrary architectures).

As a refresher, here’s a two-layer model defined using the  class (noteSequential

that we are passing the expected shape of the input data to the first layer):

Listing 3.4 A network definition using the Sequential model

And here’s the same model defined using the functional API. With this API, you are
manipulating the data tensor that the model processes, and applying layers to this tensor
as if they were functions. A detailed guide to what you can with the functional API can
be found in Chapter 7. Until Chapter 6, we will only be using the  class inSequential

our code examples.

Listing 3.5 A network definition using the functional API

Once your model architecture is defined, it doesn’t matter whether you used a 
 model or the functional API: all following steps are the same.Sequential

The learning process is configured at the "compilation" step, where you specify the
optimizer and loss function(s) that the model should use, as well as the metrics you want
to monitor during training. Here’s an example with a single loss function, by far the most
common case:

Listing 3.6 Defining a loss function and an optimizer

Lastly, the learning process itself consists of passing Numpy arrays of input data (and
the corresponding target data) to the model via the  method, similarly to what youfit()

would do in Scikit-Learn or several other machine learning libraries:

from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(32, activation='relu', input_shape=(784,)))
model.add(layers.Dense(10, activation='softmax'))

input_tensor = layers.Input(shape=(784,))
x = layers.Dense(32, activation='relu')(input_tensor)
output_tensor = layers.Dense(10, activation='softmax')(x)

model = models.Model(input=input_tensor, output=output_tensor)

from keras import optimizers

model.compile(optimizer=optimizers.RMSprop(lr=0.001),
              loss='mse',
              metrics=['accuracy'])
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Listing 3.7 Training a model

Over the next few chapters, you will build a solid intuition as to what type of network
architectures work for different kinds of problems, how to pick the right learning
configuration, and how to tweak a model until it gives you the results you want to see.
We’ll start with three basic examples in the next three sections: a two-class classification
example, a many-class classification example, and a regression example.

Before you can get started developing deep learning applications, you need to set up your
workstation. It is highly recommended, though not strictly necessary, to run deep
learning code on a modern NVIDIA GPU. Some applications, in particular image
processing with convolutional networks and sequence processing with recurrent neural
networks, will be excruciatingly slow on CPU, even with a fast multi-core CPU. And
even for applications that can realistically be run on CPU, you would generally observe a
5x to 10x speedup by using a modern GPU. If you don’t want to install a GPU on your
machine, you could alternatively consider running your experiments on a AWS EC2
GPU instance, or on Google Cloud Platform. But note that that cloud GPU instances can
get quite expensive over time.

Also, whether running locally or in the cloud, it is better for you to be using a Unix
workstation. While it is technically possible to use Keras on Windows (all three Keras
backends support Windows), we don’t recommend it. In the installation instructions we
provide as an appendix to this book, we will consider an Ubuntu machine. If you are a
Windows user, the simplest solution to get everything running is to set up an Ubuntu dual
boot on your machine. It may seem like a hassle, but using Ubuntu will save you a lot of
time and a lot of trouble in the long run.

Note that in order to use Keras, you need to install Theano,  CTNK,  TensorFlowor or
(or all of them, if you want to be able to switch back and forth between the three
backends). In this book, we will focus on TensorFlow, with some light instructions
relative to Theano. We will not cover CNTK.

3.3 Setting up a deep learning workstation

model.fit(input_tensor, target_tensor, batch_size=128, epochs=10)

3.3.1 Preliminary considerations
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Jupyter notebooks are a great way to run deep learning experiments, in particular the
many code examples contained in this book. They are widely used in the data science and
machine learning community. A Jupyter Notebook is a file generated by the Jupyter app,
which you can edit in your browser. It mixes the ability to execute Python code, together
with rich text editing capabilities for annotating what you are doing. A Notebook also
allows you to break up long experiments into smaller "cells" which can be executed
independently, which makes development interactive, and means that you don’t have to
re-run all of your previous code in case something goes wrong late in an experiment.

You can find more information about Jupyter at .jupyter.org

We recommend using Jupyter notebooks to get started with Keras, albeit that is not a
requirement: you could also be running standalone Python scripts, or you could be
running code from within an IDE such as PyCharm. We are making all code examples in
this book available as open-source Notebooks, downloadable online.

To get started in practice, we recommend one of the following two options:

Use the official EC2 "Deep Learning" AMI and run Keras experiments as Jupyter
notebooks on EC2.

Do this preferably if you do not already have a GPU on your local machine.
We provide a step by step guide in the appendix "Running Jupyter notebooks on a EC2
GPU instance".

Install everything from scratch on a local Unix workstation. You can then either run local
Jupyter Notebooks or a regular Python codebase.

Do this if you already have a high-end NVIDIA GPU.
We provide a step by step guide in the appendix "Installing Keras and its dependencies
on Unix".

Let’s take a closer look at some of the compromises involved in picking one option
over the other.

If you don’t already have a GPU that you can use for deep learning (a recent, high-end
NVIDIA GPU), then running deep learning experiments in the cloud is a simple,
low-cost way for you to get started without having to buy any additional hardware. If you
are using Jupyter notebooks, the experience of running in the cloud is no different from
running locally. As of mid-2017, the cloud offering that makes it easiest to get started
with deep learning is definitely AWS EC2. In appendix, we provide a step-by-step guide
to start running Jupyter notebooks on a EC2 GPU instance.

However, if you are a heavy user of deep learning, this setup is not sustainable in the
long term—or even past a few weeks. EC2 instances are expensive: the instance type we
recommend in our appendix, the  instance, which will not provide you withp2.xlarge

much power, alreadys costs $0.90 per hour (as of mid-2017). Meanwhile, a solid

3.3.2 Jupyter notebooks: the prefered way to run deep learning experiments

3.3.3 Getting Keras running: two options

3.3.4 Running deep learning jobs in the cloud: pros and cons
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consumer-class GPU will cost you somewhere between $1,000 and $1,500—a price that
has been fairly stable over time, even as the specs of these GPUs keep improving. If you
are serious about deep learning, you should set up a local workstation with one or more
GPUs.

In short: EC2 is a great way to get started. You could follow the code examples in this
book entirely on a EC2 GPU instance. But if you are going to be a power user of deep
learning, then get your own GPUs.

If you are going to buy a GPU, which one should you choose? The first thing to note it
that it would have to be a NVIDIA GPU. NVIDIA is the only graphics computing
company to have heavily invested into deep learning so far, and modern deep learning
frameworks can only run on NVIDIA cards.

As of mid-2017, I would recommend the NVIDIA Titan Xp as the best card on the
market for deep learning. For lower budgets, you might want to consider the GTX 1060.
If you are reading these pages in 2018 or later, do take the time to look online for fresher
recommendations, as new models come out every year.

From this section onwards, we will assume that you have access to a machine with
Keras and its dependencies installed—preferably with GPU support. Make sure you get
this step done before you go any further. Go through our step-by-step guides provided in
appendix, and look online if you need further help. There is no shortage of tutorials on
how to install Keras and common deep learning dependencies.

We can now start diving into practical Keras examples.

Two-class classification, or binary classification, may be the most widely applied kind of
machine learning problem. In this example, we will learn to classify movie reviews into
"positive" reviews and "negative" reviews, just based on the text content of the reviews.

We’ll be working with "IMDB dataset", a set of 50,000 highly-polarized reviews from
the Internet Movie Database. They are split into 25,000 reviews for training and 25,000
reviews for testing, each set consisting in 50% negative and 50% positive reviews.

Why do we have these two separate training and test sets? You should never test a
machine learning model on the same data that you used to train it! Just because a model
performs well on its training data doesn’t mean that it will perform well on data it has
never seen, and what you actually care about is your model’s performance on new data
(since you already know the labels of your training data—obviously you don not need
your model to predict those). For instance, it is possible that your model could end up
merely  a mapping between your training samples and their targets—whichmemorizing
would be completely useless for the task of predicting targets for data never seen before.
We will go over this point in much more detail in the next chapter.

Just like the MNIST dataset, the IMDB dataset comes packaged with Keras. It has

3.4 Classifying movie reviews: a binary classification example

3.3.5 What is the best GPU for deep learning?

3.4.1 The IMDB dataset
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already been preprocessed: the reviews (sequences of words) have been turned into
sequences of integers, where each integer stands for a specific word in a dictionary.

The following code will load the dataset (when you run it for the first time, about
80MB of data will be downloaded to your machine):

Listing 3.8 Loading the IMDB dataset

The argument  means that we will only keep the top 10,000 mostnum_words=10000

frequently occurring words in the training data. Rare words will be discarded. This
allows us to work with vector data of manageable size.

The variables  and  are lists of reviews, each review being atrain_data test_data

list of word indices (encoding a sequence of words).  and train_labels test_labels

are lists of 0s and 1s, where 0 stands for "negative" and 1 stands for "positive":

Listing 3.9 A look at the training data and labels

Since we restricted ourselves to the top 10,000 most frequent words, no word index
will exceed 10,000:

Listing 3.10 A look at the training data

For kicks, here’s how you can quickly decode one of these reviews back to English
words:

Listing 3.11 Decoding the integer sequences back into sentences

from keras.datasets import imdb

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

>>> train_data[0]
[1, 14, 22, 16, ... 178, 32]

>>> train_labels[0]
1

>>> max([max(sequence) for sequence in train_data])
9999

# word_index is a dictionary mapping words to an integer index
word_index = imdb.get_word_index()
# We reverse it, mapping integer indices to words
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
# We decode the review; note that our indices were offset by 3
# because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown".
decoded_review = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
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We cannot feed lists of integers into a neural network. We have to turn our lists into
tensors. There are two ways we could do that:

We could pad our lists so that they all have the same length, and turn them into an integer
tensor of shape , then use as first layer in our network a(samples, word_indices)
layer capable of handling such integer tensors (the  layer, which we will coverEmbedding
in detail later in the book).
We could one-hot-encode our lists to turn them into vectors of 0s and 1s. Concretely, this
would mean for instance turning the sequence  into a 10,000-dimensional vector[3, 5]
that would be all-zeros except for indices 3 and 5, which would be ones. Then we could
use as first layer in our network a  layer, capable of handling floating point vectorDense
data.

We will go with the latter solution. Let’s vectorize our data, which we will do
manually for maximum clarity:

Listing 3.12 Encoding the integer sequences into a binary matrix

Here’s what our samples look like now:

Listing 3.13 An encoded sample

We should also vectorize our labels, which is straightforward:

Listing 3.14 Encoding the labels

Now our data is ready to be fed into a neural network.

3.4.2 Preparing the data

import numpy as np

def vectorize_sequences(sequences, dimension=10000):
    # Create an all-zero matrix of shape (len(sequences), dimension)
    results = np.zeros((len(sequences), dimension))
    for i, sequence in enumerate(sequences):
        results[i, sequence] = 1.  # set specific indices of results[i] to 1s
    return results

# Our vectorized training data
x_train = vectorize_sequences(train_data)
# Our vectorized test data
x_test = vectorize_sequences(test_data)

>>> x_train[0]
array([ 0.,  1.,  1., ...,  0.,  0.,  0.])

# Our vectorized labels
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')
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Our input data is simply vectors, and our labels are scalars (1s and 0s): this is the easiest
setup you will ever encounter. A type of network that performs well on such a problem
would be a simple stack of fully-connected ( ) layers with  activations: Dense relu

Dense(16, activation='relu')

The argument being passed to each  layer (16) is the number of "hidden units"Dense

of the layer. What’s a hidden unit? It’s a dimension in the representation space of the
layer. You may remember from the previous chapter that each such  layer with a Dense

 activation implements the following chain of tensor operations:relu

output = relu(dot(W, input) + b)

Having 16 hidden units means that the weight matrix  will have shape W

, i.e. the dot product with  will project the input data onto a(input_dimension, 16) W

16-dimensional representation space (and then we would add the bias vector  and applyb

the  operation). You can intuitively understand the dimensionality of yourrelu

representation space as "how much freedom you are allowing the network to have when
learning internal representations". Having more hidden units (a higher-dimensional
representation space) allows your network to learn more complex representations, but it
makes your network more computationally expensive and may lead to learning unwanted
patterns (patterns that will improve performance on the training data but not on the test
data).

There are two key architecture decisions to be made about such stack of dense layers:

How many layers to use.
How many "hidden units" to chose for each layer.

In the next chapter, you will learn formal principles to guide you in making these
choices. For the time being, you will have to trust us with the following architecture
choice: two intermediate layers with 16 hidden units each, and a third layer which will
output the scalar prediction regarding the sentiment of the current review. The
intermediate layers will use  as their "activation function", and the final layer willrelu

use a sigmoid activation so as to output a probability (a score between 0 and 1, indicating
how likely the sample is to have the target "1", i.e. how likely the review is to be
positive). A  (rectified linear unit) is a function meant to zero-out negative valuesrelu

(see Figure 3.4) while a sigmoid "squashes" arbitrary values into the  interval,[0, 1]

(see Figure 3.5), thus outputting something that can be interpreted as a probability.

3.4.3 Building our network
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Figure 3.4 The Rectified Linear Unit function

Figure 3.5 The sigmoid function

Here’s what our network looks like:

Figure 3.6 Our 3-layer network
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And here’s the Keras implementation, very similar to the MNIST example you saw
previously:

Listing 3.15 Our model definition

NOTE Note: What are activation functions and why are they
necessary?

Without an activation function like  (also called a ), our relu non-linearity
 layer would consist of two linear operations, a dot product and anDense

addition.

output = dot(W, input) + b

So the layer could only learn  (affinelinear transformations
transformations) of the input data, i.e. the  of the layerhypothesis space
would be the set of all possible linear transformations of the input data
into a 16-dimensional space. Such an hypothesis space is too restricted,
and wouldn’t benefit from multiple layers of representations, because a
deep stack of linear layers would still implement a linear operation: adding
more layers wouldn’t extend the hypothesis space.

In order to get access to a much richer hypothesis space that would
benefit from deep representations, we need a non-linearity, or activation
function.  is the most popular activation function in deep learning, butrelu

there are many other candidates, which all come in similarly strange
names such as , , etc.prelu elu

Lastly, we need to pick a loss function and an optimizer. Since we are facing a binary
classification problem and the output of our network is a probability (we end our network
with a single-unit layer with a sigmoid activation), is it best to use the 

 loss. It isn’t the only viable choice: you could use, for instance, binary_crossentropy

. But crossentropy is usually the best choice when you are dealingmean_squared_error

with models that output probabilities. Crossentropy is a quantity from the field of
Information Theory, that measures the "distance" between probability distributions, or in
our case, between the ground-truth distribution and our predictions.

Here’s the step where we configure our model with the  optimizer and the rmsprop

 loss function. Note that we will also monitor accuracy duringbinary_crossentropy

training.

Listing 3.16 Compiling our model

from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
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We are passing our optimizer, loss function and metrics as strings, which is possible
because ,  and  are packaged as part of Keras.rmsprop binary_crossentropy accuracy

Sometimes you may want to configure the parameters of your optimizer, or pass a
custom loss function or metric function. This former can be done by passing an optimizer
class instance as the  argument:optimizer

Listing 3.17 Configuring the optimizer

The latter can be done by passing function objects as the  or  arguments:loss metrics

Listing 3.18 Using custom losses and metrics

In order to monitor during training the accuracy of the model on data that it has never
seen before, we will create a "validation set" by setting apart 10,000 samples from the
original training data:

Listing 3.19 Setting aside a validation set

We will now train our model for 20 epochs (20 iterations over all samples in the 
 and  tensors), in mini-batches of 512 samples. At this same time wex_train y_train

will monitor loss and accuracy on the 10,000 samples that we set apart. This is done by
passing the validation data as the  argument:validation_data

Listing 3.20 Training our model

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])

from keras import optimizers

model.compile(optimizer=optimizers.RMSprop(lr=0.001),
              loss='binary_crossentropy',
              metrics=['accuracy'])

from keras import losses
from keras import metrics

model.compile(optimizer=optimizers.RMSprop(lr=0.001),
              loss=losses.binary_crossentropy,
              metrics=[metrics.binary_accuracy])

3.4.4 Validating our approach

x_val = x_train[:10000]
partial_x_train = x_train[10000:]

y_val = y_train[:10000]
partial_y_train = y_train[10000:]

history = model.fit(partial_x_train,
                    partial_y_train,
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On CPU, this will take less than two seconds per epoch—training is over in 20
seconds. At the end of every epoch, there is a slight pause as the model computes its loss
and accuracy on the 10,000 samples of the validation data.

Note that the call to  returns a  object. This object has amodel.fit() History

member , which is a dictionary containing data about everything that happenedhistory

during training. Let’s take a look at it:

Listing 3.21 The  dictionaryhistory

It contains 4 entries: one per metric that was being monitored, during training and
during validation. Let’s use Matplotlib to plot the training and validation loss side by
side, as well as the training and validation accuracy:

Listing 3.22 Plotting the training and validation loss

                    epochs=20,
                    batch_size=512,
                    validation_data=(x_val, y_val))

>>> history_dict = history.history
>>> history_dict.keys()
[u'acc', u'loss', u'val_acc', u'val_loss']

import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

# "bo" is for "blue dot"
plt.plot(epochs, loss, 'bo', label='Training loss')
# b is for "solid blue line"
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()
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Figure 3.7 Training and validation loss

Listing 3.23 Plotting the training and validation accuracy

Figure 3.8 Training and validation accuracy

The dots are the training loss and accuracy, while the solid lines are the validation
loss and accuracy. Note that your own results may vary slightly due to a different random
initialization of your network.

As you can see, the training loss decreases with every epoch and the training accuracy
increases with every epoch. That’s what you would expect when running gradient
descent optimization—the quantity you are trying to minimize should get lower with
every iteration. But that isn’t the case for the validation loss and accuracy: they seem to

plt.clf()   # clear figure
acc_values = history_dict['acc']
val_acc_values = history_dict['val_acc']

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()
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peak at the fourth epoch. This is an example of what we were warning against earlier: a
model that performs better on the training data isn’t necessarily a model that will do
better on data it has never seen before. In precise terms, what you are seeing is
"overfitting": after the second epoch, we are over-optimizing on the training data, and we
ended up learning representations that are specific to the training data and do not
generalize to data outside of the training set.

In this case, to prevent overfitting, we could simply stop training after three epochs.
In general, there is a range of techniques you can leverage to mitigate overfitting, which
we will cover in the next chapter.

Let’s train a new network from scratch for four epochs, then evaluate it on our test
data:

Listing 3.24 Re-training a model from scratch

Listing 3.25 Our final results

Our fairly naive approach achieves an accuracy of 88%. With state-of-the-art
approaches, one should be able to get close to 95%.

After having trained a network, you will want to use it in a practical setting. You can
generate the likelihood of reviews being positive by using the  method:predict

Listing 3.26 Generating predictions for new data

As you can see, the network is very confident for some samples (0.99 or more, or
0.01 or less) but less confident for others (0.6, 0.4).

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=4, batch_size=512)
results = model.evaluate(x_test, y_test)

>>> results
[0.2929924130630493, 0.88327999999999995]

3.4.5 Using a trained network to generate predictions on new data

>>> model.predict(x_test)
[[ 0.98006207]
 [ 0.99758697]
 [ 0.99975556]
 ...,
 [ 0.82167041]
 [ 0.02885115]
 [ 0.65371346]]
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We were using 2 hidden layers. Try to use 1 or 3 hidden layers and see how it affects
validation and test accuracy.
Try to use layers with more hidden units or less hidden units: 32 units, 64 units…
Try to use the  loss function instead of .mse binary_crossentropy

Try to use the  activation (an activation that was popular in the early days of neuraltanh
networks) instead of .relu

These experiments will help convince you that the architecture choices we have made are
all fairly reasonable, although they can still be improved!

Here’s what you should take away from this example:

There’s usually quite a bit of preprocessing you need to do on your raw data in order to
be able to feed it—as tensors—into a neural network. In the case of sequences of words,
they can be encoded as binary vectors—but there are other encoding options too.
Stacks of  layers with  activations can solve a wide range of problemsDense relu
(including sentiment classification), and you will likely use them frequently.
In a binary classification problem (two output classes), your network should end with a 

 layer with 1 unit and a  activation, i.e. the output of your network shouldDense sigmoid
be a scalar between 0 and 1, encoding a probability.
With such a scalar sigmoid output, on a binary classification problem, the loss function
you should use is .binary_crossentropy

The  optimizer is generally a good enough choice of optimizer, whatever yourrmsprop
problem. That’s one less thing for you to worry about.
As they get better on their training data, neural networks eventually start  andoverfitting
end up obtaining increasingly worse results on data never-seen-before. Make sure to
always monitor performance on data that is outside of the training set.

In the previous section we saw how to classify vector inputs into two mutually exclusive
classes using a densely-connected neural network. But what happens when you have
more than two classes?

In this section, we will build a network to classify Reuters newswires into 46 different
mutually-exclusive topics. Since we have many classes, this problem is an instance of
"multi-class classification", and since each data point should be classified into only one
category, the problem is more specifically an instance of "single-label, multi-class
classification". If each data point could have belonged to multiple categories (in our case,
topics) then we would be facing a "multi-label, multi-class classification" problem.

We will be working with the , a set of short newswires and their topics,Reuters dataset
published by Reuters in 1986. It’s a very simple, widely used toy dataset for text
classification. There are 46 different topics; some topics are more represented than
others, but each topic has at least 10 examples in the training set.

3.5 Classifying newswires: a multi-class classification example

3.4.6 Further experiments

3.4.7 Wrapping up

3.5.1 The Reuters dataset
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Like IMDB and MNIST, the Reuters dataset comes packaged as part of Keras. Let’s
take a look right away:

Listing 3.27 Loading the Reuters dataset

Like with the IMDB dataset, the argument  restricts the data to thenum_words=10000

10,000 most frequently occurring words found in the data.
We have 8,982 training examples and 2,246 test examples:

Listing 3.28 Taking a look at the data

As with the IMDB reviews, each example is a list of integers (word indices):

Listing 3.29 Taking a look at the data

Here’s how you can decode it back to words, in case you are curious:

Listing 3.30 Decoding a newswires back to text

The label associated with an example is an integer between 0 and 45: a topic index.

Listing 3.31 Taking a look at the labels

We can vectorize the data with the exact same code as in our previous example:

Listing 3.32 Encoding the data

from keras.datasets import reuters

(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)

>>> len(train_data)
8982
>>> len(test_data)
2246

>>> train_data[10]
[1, 245, 273, 207, 156, 53, 74, 160, 26, 14, 46, 296, 26, 39, 74, 2979,
3554, 14, 46, 4689, 4329, 86, 61, 3499, 4795, 14, 61, 451, 4329, 17, 12]

word_index = reuters.get_word_index()
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
# Note that our indices were offset by 3
# because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown".
decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])

>>> train_labels[10]
3

3.5.2 Preparing the data
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To vectorize the labels, there are two possibilities: we could just cast the label list as
an integer tensor, or we could use a "one-hot" encoding. One-hot encoding is a widely
used format for categorical data, also called "categorical encoding". For a more detailed
explanation of one-hot encoding, you can refer to Chapter 6, Section 1. In our case,
one-hot encoding of our labels consists in embedding each label as an all-zero vector
with a 1 in the place of the label index, e.g.:

Listing 3.33 One-hot encoding the labels

Note that there is a built-in way to do this in Keras, which you have already seen in
action in our MNIST example:

Listing 3.34 One-hot encoding the labels, the Keras way

This topic classification problem looks very similar to our previous movie review
classification problem: in both cases, we are trying to classify short snippets of text.
There is however a new constraint here: the number of output classes has gone from 2 to
46, i.e. the dimensionality of the output space is much larger.

In a stack of  layers like what we were using, each layer can only accessDense

information present in the output of the previous layer. If one layer drops some
information relevant to the classification problem, this information can never be
recovered by later layers: each layer can potentially become an "information bottleneck".
In our previous example, we were using 16-dimensional intermediate layers, but a

import numpy as np

def vectorize_sequences(sequences, dimension=10000):
    results = np.zeros((len(sequences), dimension))
    for i, sequence in enumerate(sequences):
        results[i, sequence] = 1.
    return results

# Our vectorized training data
x_train = vectorize_sequences(train_data)
# Our vectorized test data
x_test = vectorize_sequences(test_data)

def to_one_hot(labels, dimension=46):
    results = np.zeros((len(labels), dimension))
    for i, label in enumerate(labels):
        results[i, label] = 1.
    return results

# Our vectorized training labels
one_hot_train_labels = to_one_hot(train_labels)
# Our vectorized test labels
one_hot_test_labels = to_one_hot(test_labels)

from keras.utils.np_utils import to_categorical

one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)

3.5.3 Building our network
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16-dimensional space may be too limited to learn to separate 46 different classes: such
small layers may act as information bottlenecks, permanently dropping relevant
information.

For this reason we will use larger layers. Let’s go with 64 units:

Listing 3.35 Our model definition

There are two other things you should note about this architecture:

We are ending the network with a  layer of size 46. This means that for each inputDense
sample, our network will output a 46-dimensional vector. Each entry in this vector (each
dimension) will encode a different output class.
The last layer uses a  activation. You have already seen this pattern in thesoftmax
MNIST example. It means that the network will output a  over theprobability distribution
46 different output classes, i.e. for every input sample, the network will produce a
46-dimensional output vector where  is the probability that the sampleoutput[i]
belongs to class . The 46 scores will sum to 1.i

The best loss function to use in this case is . Itcategorical_crossentropy

measures the distance between two probability distributions: in our case, between the
probability distribution output by our network, and the true distribution of the labels. By
minimizing the distance between these two distributions, we train our network to output
something as close as possible to the true labels.

Listing 3.36 Compiling our model

Let’s set apart 1,000 samples in our training data to use as a validation set:

Listing 3.37 Setting aside a validation set

Now let’s train our network for 20 epochs:

from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

3.5.4 Validating our approach

x_val = x_train[:1000]
partial_x_train = x_train[1000:]

y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]
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Listing 3.38 Training our model

Let’s display its loss and accuracy curves:

Listing 3.39 Plotting the training and validation loss

Figure 3.9 Training and validation accuracy

Listing 3.40 Plotting the training and validation accuracy

history = model.fit(partial_x_train,
                    partial_y_train,
                    epochs=20,
                    batch_size=512,
                    validation_data=(x_val, y_val))

import matplotlib.pyplot as plt

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

plt.clf()   # clear figure

acc = history.history['acc']
val_acc = history.history['val_acc']

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()
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Figure 3.10 Training and validation accuracy

It seems that the network starts overfitting after 9 epochs. Let’s train a new network
from scratch for 9 epochs, then let’s evaluate it on the test set:

Listing 3.41 Re-training a model from scratch

Listing 3.42 Our final results

Our approach reaches an accuracy of ~80%. With a balanced binary classification
problem, the accuracy reached by a purely random classifier would be 50%, but in our
case it is closer to 19%, so our results seem pretty good, at least when compared to a
random baseline:

Listing 3.43 Accuracy of a random baseline

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
model.fit(partial_x_train,
          partial_y_train,
          epochs=9,
          batch_size=512,
          validation_data=(x_val, y_val))
results = model.evaluate(x_test, one_hot_test_labels)

>>> results
[0.9565213431445807, 0.79697239536954589]

>>> import copy
>>> test_labels_copy = copy.copy(test_labels)
>>> np.random.shuffle(test_labels_copy)
>>> float(np.sum(np.array(test_labels) == np.array(test_labels_copy))) / len(test_labels)
0.18655387355298308

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and 
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders. 

https://forums.manning.com/forums/deep-learning-with-python

75

Licensed to Bram van Ginneken <bramvanginneken@gmail.com>

https://forums.manning.com/forums/deep-learning-with-python


We can verify that the  method of our model instance returns a probabilitypredict

distribution over all 46 topics. Let’s generate topic predictions for all of the test data:

Listing 3.44 Generating predictions for new data

Each entry in  is a vector of length 46:predictions

Listing 3.45 Taking a look at our predictions

The coefficients in this vector sum to 1:

Listing 3.46 Taking a look at our predictions

The largest entry is the predicted class, i.e. the class with the highest probability:

Listing 3.47 Taking a look at our predictions

We mentioned earlier that another way to encode the labels would be to cast them as an
integer tensor, like such:

Listing 3.48 Encoding the labels as integer arrays

The only thing it would change is the choice of the loss function. Our previous loss, 
, expects the labels to follow a categorical encoding. Withcategorical_crossentropy

integer labels, we should use :sparse_categorical_crossentropy

Listing 3.49 Using the  losssparse_categorical_crossentropy

3.5.5 Generating predictions on new data

predictions = model.predict(x_test)

>>> predictions[0].shape
(46,)

>>> np.sum(predictions[0])
1.0

>>> np.argmax(predictions[0])
4

3.5.6 A different way to handle the labels and the loss

y_train = np.array(train_labels)
y_test = np.array(test_labels)

model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['acc'])
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This new loss function is still mathematically the same as 
; it just has a different interface.categorical_crossentropy

We mentioned earlier that since our final outputs were 46-dimensional, we should avoid
intermediate layers with much less than 46 hidden units. Now let’s try to see what
happens when we introduce an information bottleneck by having intermediate layers
significantly less than 46-dimensional, e.g. 4-dimensional.

Listing 3.50 A model with an information bottleneck

Our network now seems to peak at ~71% validation accuracy, a 8% absolute drop.
This drop is mostly due to the fact that we are now trying to compress a lot of
information (enough information to recover the separation hyperplanes of 46 classes) into
an intermediate space that is too low-dimensional. The network is able to cram  ofmost
the necessary information into these 8-dimensional representations, but not all of it.

Try using larger or smaller layers: 32 units, 128 units…
We were using two hidden layers. Now try to use a single hidden layer, or three hidden
layers.

Here’s what you should take away from this example:

If you are trying to classify data points between N classes, your network should end with
a  layer of size N.Dense

In a single-label, multi-class classification problem, your network should end with a 
 activation, so that it will output a probability distribution over the N outputsoftmax

classes.
Categorical crossentropy is almost always the loss function you should use for such
problems. It minimizes the distance between the probability distributions output by the
network, and the true distribution of the targets.
There are two ways to handle labels in multi-class classification:

Encoding the labels via "categorical encoding" (also known as "one-hot encoding") and
using  as your loss function.categorical_crossentropy

3.5.7 On the importance of having sufficiently large intermediate layers

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(4, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
model.fit(partial_x_train,
          partial_y_train,
          epochs=20,
          batch_size=128,
          validation_data=(x_val, y_val))

3.5.8 Further experiments

3.5.9 Wrapping up
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1.
2.

Encoding the labels as integers and using the  losparse_categorical_crossentropy
function.

If you need to classify data into a large number of categories, then you should avoid
creating information bottlenecks in your network by having intermediate layers that are
too small.

In our two previous examples, we were considering classification problems, where the
goal was to predict a single discrete label of an input data point. Another common type of
machine learning problem is "regression", which consists of predicting a continuous
value instead instead of a discrete label. For instance, predicting the temperature
tomorrow, given meteorological data, or predicting the time that a software project will
take to complete, given its specifications.

Do not mix up "regression" with the algorithm "logistic regression": confusingly,
"logistic regression" is not a regression algorithm, it is a classification algorithm.

We will be attempting to predict the median price of homes in a given Boston suburb in
the mid-1970s, given a few data points about the suburb at the time, such as the crime
rate, the local property tax rate, etc.

The dataset we will be using has another interesting difference from our two previous
examples: it has very few data points, only 506 in total, split between 404 training
samples and 102 test samples, and each "feature" in the input data (e.g. the crime rate is a
feature) has a different scale. For instance some values are proportions, which take a
values between 0 and 1, others take values between 1 and 12, others between 0 and
100…

Let’s take a look at the data:

Listing 3.51 Loading the Boston housing dataset

Listing 3.52 Taking a look at the data

As you can see, we have 404 training samples and 102 test samples. The data
comprises 13 features. The 13 features in the input data are as follow:

Per capita crime rate.
Proportion of residential land zoned for lots over 25,000 square feet.

3.6 Predicting house prices: a regression example

3.6.1 The Boston Housing Price dataset

from keras.datasets import boston_housing

(train_data, train_targets), (test_data, test_targets) =  boston_housing.load_data()

>>> train_data.shape
(404, 13)
>>> test_data.shape
(102, 13)
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3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

Proportion of non-retail business acres per town.
Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
Nitric oxides concentration (parts per 10 million).
Average number of rooms per dwelling.
Proportion of owner-occupied units built prior to 1940.
Weighted distances to five Boston employment centres.
Index of accessibility to radial highways.
Full-value property-tax rate per $10,000.
Pupil-teacher ratio by town.
1000 * (Bk - 0.63) ** 2 where Bk is the proportion of Black people by town.
% lower status of the population.

The targets are the median values of owner-occupied homes, in thousands of dollars:

Listing 3.53 Taking a look at the targets

The prices are typically between $10,000 and $50,000. If that sounds cheap,
remember this was the mid-1970s, and these prices are not inflation-adjusted.

It would be problematic to feed into a neural network values that all take wildly different
ranges. The network might be able to automatically adapt to such heterogeneous data, but
it would definitely make learning more difficult. A widespread best practice to deal with
such data is to do feature-wise normalization: for each feature in the input data (a column
in the input data matrix), we will subtract the mean of the feature and divide by the
standard deviation, so that the feature will be centered around 0 and will have a unit
standard deviation. This is easily done in Numpy:

Listing 3.54 Normalizing the data

Note that the quantities that we use for normalizing the test data have been computed
using the training data. We should never use in our workflow any quantity computed on
the test data, even for something as simple as data normalization.

Because so few samples are available, we will be using a very small network with two
hidden layers, each with 64 units. In general, the less training data you have, the worse
overfitting will be, and using a small network is one way to mitigate overfitting.

>>> train_targets
[ 15.2,  42.3,  50. ...  19.4,  19.4,  29.1]

3.6.2 Preparing the data

mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std

test_data -= mean
test_data /= std

3.6.3 Building our network
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Listing 3.55 Our model definition

Our network ends with a single unit, and no activation (i.e. it will be linear layer).
This is a typical setup for scalar regression (i.e. regression where we are trying to predict
a single continuous value). Applying an activation function would constrain the range
that the output can take; for instance if we applied a  activation function to oursigmoid

last layer, the network could only learn to predict values between 0 and 1. Here, because
the last layer is purely linear, the network is free to learn to predict values in any range.

Note that we are compiling the network with the  loss function—Mean Squaredmse

Error, the square of the different between the predictions and the targets, a widely used
loss function for regression problems.

We are also monitoring a new metric during training: . This stands for Meanmae

Absolute Error. It is simply the absolute value of the difference between the predictions
and the targets. For instance, a MAE of 0.5 on this problem would mean that our
predictions are off by $500 on average.

To evaluate our network while we keep adjusting its parameters (such as the number of
epochs used for training), we could simply split the data into a training set and a
validation set, as we were doing in our previous examples. However, because we have so
few data points, the validation set would end up being very small (e.g. about 100
examples). A consequence is that our validation scores may change a lot depending on 

 data points we choose to use for validation and which we choose for training, i.e.which
the validation scores may have a high  with regard to the validation split. Thisvariance
would prevent us from reliably evaluating our model.

The best practice in such situations is to use K-fold cross-validation. It consists of
splitting the available data into K partitions (typically K=4 or 5), then instantiating K
identical models, and training each one on K-1 partitions while evaluating on the
remaining partition. The validation score for the model used would then be the average of
the K validation scores obtained.

from keras import models
from keras import layers

def build_model():
    # Because we will need to instantiate
    # the same model multiple time,
    # we use a function to construct it.
    model = models.Sequential()
    model.add(layers.Dense(64, activation='relu',
                           input_shape=(train_data.shape[1],)))
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(1))
    model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
    return model

3.6.4 Validating our approach using K-fold validation
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Figure 3.11 3-fold cross-validation

In terms of code, this is straightforward:

Listing 3.56 K-fold validation

Running the above snippet with  yields the following results:num_epochs = 100

Listing 3.57 Validation MAE scores for successive "folds"

As you can notice, the different runs do indeed show rather different validation

import numpy as np

k = 4
num_val_samples = len(train_data) // k
num_epochs = 100
all_scores = []
for i in range(k):
    print('processing fold #', i)
    # Prepare the validation data: data from partition # k
    val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
    val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]

    # Prepare the training data: data from all other partitions
    partial_train_data = np.concatenate(
        [train_data[:i * num_val_samples],
         train_data[(i + 1) * num_val_samples:]],
        axis=0)
    partial_train_targets = np.concatenate(
        [train_targets[:i * num_val_samples],
         train_targets[(i + 1) * num_val_samples:]],
        axis=0)

    # Build the Keras model (already compiled)
    model = build_model()
    # Train the model (in silent mode, verbose=0)
    model.fit(partial_train_data, partial_train_targets,
              epochs=num_epochs, batch_size=1, verbose=0)
    # Evaluate the model on the validation data
    val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)
    all_scores.append(val_mae)

>>> all_scores
[2.588258957792037, 3.1289568449719116, 3.1856116051248984, 3.0763342615401386]
>>> np.mean(all_scores)
2.9947904173572462
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scores, from 2.6 to 3.2. Their average (3.0) is a much more reliable metric than any single
of these scores—that’s the entire point of K-fold cross-validation. In this case, we are off
by $3,000 on average, which is still significant considering that the prices range from
$10,000 to $50,000.

Let’s try training the network for a bit longer: 500 epochs. To keep a record of how
well the model did at each epoch, we will modify our training loop to save the per-epoch
validation score log:

Listing 3.58 Saving the validation logs at each fold

We can then compute the average of the per-epoch MAE scores for all folds:

Listing 3.59 Building the history of successive mean K-fold validation scores

Let’s plot this:

Listing 3.60 Plotting validation scores

num_epochs = 500
all_mae_histories = []
for i in range(k):
    print('processing fold #', i)
    # Prepare the validation data: data from partition # k
    val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
    val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]

    # Prepare the training data: data from all other partitions
    partial_train_data = np.concatenate(
        [train_data[:i * num_val_samples],
         train_data[(i + 1) * num_val_samples:]],
        axis=0)
    partial_train_targets = np.concatenate(
        [train_targets[:i * num_val_samples],
         train_targets[(i + 1) * num_val_samples:]],
        axis=0)

    # Build the Keras model (already compiled)
    model = build_model()
    # Train the model (in silent mode, verbose=0)
    history = model.fit(partial_train_data, partial_train_targets,
                        validation_data=(val_data, val_targets),
                        epochs=num_epochs, batch_size=1, verbose=0)
    mae_history = history.history['val_mean_absolute_error']
    all_mae_histories.append(mae_history)

average_mae_history = [
    np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]

import matplotlib.pyplot as plt

plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()
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Figure 3.12 Validation MAE by epoch

It may be a bit hard to see the plot due to scaling issues and relatively high variance.
Let’s:

Omit the first 10 data points, which are on a different scale from the rest of the curve.
Replace each point with an exponential moving average of the previous points, to obtain
a smooth curve.

Listing 3.61 Plotting validation scores - excluding the first 10 data points

Figure 3.13 Validation MAE by epoch - excluding the first 10 data points

def smooth_curve(points, factor=0.9):
  smoothed_points = []
  for point in points:
    if smoothed_points:
      previous = smoothed_points[-1]
      smoothed_points.append(previous * factor + point * (1 - factor))
    else:
      smoothed_points.append(point)
  return smoothed_points

smooth_mae_history = smooth_curve(average_mae_history[10:])

plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()
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According to this plot, it seems that validation MAE stops improving significantly
after after 80 epochs. Past that point, we start overfitting.

Once we are done tuning other parameters of our model (besides the number of
epochs, we could also adjust the size of the hidden layers), we can train a final
"production" model on all of the training data, with the best parameters, then look at its
performance on the test data:

Listing 3.62 Training the final model

Listing 3.63 Our final result

We are still off by about $2,550.

Here’s what you should take away from this example:

Regression is done using different loss functions from classification; Mean Squared Error
(MSE) is a commonly used loss function for regression.
Similarly, evaluation metrics to be used for regression differ from those used for
classification; naturally the concept of "accuracy" does not apply for regression. A
common regression metric is Mean Absolute Error (MAE).
When features in the input data have values in different ranges, each feature should be
scaled independently as a preprocessing step.
When there is little data available, using K-Fold validation is a great way to reliably
evaluate a model.
When little training data is available, it is preferable to use a small network with very few
hidden layers (typically only one or two), in order to avoid severe overfitting.

This example concludes our series of three introductory practical examples. You are
now able to handle common types of problems with vector data input:

Binary (2-class) classification.
Multi-class, single-label classification.
Scalar regression.

In the next chapter, you will acquire a more formal understanding of some of the
concepts you have encountered in these first examples, such as data preprocessing, model
evaluation, and overfitting.

# Get a fresh, compiled model.
model = build_model()
# Train it on the entirety of the data.
model.fit(train_data, train_targets,
          epochs=80, batch_size=16, verbose=0)
test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)

>>> test_mae_score
2.5532484335057877

3.6.5 Wrapping up
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4
After three practical examples, you are starting to get familiar with how to approach
classification and regression problems using neural networks, and you have witnessed the
central problem of machine learning: overfitting. This chapter will formalize some of the
intuition you are starting to form into a solid conceptual framework for attacking and
solving deep learning problems.

In this chapter, you will:

Learn about more forms of machine learning, beyond classification and regression.
Learn about formal evaluation procedures for machine learning models, a simple version
of which you have already seen in action a few times.
Learn how to prepare data for deep learning, and what is "feature engineering".
Learn ways to tackle the central problem of machine learning: overfitting, which we
faced in all of our three previous examples.

Finally, we will consolidate all these concepts—model evaluation, data preprocessing
and feature engineering, tackling overfitting—into a detailed 7-step workflow for
tackling any machine learning problem.

Throughout our previous examples, you’ve become familiar with three specific types of
machine learning problems: binary classification, multi-class classification, and scalar
regression. All three are instances of "supervised learning", where the goal is to learn the
relationship between training inputs and training targets.

Supervised learning is just the tip of the iceberg. Machine learning is a vast field with
a complex subfield taxonomy. Machine learning algorithms generally fall into four broad
categories:

Fundamentals of machine learning

4.1 Four different brands of machine learning
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This is by far the most common case. It consists of learning to map input data to known
targets (also called annotations), given a set of examples (often annotated by humans).
All four examples you’ve encountered in this book so far were canonical examples of
supervised learning. Generally, almost all applications of deep learning that are getting
the spotlight these days belong in this category, such as optical character recognition,
speech recognition, image classification or language translation.

This one consists of finding interesting transformations of the input data without the help
of any targets, for the purposes of data visualization, data compression, data denoising…
or simply to better understand the correlations present in the data at hand. Unsupervised
learning is the bread and butter of "data analytics", and is often a necessary step in better
understanding a dataset before attempting to solve a supervised learning problem.
"Dimensionality reduction" and "clustering" are well-known categories of unsupervised
learning.

This is actually a specific instance of supervised learning, but it different enough that it
deserves its own category. Self-supervised learning is supervised learning without
human-annotated labels. There are still labels involved (since the learning has to be
supervised by something), but they are generated from the input data itself, typically
using a heuristic algorithm. You can think of it as supervised learning without any
humans in the loop. For instance, "autoencoders" are a well-known instance of
self-supervised learning, where the generated targets are… the input themselves,
unmodified. In the same way, trying to predict the next frame in a video given past
frames, or the next word in a text given previous words, would be another instance of
self-supervised learning (temporally supervised learning, in this case: supervision comes
from future input data). Note that the distinction between supervised, self-supervised and
unsupervised learning can be blurry sometimes—these categories are more of continuum
without solid frontiers. Self-supervised learning can be reinterpreted as either supervised
or unsupervised learning depending on whether you pay attention to the learning
mechanism or to the context of its application.

4.1.1 Supervised learning.

4.1.2 Unsupervised learning.

4.1.3 Self-supervised learning.
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Long overlooked, this branch of machine learning has recently started getting a lot of
attention, after Google DeepMind successfully applied it to learning to play Atari games
(and later, to learning to play Go at the highest level). In reinforcement learning, an
"agent" receives information about its environment and learns to pick actions that will
maximize some reward. For instance, a neural network that "looks" at a video game
screen and outputs game actions in order to maximize its score can be trained via
reinforcement learning. Currently, reinforcement learning is mostly a research area and
has not yet had significant practical successes beyond games. In time, however, I would
expect to see reinforcement learning take over an increasingly large range of real-world
applications—self-driving, robotics, resource management, education… It is an idea
whose time has come, or will come soon.

In this book, we will focus specifically on supervised learning, since it is by far the
dominant form of deep learning today, with a wide range of industry applications. We
will also take a briefer look at self-supervised learning in later chapters.

Although supervised learning mostly consists of classification and regression, there
are more exotic variants as well:

Sequence generation (e.g. given a picture, predict a caption describing it). Sequence
generation can sometimes be reformulated as a series of classification problems (e.g.
repeatedly predicting the word or token in a sequence).
Syntax tree prediction (e.g. given a sentence, predict its decomposition into a syntax
tree).
Object detection: given a picture, draw a bounding box around certain objects inside the
picture. This can also be expressed as a classification problem (given many candidate
bounding boxes, classify the contents of each one) or as a joint classification and
regression problem, where the bounding box coordinates are being predicted via vector
regression.
Image segmentation: given a picture, draw a pixel-level mask on a specific object.
etc…

Classification and regression involve many specialized terms. You have already come
across some of them in our first examples, and you will see more of them come up in the
following chapters. They have precise, machine-learning specific definitions, and you
should be familiar with them.

Sample, or : one data points that goes into your model.input
Prediction, or : what goes out of your model.output
Target: the truth. What your model should ideally have predicted, according to an

external source of data.
Prediction error, or : a measure of the distance between you model’sloss value

prediction and the target.
Classes: set of possible labels to choose from in a classification problem, e.g. when

4.1.4 Reinforcement learning.

4.1.5 Classification and regression glossary
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classifying cat and dog pictures, "dog" and "cat" are the two classes.
Label: specific instance of a class annotation in a classification problem. For instance,

if picture #1234 is annotated as containing the class "dog", then "dog" is a label of picture
#1234.

Ground-truth, or : all targets for a dataset, typically collected by humans.annotations
Binary classification: classification task where each input sample should be

categorized into two exclusive categories.
Multi-class classification: classification task where each input sample should be

categorized into more than two categories: for instance, classifying handwritten digits is a
multi-class classification task.

Multi-label classification: classification task where each input sample can be assigned
multiple labels. For instance, a given image may contain both a cat and a dog, and should
be annotated both with the "cat" label and the "dog" label. The number of labels per
image is usually variable.

Scalar regression: task where the target is a continuous scalar value. House price
prediction is a good example: the different target prices form a continuous space.

Vector regression: task where the target is a set of continuous values, e.g. a
continuous vector. If you are doing regression against multiple values (e.g. the
coordinates of a bounding box in an image) then your are doing vector regression.

Mini-batch or : a small set of samples that are being processed at once by thebatch
model (typically between 8 and 128 samples). It is often a power of 2 in order to facilitate
memory allocation on GPU. When training, a mini-batch is used to compute a single
gradient descent update applied to the weights of the model.

In the three examples we covered in the previous chapters, we split our data into a
training set, a validation set, and a test set. The reason why we did not evaluate our
models on the same data as they were trained on quickly became evident: after just a few
epochs, all three models started to , which is to say that their performance onoverfit
never-seen-before data started stalling (or even worsening) compared to their
performance on the training data—which always go up as training progresses.

In machine learning, our goal is to achieve models that , i.e. that performgeneralize
well on never-seen-before data, and overfitting is the central obstacle. We can only
control that which we can observe, so it is crucial to be able to reliably measure the
generalization power of our model. In the next sections, we will take a look at strategies
for mitigating overfitting and maximizing generalization. In the present section, we will
focus on how we can measure generalization, i.e. how to evaluate machine learning
models.

4.2 Evaluating machine learning models
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Evaluating a model always boils down to splitting your available data into three sets:
training, validation, and test set. You train on the training data, and evaluate your model
on the validation data. Once your model is ready for prime time, you test it one final time
on the test data.

You may ask, why not simply have two sets, a training set and a test set? We would
train on the training data, and evaluate on the test data. Much simpler!

The reason is that developing a model always involves tuning its configuration, e.g.
picking the number of layers or the size of the layers (what is called the
"hyperparameters" of the model, to distinguish them from the "parameters", which are
the network’s weights). You will do this tuning by using as feedback signal the
performance of the model on the validation data, so in essence this tuning is a form of 

: a search for a good configuration in some parameter space. As a result, tuninglearning
the configuration of the model based on its performance on the validation set can quickly
result in , even though your model is never being directlyoverfitting to the validation set
trained on it.

Central to this phenomenon is the notion of "information leak". Every time you are
tuning a hyperparameter of your model based on the model’s performance on the
validation set, some information about the validation data is leaking into your model. If
you only do this once, for one parameter, then very few bits of information would be
leaking and your validation set would remain a reliable way to evaluate your model. But
if you repeat this many times, running one experiment, evaluating on the validation set,
modifying your model as a result, then you are leaking an increasingly significant amount
of information about the validation set into your model.

At the end of the day, you end up with a model that performs artificially well on the
validation data, because it is what you optimized it for. Since what you care about is
actually performance on completely new data, not the validation data, you need a
completely different, never-seen-before dataset to evaluate your model: the test dataset.
Your model shouldn’t have had access to  information about the test set, evenany
completely indirectly. If anything about model has been tuned based on test-set
performance, then your measure of generalization will be flawed.

Splitting your data into a training, validation, and test sets may seem straightforward,
but there are a few advanced ways to do it which can come in handy when very few data
is available. Let’s review three classic evaluation recipes.

Set apart some fraction of your data as your test set. Train on remaining data, evaluate on
the test set. As you saw in the previous sections, in order to prevent information leaks,
you should not tune your model based on the test set, and therefore you should also
reserve a validation set.

Schematically, hold-out validation looks like this:

4.2.1 Training, validation, and test sets

4.2.2 Simple hold-out validation
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Figure 4.1 Simple hold-out validation split

Here’s a simple implementation:

Listing 4.1 Hold-out validation

This is the simplest evaluation protocol, and it suffers from one flaw: if little data is
available, then your validation and test sets may contain too few samples to be
statistically representative of the data at hand. This is easy to notice: if different random
shuffling rounds of the data before splitting end up yielding very different model
performance measures, then you are having this issue. K-fold validation and iterated
K-fold validation are two ways to address this.

num_validation_samples = 10000

# Shuffling the data is usually appropriate
np.random.shuffle(data)

# Define the validation set
validation_data = data[:num_validation_samples]
data = [num_validation_samples:]

# Define the training set
training_data = data[:]

# Train a model on the training data
# and evaluate it on the validation data
model = get_model()
model.train(training_data)
validation_score = model.evaluate(validation_data)

# At this point you can tune your model,
# retrain it, evaluate it, tune it again...

# Once you have tuned your hyperparameters,
# is it common to train your final model from scratch
# on all non-test data available.
model = get_model()
model.train(np.concatenate([training_data,
                            validation_data]))
test_score = model.evaluate(test_data)
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Split your data into K partitions of equal size. For each partition , train a model on thei

remaining N-1 partitions, and evaluate it on partition . Your final score would then bei

the averages of the K scores obtained. This method is helpful when the performance of
your model shows significant variance based on your train-test split. Like hold-out
validation, this method doesn’t exempt you from using a distinct validation set for model
calibration.

Schematically, K-fold cross-validation looks like this:

Figure 4.2 3-fold validation

Here’s a simple implementation:

Listing 4.2 K-fold cross-validation

4.2.3 K-fold validation

k = 4
num_validation_samples = len(data) // k

np.random.shuffle(data)

validation_scores = []
for fold in range(k):
    # Select the validation data partition
    validation_data = data[num_validation_samples * fold: num_validation_samples * (fold + 1)]
    # The remainder of the data is used as training data.
    # Note that the "+" operator below is list concatenation, not summation
    training_data = data[:num_validation_samples * fold] + data[num_validation_samples * (fold + 1):]

    # Create a brand new instance of our model (untrained)
    model = get_model()
    model.train(training_data)
    validation_score = model.evaluate(validation_data)
    validation_scores.append(validation_score)

# This is our validation score:
# the average of the validation scores of our k folds
validation_score = np.average(validation_scores)

# We train our final model on all non-test data available
model = get_model()
model.train(data)
test_score = model.evaluate(test_data)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and 
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders. 

https://forums.manning.com/forums/deep-learning-with-python

91

Licensed to Bram van Ginneken <bramvanginneken@gmail.com>

https://forums.manning.com/forums/deep-learning-with-python


This one is for situations in which you have relatively little data available and you need
to evaluate your model as precisely as possible. I have found it to be extremely helpful in
Kaggle competitions. It consists of applying K-fold validation multiple times, shuffling
the data every time before splitting it K-ways. Your final score would be the average of
the scores obtained at each run of K-fold validation. Note that you end up training and
evaluating P * K models (where P is the number of iterations you use), which can very
expensive.

There are a few things to keep an eye out for when picking an evaluation protocol:

Data representativeness. You want your training set and test set to be both representative
of the data at hand; for instance if you are trying to classify images of digits, and you are
starting from an array of samples where the samples are ordered by their class, taking the
first 80% of the array as your training set and the remaining 20% as your test would
result in your training set only having classes 0-7 while your test set would only have
classes 8-9. This seems like a ridiculous mistake, but it’s surprisingly common. For this
reason, you should most likely  your data before splitting it into arandomly shuffle
training and test set.
The arrow of time. If you are trying to predict the future given the past (e.g. the weather
tomorrow, stock movements, and so on), you should  randomly shuffle your datanot
before splitting it, because that would create a "temporal leak": you model would
effectively be trained on data from the future. In such situations you should always make
sure that all data in your test set is  to the data in the training set.posterior
Redundancy in your data. If some data points in your data appear twice (fairly common
with real-world data), then shuffling the data and splitting it into a training set and a test
set will result in redundancy between the training and test set. In effect, you would be
testing on part of your training data, which is the worst thing you could do! Make sure
that your training sets and tests sets are disjoint.

Besides model evaluation, an important question we must tackle before we dive deeper
into model development is the following: how to prepare the input data and targets before
feeding them into a neural network? Many data preprocessing and feature engineering
techniques are domain-specific (e.g. specific to text data or image data), and we will
cover those in the next chapters as we encounter them in practical examples. For now, we
will review the basics, common to all data domains.

4.3 Data preprocessing, feature engineering and feature learning

4.2.4 Iterated K-fold validation with shuffling

4.2.5 Keep in mind…
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All inputs and targets in a neural network must be tensors of floating point data (or in
specific cases, tensors of integers). Whatever data you need to process—sound, images,
text—you must first turn it into tensors, a step called "data vectorization". For instance, in
our two previous text classification examples, we started from text represented as lists of
integers (standing for sequences of words), and we used "one-hot encoding" to turn them
into a tensor of  data. In the digits classification example and house pricefloat32

prediction example, the data already came in vectorized form, so we could skip this step.

In our digits classification example, we started from image data encoded as integers in
the 0-255 range, encoding grayscale values. Before we fed this data into our network, we
had to cast it to  and divide by 255, so we would end up with floating pointfloat32

values in the 0-1 range. Similarly, in our house price prediction example, we started from
features that took a variety of ranges—some features had small floating point values,
others had fairly large integer values. Before we fed this data into our network, we had to
normalize each feature independently so that each feature would have a standard
deviation of 1 and a mean of 0.

In general, it isn’t safe to feed into a neural network data that takes relatively "large"
values (e.g. multi-digit integers, which is much larger than the initial values taken by the
weights of a network), or data that is "heterogeneous", e.g. data where one feature would
be in the  range and another in the  range. It can trigger large gradient0-1 100-200

updates which will prevent your network from converging. To make learning easier for
your network, your data should:

Take "small" values: typically most values should be in the 0-1 range.
Be homogenous, i.e. all features should take values roughly in the same range.

Additionally, the following stricter normalization practice is common and can
definitely help, although it isn’t always necessary (e.g. we did not do this in our digits
classification example) :

Normalizing each feature independently to have a mean of 0.
Normalizing each feature independently to have a standard deviation of 1.

This is easy to do with Numpy arrays:

Listing 4.3 Feature-wise normalization of 2D Numpy data

4.3.1 Data preprocessing for neural networks

VECTORIZATION

VALUE NORMALIZATION

# Assuming x is a 2D data matrix of shape (samples, features)
x -= x.mean(axis=0)
x /= x.std(axis=0)
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You may sometimes have missing values in your data. For instance, in our house price
prediction example, the first feature (the column of index 0 in the data) was "per capita
crime rate". What if this feature was not available for all samples? We would then have
missing values in our training or test data.

In general, with neural networks, it is safe to input missing values as , under the0

condition that  is not already a meaningful value. The network will learn from exposure0

to the data that the value  simply means "missing data" and will start ignoring the value.0

However, note that if you are expecting missing values in the test data but the network
was trained on data without any missing values, then the network will not have learned to
ignore missing values! In this situation, then you should artificially generate training
samples with missing entries: simply copy some training samples several times and drop
some of the features that you expect are susceptible to go missing in the test data.

Feature engineering is the process of using your own knowledge about the data and about
the machine learning algorithm at hand (in our case a neural network) to make the
algorithm work better by applying hard-coded (non-learned) transformations to the data
before it goes into the model. In many cases, it isn’t reasonable to expect a machine
learning model to be able to learn from completely arbitrary data. The data needs to be
presented to the model in a way that will make the job of the model easier. One intuitive
example of this is the following: suppose that we are trying to develop a model that can
take as input an image of a clock, and can output the time of the day.

Figure 4.3 Feature engineering for reading time on a clock

If you choose to use the raw pixels of the image as input data, then you have on your
hands a difficult machine learning problem. You will need a convolutional neural
network to solve it, and you will have to expend quite a bit of computational resources to
train it.

HANDLING MISSING VALUES

4.3.2 Feature engineering
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However, if you already understand the problem at a high-level (you understand how
humans read time on a clock face), then you can come up with much better input features
for a ML algorithm: for instance, it is easy to write a 5-line Python script to follow the
black pixels of the clock hands and output the  coordinates of the tip of each(x, y)

hand. Then a very simple ML algorithm can learn to associate these coordinates with the
appropriate time of the day.

You can go even further: you can do a coordinate change, and express the (x, y)
coordinates as polar coordinates with regard to the center of the image. Your input would
simply become… the angle  of each clock hand. At this point your features aretheta

making the problem so easy that no machine learning is required anymore; a simple
rounding operation and dictionary lookup are enough to recover the approximate time of
day.

That’s the essence of feature engineering: making a problem easier by expressing it in
a simpler way. It usually requires understanding the problem in-depth.

Before deep learning, feature engineering used to be critical, because classical
"shallow" algorithms did not have hypothesis spaces rich enough to learn useful features
by themselves. The way you would present the data to the algorithm would be essential
to its success. For instance, before convolutional neural networks started becoming
successful on the MNIST digits classification problem, solutions were typically based on
hard-coded features such as the number of loops in a digit image, the height of each digit
in an image, an histogram of pixel values, and so on.

Thankfully, modern deep learning removes the need for most feature engineering,
since neural networks are capable of automatically extracting useful features from raw
data. Does this mean you don’t have to care about feature engineering at all as long as
you are using deep neural networks? No, for two reasons:

Good features can still allow you to solve problems more elegantly while using less
resources. For instance, it would be ridiculous to solve our clock face reading problem
using a convolutional neural network.
Good features can allow you to solve a problem with much less data. The ability of deep
learning models to learn features on their own relies on having lots of training data
available; if only few samples are available, then the informativeness of their features
becomes critical.

In all the examples we saw in the previous chapter—movie review sentiment prediction,
topic classification, and house price regression—we could notice that the performance of
our model on the held-out validation data would always peak after a few epochs and
would then start degrading, i.e. our model would quickly start to  to the trainingoverfit
data. Overfitting happens in every single machine learning problem. Learning how to
deal with overfitting is essential to mastering machine learning.

The fundamental issue in machine learning is the tension between optimization and
generalization. "Optimization" refers to the process of adjusting a model to get the best

4.4 Overfitting and underfitting
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performance possible on the training data (the "learning" in "machine learning"), while
"generalization" refers to how well the trained model would perform on data it has never
seen before. The goal of the game is to get good generalization, of course, but you do not
control generalization; you can only adjust the model based on its training data.

At the beginning of training, optimization and generalization are correlated: the lower
your loss on training data, the lower your loss on test data. While this is happening, your
model is said to be : there is still progress to be made; the network hasn’t yetunder-fit
modeled all relevant patterns in the training data. But after a certain number of iterations
on the training data, generalization stops improving, validation metrics stall then start
degrading: the model is then starting to over-fit, i.e. is it starting to learn patterns that are
specific to the training data but that are misleading or irrelevant when it comes to new
data.

To prevent a model from learning misleading or irrelevant patterns found in the
training data, . A model trained onthe best solution is of course to get more training data
more data will naturally generalize better. When that is no longer possible, the next best
solution is to modulate the quantity of information that your model is allowed to store, or
to add constraints on what information it is allowed to store. If a network can only afford
to memorize a small number of patterns, the optimization process will force it to focus on
the most prominent patterns, which have a better chance of generalizing well.

The processing of fighting overfitting in this way is called . Let’sregularization
review some of the most common regularization techniques, and let’s apply them in
practice to improve our movie classification model from the previous chapter.

The simplest way to prevent overfitting is to reduce the size of the model, i.e. the number
of learnable parameters in the model (which is determined by the number of layers and
the number of units per layer). In deep learning, the number of learnable parameters in a
model is often referred to as the model’s "capacity". Intuitively, a model with more
parameters will have more "memorization capacity" and therefore will be able to easily
learn a perfect dictionary-like mapping between training samples and their targets, a
mapping without any generalization power. For instance, a model with 500,000 binary
parameters could easily be made to learn the class of every digits in the MNIST training
set: we would only need 10 binary parameters for each of the 50,000 digits. Such a model
would be useless for classifying new digit samples. Always keep this in mind: deep
learning models tend to be good at fitting to the training data, but the real challenge is
generalization, not fitting.

On the other hand, if the network has limited memorization resources, it will not be
able to learn this mapping as easily, and thus, in order to minimize its loss, it will have to
resort to learning compressed representations that have predictive power regarding the
targets—precisely the type of representations that we are interested in. At the same time,
keep in mind that you should be using models that have enough parameters that they

4.4.1 Fighting overfitting

REDUCING THE NETWORK’S SIZE
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won’t be underfitting: your model shouldn’t be starved for memorization resources.
There is a compromise to be found between "too much capacity" and "not enough
capacity".

Unfortunately, there is no magical formula to determine what the right number of
layers is, or what the right size for each layer is. You will have to evaluate an array of
different architectures (on your validation set, not on your test set, of course) in order to
find the right model size for your data. The general workflow to find an appropriate
model size is to start with relatively few layers and parameters, and start increasing the
size of the layers or adding new layers until you see diminishing returns with regard to
the validation loss.

Let’s try this on our movie review classification network. Our original network was
as such:

Listing 4.4 Our original model

Now let’s try to replace it with this smaller network:

Listing 4.5 A version of our model with lower capacity

Here’s a comparison of the validation losses of the original network and the smaller
network. The dots are the validation loss values of the smaller network, and the crosses
are the initial network (remember: a lower validation loss signals a better model).

from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

model = models.Sequential()
model.add(layers.Dense(4, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(4, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
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Figure 4.4 Effect of model capacity on validation loss: trying a smaller model

As you can see, the smaller network starts overfitting later than the reference one
(after 6 epochs rather than 4) and its performance degrades much more slowly once it
starts overfitting.

Now, for kicks, let’s add to this benchmark a network that has much more capacity,
far more than the problem would warrant:

Listing 4.6 A version of our model with higher capacity

Here’s how the bigger network fares compared to the reference one. The dots are the
validation loss values of the bigger network, and the crosses are the initial network.

Figure 4.5 Effect of model capacity on validation loss: trying a bigger model

The bigger network starts overfitting almost right away, after just one epoch, and
overfits much more severely. Its validation loss is also more noisy.

Meanwhile, here are the training losses for our two networks:

model = models.Sequential()
model.add(layers.Dense(512, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
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Figure 4.6 Effect of model capacity on training loss: trying a bigger model

As you can see, the bigger network gets its training loss near zero very quickly. The
more capacity the network has, the quicker it will be able to model the training data
(resulting in a low training loss), but the more susceptible it is to overfitting (resulting in
a large difference between the training and validation loss).

You may be familiar with  principle: given two explanations forOccam’s Razor
something, the explanation most likely to be correct is the "simplest" one, the one that
makes the least amount of assumptions. This also applies to the models learned by neural
networks: given some training data and a network architecture, there are multiple sets of
weights values (multiple ) that could explain the data, and simpler models are lessmodels
likely to overfit than complex ones.

A "simple model" in this context is a model where the where the distribution of
parameter values has less entropy (or a model with fewer parameters altogether, as we
saw in the section above). Thus a common way to mitigate overfitting is to put
constraints on the complexity of a network by forcing its weights to only take small
values, which makes the distribution of weight values more "regular". This is called
"weight regularization", and it is done by adding to the loss function of the network a 

 associated with having large weights. This cost comes in two flavors:cost

L1 regularization, where the cost added is proportional to the absolute value of the
 (i.e. to what is called the "L1 norm" of the weights).weights coefficients

L2 regularization, where the cost added is proportional to the square of the value of the
 (i.e. to what is called the "L2 norm" of the weights). L2weights coefficients

regularization is also called  in the context of neural networks. Don’t let theweight decay
different name confuse you: weight decay is mathematically the exact same as L2
regularization.

In Keras, weight regularization is added by passing  toweight regularizer instances
layers as keyword arguments. Let’s add L2 weight regularization to our movie review
classification network:

ADDING WEIGHT REGULARIZATION
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Listing 4.7 Adding L2 weight regularization to our model

l2(0.001) means that every coefficient in the weight matrix of the layer will add 
 to the total loss of the network. Note that0.001 * weight_coefficient_value

because this penalty is , the loss for this network will be muchonly added at training time
higher at training than at test time.

Here’s the impact of our L2 regularization penalty:

Figure 4.7 Effect of L2 weight regularization on validation loss

As you can see, the model with L2 regularization (dots) has become much more
resistant to overfitting than the reference model (crosses), even though both models have
the same number of parameters.

As alternatives to L2 regularization, you could use one of the following Keras weight
regularizers:

Listing 4.8 Different weight regularizers available in Keras

from keras import regularizers

model = models.Sequential()
model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),
                       activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),
                       activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

from keras import regularizers

# L1 regularization
regularizers.l1(0.001)

# L1 and L2 regularization at the same time
regularizers.l1_l2(l1=0.001, l2=0.001)
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Dropout is one of the most effective and most commonly used regularization techniques
for neural networks, developed by Hinton and his students at the University of Toronto.
Dropout, applied to a layer, consists of randomly "dropping out" (i.e. setting to zero) a
number of output features of the layer during training. Let’s say a given layer would
normally have returned a vector  for a given input sample[0.2, 0.5, 1.3, 0.8, 1.1]

during training; after applying dropout, this vector will have a few zero entries distributed
at random, e.g. . The "dropout rate" is the fraction of the[0, 0.5, 1.3, 0, 1.1]

features that are being zeroed-out; it is usually set between 0.2 and 0.5. At test time, no
units are dropped out, and instead the layer’s output values are scaled down by a factor
equal to the dropout rate, so as to balance for the fact that more units are active than at
training time.

Consider a Numpy matrix containing the output of a layer, , of shape layer_output

. At training time, we would be zero-ing out at random a(batch_size, features)

fraction of the values in the matrix:

Listing 4.9 Dropout implementation: dropping out units at training time

At test time, we would be scaling the output down by the dropout rate. Here we scale
by 0.5 (because we were previous dropping half the units):

Listing 4.10 Dropout implementation: test-time rescaling

Note that this process can be implemented by doing both operations at training time
and leaving the output unchanged at test time, which is often the way it is implemented in
practice:

Listing 4.11 Alternative implementation of Dropout

ADDING DROPOUT

# At training time: we drop out 50% of the units in the output
layer_output *= np.randint(0, high=2, size=layer_output.shape)

# At test time:
layer_output *= 0.5

# At training time:
layer_output *= np.randint(0, high=2, size=layer_output.shape)
# Note that we are scaling *up* rather scaling *down* in this case
layer_output /= 0.5
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Figure 4.8 Dropout applied to an activation matrix at training time, with rescaling
happening during training. At test time, the activation matrix would be unchanged.

This technique may seem strange and arbitrary. Why would this help reduce
overfitting? Geoff Hinton has said that he was inspired, among other things, by a fraud
prevention mechanism used by banks—in his own words: "I went to my bank. The tellers
kept changing and I asked one of them why. He said he didn’t know but they got moved
around a lot. I figured it must be because it would require cooperation between
employees to successfully defraud the bank. This made me realize that randomly
removing a different subset of neurons on each example would prevent conspiracies and

.thus reduce overfitting"
The core idea is that introducing noise in the output values of a layer can break up

happenstance patterns that are not significant (what Hinton refers to as "conspiracies"),
which the network would start memorizing if no noise was present.

In Keras you can introduce dropout in a network via the  layer, which getsDropout

applied to the output of layer right before it, e.g.:

Listing 4.12 Using Dropout in Keras

Let’s add two  layers in our IMDB network to see how well they do atDropout

reducing overfitting:

Listing 4.13 Adding Dropout to our IMDB network

Let’s plot the results:

model.add(layers.Dropout(0.5))

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))
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Figure 4.9 Effect of dropout on validation loss

Again, a clear improvement over the reference network.
To recap: here the most common ways to prevent overfitting in neural networks:

Getting more training data.
Reducing the capacity of the network.
Adding weight regularization.
Adding dropout.

What we present here is a universal blueprint you can use to attack and solve any
machine learning problem, tying together the different concepts you learned about in this
chapter: problem definition, evaluation, feature engineering, and fighting overfitting.

First, you must define the problem at hand:

What will your input data will be? What will you be trying to predict? You can only learn
to predict something if you have available training data, e.g. you can only learn to
classify the sentiment of movie reviews if you have both movie reviews and sentiment
annotations available. As such, data availability is usually the limiting factor at this stage
(unless you have the means to pay people to collect data for you).
What type of problem are you facing—is it binary classification? Multi-class
classification? Scalar regression? Vector regression? Multi-class, multi-label
classification? Something else, like clustering, generation or reinforcement learning?
Identifying the problem type will guide your choice of model architecture, loss function,
and so on.

You cannot move to the next stage until you know what your inputs and outputs are,
and what data you will be using. Be aware of the hypotheses that you are making at this
stage:

You are hypothesizing that your outputs can be predicted given your inputs.
You are hypothesizing that your available data is sufficiently informative to learn the
relationship between inputs and outputs.

4.5 The universal workflow of machine learning

4.5.1 Define the problem and assemble a dataset
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Until you have a working model, then these are merely hypotheses, waiting to be
validated or invalidated. Not all problems can be solved; just because you have
assembled examples of inputs X and targets Y doesn’t mean that X contains enough
information to predict Y. For instance, if you are trying to predict the movements of a
stock on the stock market given its recent price history, your are unlikely to succeed,
since price history simply doesn’t contain much predictive information.

One class of unsolvable problems of which you should be specifically aware is
non-stationary problems. Suppose that you are trying to build a recommendation engine
for clothing, and that you are training it on one month of data, August, and that you want
to start generating recommendations in the winter. One big issue is that the kind of
clothes that people buy changes from season to season, i.e. clothes buying is a
non-stationary phenomenon over the scale of a few months. What you are trying to
model changes over time. In this case the right move would be to constantly retrain your
model on data from the recent past, or gather data at a timescale where the problem is
stationary. For a cyclical problem like clothes buying, a few years worth of data would
suffice to capture seasonal variation—but then you should remember to make the time of
the year an input of your model!

Keep it in mind: machine learning can only be used to memorize patterns which are
present in your training data. You can only recognize what you have seen before. Using
machine learning trained on past data to predict the future is making the assumption that
the future will behave like the past. That is often not the case.

To control something, you need to be able to observe it. To achieve success, you must
define what you mean by success—accuracy? Precision-Recall? Customer retention rate?
Your metric for success will guide the choice of your loss function, i.e. the choice of
what your model will optimize. It should directly align with your higher-level goals, such
as the success of your business.

For balanced classification problems, where every class is equally likely, accuracy
and ROC-AUC are common metrics. For class-imbalanced problems, one may use
Precision-Recall. For ranking problems or multi-label classification, one may use Mean
Average Precision. And it isn’t uncommon to have to define your own custom metric by
which you will measure success. To get a sense of the diversity of machine learning
success metrics and how they relate to different problem domains, it is helpful to browse
data science competitions on , as they showcase a wide range of differentKaggle.com

problems and evaluation metrics.

Once you know what you are aiming for, you must establish how you will measure your
current progress. We have previously reviewed three common evaluation protocols:

Maintaining a hold-out validation set; this is the way to go when you have plenty of data.
Doing K-fold cross-validation; this is the way to go when you have too few samples for

4.5.2 Pick a measure of success

4.5.3 Decide on an evaluation protocol
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hold-out validation to be reliable.
Doing iterated K-fold validation; this is for performing highly accurate model evaluation
when little is available.

Just pick one of these; in most cases the first one will work well enough.

Once you know what you are training on, what you are optimizing for, and how to
evaluate your approach, you are almost ready to start training models. But first, you
should format your data in a way that can be fed into a machine learning model—here we
will assume a deep neural network.

As we saw previously, your data should be formatted as tensors.
The values taken by these tensors should almost typically be scaled to small values, e.g.
in the  range or  range.[-1, 1] [0, 1]

If different features take values in different ranges (heterogenous data), then the data
should be normalized.
You may want to do some feature engineering, especially for small data problems.

Once your tensors of input data and target data are ready, you can start training
models.

Your goal at this stage is to achieve "statistical power", i.e. develop a small model that is
capable of beating a dumb baseline. In our MNIST digits classification example,
anything that gets an accuracy higher than 0.1 can be said to have statistical power; in our
IMDB example it would be anything with an accuracy higher than 0.5.

Note that it is not always possible to achieve statistical power. If you cannot beat a
random baseline after trying multiple reasonable architectures, it may be that the answer
to the question you are asking isn’t actually present in the input data. Remember that you
are making two hypotheses:

You are hypothesizing that your outputs can be predicted given your inputs.
You are hypothesizing that your available data is sufficiently informative to learn the
relationship between inputs and outputs.

It may well be that these hypotheses are false, in which case you would have to go
back to the drawing board.

Assuming that things go well—there are three keys choices you need to make in order
to build your first working model:

Choice of the last-layer activation. This establishes useful constraints on the network’s
output: for instance in our IMDB classification example we used  in the lastsigmoid
layer, in the regression example we didn’t use any last-layer activation, etc.
Choice of loss function. It should match the type of problem you are trying to solve: for
instance in our IMDB classification example we used , in thebinary_crossentropy
regression example we used , etc.mse

Choice of optimization configuration: what optimizer will you use? What will its learning

4.5.4 Prepare your data

4.5.5 Develop a model that does better than a baseline
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rate be? In most cases it is safe to go with  and its default learning rate.rmsprop

Regarding the choice of a loss function: note that it isn’t always possible to directly
optimize for the metric that measures success on a problem. Sometimes there is no easy
way to turn a metric into a loss function; loss functions, after all, need to be computable
given only a mini-batch of data (ideally, a loss function should be computable for as few
as a single data point) and need to be differentiable (otherwise you cannot use
backpropagation to train your network). For instance, the widely used classification
metric ROC-AUC (Receiver Operating Characteristic Area Under the Curve) cannot be
directly optimized. Hence in classification tasks it is common to optimize for a proxy
metric of ROC-AUC, such as crossentropy. In general, one can hope that the lower the
crossentropy gets, the higher the ROC-AUC will be.

Here is a table to help you pick a last-layer activation and a loss function for a few
common problem types:

Once you have obtained a model that has statistical power, the question becomes: is your
model powerful enough? Does it have enough layers and parameters to properly model
the problem at hand? For instance, a network with a single hidden layer with 2 units
would have statistical power on MNIST, but would not be sufficient to solve the problem
well. Remember that the universal tension in machine learning is between optimization
and generalization; the ideal model is one that stands right at the border between
under-fitting and over-fitting; between under-capacity and over-capacity. To figure out
where this border lies, first you must cross it.

To figure out how big a model you will need, you must develop a model that overfits.
This is fairly easy:

Add layers.
Make your layers bigger.
Train for more epochs.

Always monitor the training loss and validation loss, as well as the training and
validation values for any metrics you care about. When you see that the performance of
the model on the validation data starts degrading, you have achieved overfitting.

The next stage is to start regularizing and tuning your model, in order to get as close
as possible to the ideal model, that is neither underfitting nor overfitting.

Problem type Last-layer activation Loss function
Binary classification sigmoid binary_crossentropy

Multi-class, single-label classification softmax categorical_crossentropy

Multi-class, multi-label classification sigmoid binary_crossentropy

Regression to arbitrary values None mse

Regression to values between 0 and 1 sigmoid mse or binary_crossentropy

4.5.6 Scale up: develop a model that overfits
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This is the part that will take you the most time: you will repeatedly modify your model,
train it, evaluate on your validation data (not your test data at this point), modify it
again… until your model is as good as it can get.

These are some of things you should be trying:

Add dropout.
Try different architectures, add or remove layers.
Add L1 / L2 regularization.
Try different hyperparameters (such as the number of units per layer, the learning rate of
the optimizer) to find the optimal configuration.
Optionally iterate on feature engineering: add new features, remove features that do not
seem to be informative.

Be mindful of the following: every time you are using feedback from your validation
process in order to tune your model, you are leaking information about your validation
process into your model. Repeated just a few times, this is innocuous, but done
systematically over many iterations will eventually cause your model to overfit to the
validation process (even though no model is directly trained on any of the validation
data). This makes your evaluation process less reliable, so keep it in mind.

Once you have developed a seemingly good enough model configuration, you can
train your final production model on all data available (training and validation) and
evaluate it one last time on the test set. If it turns out that the performance on the test set
is significantly worse than the performance measured on the validation data, this could
mean either that your validation procedure wasn’t that reliable after all, or alternatively it
could mean that have started overfitting to the validation data while tuning the
parameters of the model. In this case you may want to switch to a more reliable
evaluation protocol (e.g. iterated K-fold validation).

In summary, this is the universal workflow of machine learning:

1) Define the problem at hand and the data you will be training on; collect this data or
annotate it with labels if need be.
2) Choose how you will measure success on your problem. Which metrics will you be
monitoring on your validation data?
3) Determine your evaluation protocol: hold-out validation? K-fold validation? Which
portion of the data should you use for validation?
4) Develop a first model that does better than a basic baseline: a model that has
"statistical power".
5) Develop a model that overfits.
6) Regularize your model and tune its hyperparameters, based on performance on the
validation data.

A lot of machine learning research tends to focus only on the last step—but keep in
mind the big picture.

4.5.7 Regularize your model and tune your hyperparameters
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5
In this chapter, you will learn about convolutional neural networks (or "convnets"), a
type of deep learning model almost universally used in computer vision applications.
You will learn to apply them to image classification problems, in particular those
involving small training datasets, the most common use case if you are not a large tech
company.

We will start with an introduction to the theory behind convnets, specifically:

What is convolution and max-pooling?
What are convnets?
What do convnets learn?

Then we will cover image classification with small datasets:

Training your own small convnets from scratch.
Using data augmentation to mitigate overfitting.
Using a pre-trained convnet to do feature extraction.
Fine-tuning a pre-trained convnet.

Finally, we will cover a few techniques for visualizing what convnets learn and how
they make classification decisions.

We are about to dive into the theory of what convnets are and why they have been so
successful at computer vision tasks. But first, let’s take a practical look at a very simple
convnet example. We will use our convnet to classify MNIST digits, a task that you’ve
already been through in Chapter 2, using a densely-connected network (our test accuracy
then was 97.8%). Even though our convnet will be very basic, its accuracy will still blow
out of the water that of the densely-connected model from Chapter 2.

The 6 lines of code below show you what a basic convnet looks like. It’s a stack of 
 and  layers. We’ll see in a minute what they do concretely.Conv2D MaxPooling2D

Importantly, a convnet takes as input tensors of shape (image_height, image_width,
 (not including the batch dimension). In our case, we will configureimage_channels)

Deep learning for computer vision

5.1 Introduction to convnets

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and 
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders. 

https://forums.manning.com/forums/deep-learning-with-python

108

Licensed to Bram van Ginneken <bramvanginneken@gmail.com>

https://forums.manning.com/forums/deep-learning-with-python


our convnet to process inputs of size , which is the format of MNIST(28, 28, 1)

images. We do this via passing the argument  to our firstinput_shape=(28, 28, 1)

layer.

Listing 5.1 Instantiating a small convnet

Let’s display the architecture of our convnet so far:

Listing 5.2 Displaying a summary of the model so far

You can see above that the output of every  and  layer is a 3DConv2D MaxPooling2D

tensor of shape . The width and height dimensions tend to(height, width, channels)

shrink as we go deeper in the network. The number of channels is controlled by the first
argument passed to the  layers (e.g. 32 or 64).Conv2D

The next step would be to feed our last output tensor (of shape ) into a(3, 3, 64)

densely-connected classifier network like those you are already familiar with: a stack of 
 layers. These classifiers process vectors, which are 1D, whereas our current outputDense

is a 3D tensor. So first, we will have to flatten our 3D outputs to 1D, and then add a few 
 layers on top:Dense

Listing 5.3 Adding a classifier on top of the convnet

from keras import layers
from keras import models

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

>>> model.summary()

________________________________________________________________
Layer (type)                     Output Shape          Param #
================================================================
conv2d_1 (Conv2D)                (None, 26, 26, 32)    320
________________________________________________________________
maxpooling2d_1 (MaxPooling2D)    (None, 13, 13, 32)    0
________________________________________________________________
conv2d_2 (Conv2D)                (None, 11, 11, 64)    18496
________________________________________________________________
maxpooling2d_2 (MaxPooling2D)    (None, 5, 5, 64)      0
________________________________________________________________
conv2d_3 (Conv2D)                (None, 3, 3, 64)      36928
================================================================
Total params: 55,744
Trainable params: 55,744
Non-trainable params: 0

model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
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We are going to do 10-way classification, so we use a final layer with 10 outputs and
a softmax activation. Now here’s what our network looks like:

Listing 5.4 Displaying a summary of the full model

As you can see, our  outputs were flattened into vectors of shape ,(3, 3, 64) (576,)

before going through two  layers.Dense

Now, let’s train our convnet on the MNIST digits. We will reuse a lot of the code we
have already covered in the MNIST example from Chapter 2.

Listing 5.5 Training our convnet on MNIST images

Let’s evaluate the model on the test data:

Listing 5.6 Evaluating the trained model

>>> model.summary()

Layer (type)                     Output Shape          Param #
================================================================
conv2d_1 (Conv2D)                (None, 26, 26, 32)    320
________________________________________________________________
maxpooling2d_1 (MaxPooling2D)    (None, 13, 13, 32)    0
________________________________________________________________
conv2d_2 (Conv2D)                (None, 11, 11, 64)    18496
________________________________________________________________
maxpooling2d_2 (MaxPooling2D)    (None, 5, 5, 64)      0
________________________________________________________________
conv2d_3 (Conv2D)                (None, 3, 3, 64)      36928
________________________________________________________________
flatten_1 (Flatten)              (None, 576)           0
________________________________________________________________
dense_1 (Dense)                  (None, 64)            36928
________________________________________________________________
dense_2 (Dense)                  (None, 10)            650
================================================================
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0

from keras.datasets import mnist
from keras.utils import to_categorical

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5, batch_size=64)

>>> test_loss, test_acc = model.evaluate(test_images, test_labels)
>>> test_acc
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While our densely-connected network from Chapter 2 had a test accuracy of 97.8%,
our basic convnet has a test accuracy of 99.3%: we decreased our error rate by 68%
(relative). Not bad!

But why does this simple convnet work so well compared to a densely-connected
model? To answer this, let’s dive into what these  and  layersConv2D MaxPooling2D

actually do.

The fundamental difference between a densely-connected layer and a convolution layer is
this: dense layers learn global patterns in their input feature space (e.g. for a MNIST
digit, patterns involving all pixels), while convolution layers learn local patterns (see
Figure 5.1), i.e. in the case of images, patterns found in small 2D windows of the inputs.
In our example above, these windows were all 3x3.

Figure 5.1 Images can be broken down into local patterns such as edges, textures, etc.

This key characteristic gives convnets two interesting properties:

The patterns they learn are , i.e. after learning a certain pattern in thetranslation-invariant
bottom right corner of a picture, a convnet is able to recognize it anywhere, e.g. in the top
left corner. A densely-connected network would have to learn the pattern anew if it
appeared at a new location. This makes convnets very data-efficient when processing
images (since ): they need lessthe visual world is fundamentally translation-invariant
training samples to learn representations that have generalization power.
They can learn  (figure 5.2). A first convolution layer willspatial hierarchies of patterns
learn small local patterns such as edges, but a second convolution layer will learn larger
patterns made of the features of the first layers. And so on. This allows convnets to

0.99080000000000001

5.1.1 The convolution operation
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efficiently learn increasingly complex and abstract visual concepts (since the visual world
).is fundamentally spatially hierarchical

Figure 5.2 The visual world forms a spatial hierarchy of visual modules: hyperlocal edges
combine into local objects such as eyes or ears, which combine into high-level concepts
such as "cat"

Convolutions operate over 3D tensors, called "feature maps", with two spatial axes
("height" and "width") as well as a "depth" axis (also called the "channels" axis). For a
RGB image, the dimension of the "depth" axis would be 3, since the image has 3 color
channels, red, green, and blue. For a black and white picture, like our MNIST digits, the
depth is just 1 (levels of gray). The convolution operation extracts patches from its input
feature map, and applies a same transformation to all of these patches, producing an 

. This output feature map is still a 3D tensor: it still has a width and aoutput feature map
height. Its depth can be arbitrary, since the output depth is a parameter of the layer, and
the different channels in that depth axis no longer stand for specific colors like in an RGB
input, rather they stand for what we call . Filters encode specific aspects of thefilters
input data: at a high level, a single filter could be encoding the concept "presence of a
face in the input", for instance.

In our MNIST example, the very first convolution layer takes a feature map of size 
 and outputs a feature map of size , i.e. it computes 32(28, 28, 1) (26, 26, 32)

"filters" over its input. Each of these 32 output channels contains a 26x26 grid of values,
which is a "response map" of the filter over the input, indicating the response of that filter
pattern at different locations in the input (figure 5.3). That is what the term "feature map"
really means: every dimension in depth axis is a feature (or filter), and the 2D tensor 

 is the 2D spatial "map" of the response of this filter over the input.output[:, :, n]
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Figure 5.3 The concept of response map: a response map is a 2D map of presence of a
pattern at different locations in an input

Convolutions are defined by two key parameters:

The size of the patches that are extracted from the inputs (typically 3x3 or 5x5). In our
example it was always 3x3, which is a very common choice.
The depth of the output feature map, i.e. the number of filters computed by the
convolution. In our example, we started with a depth of 32 and ended with a depth of 64.

In Keras  layers, these parameters are the first arguments passed to the layer: Conv2D

.Conv2D(output_depth, (window_height, window_width))

A convolution works by "sliding" these windows of size 3x3 or 5x5 over the 3D input
feature map, stopping at every possible location, and extracting the 3D patch of
surrounding features (shape ). Each(window_height, window_width, input_depth)

such 3D patch is then transformed (via a tensor product with a same learned weight
matrix, called "convolution kernel") into a 1D vector of shape . All(output_depth,)

these vectors are then spatially reassembled into a 3D output map of shape (height,
. Every spatial location in the output feature maps correspondswidth, output_depth)

to the same location in the input feature map (e.g. the bottom right corner of the output
contains information about the bottom right corner of the input). For instance, with 3x3
windows, the vector  comes from the 3D patch output[i, j, :] input[i-1:i+1,

. The full process is detailed in figure 5.4.j-1:j+1, :]
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Figure 5.4 How convolution works

Note that the output width and height may differ from the input width and height.
They may differ for two reasons:

Border effects, which can be countered by padding the input feature map.
The use of "strides", which we will define in a second.

Let’s took a deeper look at these notions.

Consider a 5x5 feature map (25 tiles in total). There are only 9 different tiles around
which you can center a 3x3 window (see figure 5.5 below), forming a 3x3 grid. Hence
the output feature map will be 3x3: it gets shrunk a little bit, by exactly two tiles
alongside each dimension in this case. You can see this "border effect" in action in our
example above: we start with 28x28 inputs, which become 26x26 after the first
convolution layer.

UNDERSTANDING BORDER EFFECTS AND PADDING
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Figure 5.5 Valid locations of 3x3 patches in a 5x5 input feature map

If you want to get an output feature map with the same spatial dimensions as the
input, you can use . Padding consists in adding an appropriate number of rowspadding
and columns on each side of the input feature map so to as make it possible to fit center
convolution windows around every input tile. For a 3x3 window, one would add one
column on the right, one column on the left, one row at the top, one row at the boom. For
a 5x5 window, it would be two rows (see figure 5.6).

Figure 5.6 Padding a 5x5 input in order to be able to extract 25 3x3 patches

In  layers, padding is configurable via the  argument, which takesConv2D padding

two values: , which means no padding (only "valid" window locations will be"valid"

used), and , which means "pad in such a way as to have an output with the same"same"

width and height as the input". The  argument defaults to .padding "valid"
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The other factor that can influence output size is the notion of "stride". In our description
of convolution so far, we have been assuming that the center tile of the convolution
windows were all contiguous. However, the distance between two successive windows is
actually a parameter of the convolution, called its "stride", which defaults to one. It is
possible to have "strided convolutions", i.e. convolutions with a non-unit stride. In figure
5.7 you can see the patches extracted by a convolution with stride 2 over a 5x5 input
(without padding):

Figure 5.7 3x3 convolution patches with 2x2 strides

Using stride 2 means that the width and height of the feature map get downsampled
by a factor 2 (besides any changes induced by border effects). Strided convolutions are
rarely used in practice, although they can come in handy for some types of models, and it
is generally good to be familiar with the concept.

To downsample feature maps, instead of strides, we tend to use the "max pooling"
operation, which you saw in action in our first convnet example. Let’s take a look at that
one.

In our convnet example, you may have noticed that the size of the feature maps gets
halved after every  layer. For instance, before the first MaxPooling2D MaxPooling2D

layers, the feature map is 26x26, but the max pooling operation halves it to 13x13. That’s
the role of max pooling: to aggressively downsample feature maps, much like strided
convolutions.

Max pooling consists in extracting windows from the input feature maps and
outputting the max value of each channel. It’s conceptually similar to convolution, except
that instead of transforming local patches via a learned linear transformation (the
convolution kernel), they are transformed via a hard-coded  tensor operation. A bigmax

difference with convolution, though, is the fact max pooling is usually done with 2x2
windows and stride 2, so as to downsample the feature maps by a factor 2. On the other
hand, convolution is most typically done with 3x3 windows and no stride (stride 1).

Why do we downsample feature maps in such a way? Why not remove the max
pooling layers and keep fairly large feature maps all the way up? Let’s take a look at this

UNDERSTANDING CONVOLUTION STRIDES

5.1.2 The max pooling operation
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option. The convolutional base of our model would then look like this:

Listing 5.7 A convnet without pooling layers

Listing 5.8 Displaying a summary of the model

What’s wrong with this setup? Two things.

It isn’t conducive to learning a spatial hierarchy of features. The 3x3 windows in the 3rd
layers would only contain information coming from 7x7 windows in the initial input. The
high-level patterns learned by our convnet would still be very small with regard to the
initial input, which may not be enough to learn to classify digits (try recognizing a digit
by only looking at it through windows of 7x7 pixels!). We need the features from the last
convolution layer to contain information about the totality of the input.
The final feature map has  total coefficients per sample. This is22*22*64 = 31,000
huge. If we were to flatten it to stick a Dense layer of size 512 on top, that layer would
have 15.8 million parameters. This is way too large for such a small model, and would
result in intense overfitting.

In short, the reason to use downsampling is simply to reduce the number of feature
map coefficients to process, as well as to induce spatial filter hierarchies by making
successive convolution layers look at increasingly large windows (in terms of the fraction
of the original input they cover).

Note that max pooling is not the only way one can achieve such downsampling. As
you already know, you could also use strides in the previous convolution layer. And you
could also use average pooling instead of max pooling, where each local input patch is
transformed by taking the average value of each channel over the patch, rather than the
max. However, max pooling tends to work better than these alternative solutions. In a
nutshell, the reason for this is that features tend to encode the spatial "presence" of some
pattern or concept over the different tiles of the feature map (hence the term "feature
map"), and it is more informative to look at the  of different featuresmaximal presence
than at their . So the most reasonable subsampling strategy is to firstaverage presence
produce dense maps of features (via unstrided convolutions) and then look at the

model_no_max_pool = models.Sequential()
model_no_max_pool.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model_no_max_pool.add(layers.Conv2D(64, (3, 3), activation='relu'))
model_no_max_pool.add(layers.Conv2D(64, (3, 3), activation='relu'))

>>> model_no_max_pool.summary()

Layer (type)                     Output Shape          Param #
================================================================
conv2d_4 (Conv2D)                (None, 26, 26, 32)    320
________________________________________________________________
conv2d_5 (Conv2D)                (None, 24, 24, 64)    18496
________________________________________________________________
conv2d_6 (Conv2D)                (None, 22, 22, 64)    36928
================================================================
Total params: 55,744
Trainable params: 55,744
Non-trainable params: 0
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maximal activation of the features over small patches, rather than looking at sparser
windows of the inputs (via strided convolutions) or averaging input patches, which could
cause you to miss feature presence information or dilute it.

At this point, you understand the basics of convnets—feature maps, convolution, max
pooling—and you know how to build a small convnet to solve a toy problem such as
MNIST digits classification. Now let’s move on to more useful practical applications.

Having to train an image classification model using only very little data is a common
situation, which you likely encounter yourself in practice if you ever do computer vision
in a professional context.

Having "few" samples can mean anywhere from a few hundreds to a few tens of
thousands of images. As a practical example, we will focus on classifying images as
"dogs" or "cats", in a dataset containing 4000 pictures of cats and dogs (2000 cats, 2000
dogs). We will use 2000 pictures for training, 1000 for validation, and finally 1000 for
testing.

In this section, we will review one basic strategy to tackle this problem: training a
new model from scratch on what little data we have. We will start by naively training a
small convnet on our 2000 training samples, without any regularization, to set a baseline
for what can be achieved. This will get us to a classification accuracy of 71%. At that
point, our main issue will be overfitting. Then we will introduce , adata augmentation
powerful technique for mitigating overfitting in computer vision. By leveraging data
augmentation, we will improve our network to reach an accuracy of 82%.

In the next section, we will review two more essential techniques for applying deep
learning to small datasets:  (this willdoing feature extraction with a pre-trained network
get us to an accuracy of 90% to 96%), and  (this will getfine-tuning a pre-trained network
us to our final accuracy of 97%). Together, these three strategies—training a small model
from scratch, doing feature extracting using a pre-trained model, and fine-tuning a
pre-trained model—will constitute your future toolbox for tackling the problem of doing
computer vision with small datasets.

You will sometimes hear that deep learning only works when lots of data is available.
This is in part a valid point: one fundamental characteristic of deep learning is that it is
able to find interesting features in the training data on its own, without any need for
manual feature engineering, and this can only be achieved when lots of training examples
are available. This is especially true for problems where the input samples are very
high-dimensional, like images.

However, what constitutes "lots" of samples is relative—relative to the size and depth
of the network you are trying to train, for starters. It isn’t possible to train a convnet to
solve a complex problem with just a few tens of samples, but a few hundreds can
potentially suffice if the model is small and well-regularized and if the task is simple.

5.2 Training a convnet from scratch on a small dataset

5.2.1 The relevance of deep learning for small-data problems
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Because convnets learn local, translation-invariant features, they are very data-efficient
on perceptual problems. Training a convnet from scratch on a very small image dataset
will still yield reasonable results despite a relative lack of data, without the need for any
custom feature engineering. You will see this in action in this section.

But what’s more, deep learning models are by nature highly repurposable: you can
take, say, an image classification or speech-to-text model trained on a large-scale dataset
then reuse it on a significantly different problem with only minor changes. Specifically,
in the case of computer vision, many pre-trained models (usually trained on the ImageNet
dataset) are now publicly available for download and can be used to bootstrap powerful
vision models out of very little data. That’s what we will do in the next section.

For now, let’s get started by getting our hands on the data.

The cats vs. dogs dataset that we will use isn’t packaged with Keras. It was made
available by Kaggle.com as part of a computer vision competition in late 2013, back
when convnets weren’t quite mainstream. You can download the original dataset at: 

 (you will need to create a Kaggle account ifwww.kaggle.com/c/dogs-vs-cats/data

you don’t already have one—don’t worry, the process is painless).
The pictures are medium-resolution color JPEGs. They look like this:

Figure 5.8 Samples from the cats vs. dogs dataset. Sizes were not modified: the samples
are heterogenous in size, appearance, etc.

Unsurprisingly, the cats vs. dogs Kaggle competition in 2013 was won by entrants
who used convnets. The best entries could achieve up to 95% accuracy. In our own
example, we will get fairly close to this accuracy (in the next section), even though we
will be training our models on less than 10% of the data that was available to the
competitors. This original dataset contains 25,000 images of dogs and cats (12,500 from
each class) and is 543MB large (compressed). After downloading and uncompressing it,

5.2.2 Downloading the data
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we will create a new dataset containing three subsets: a training set with 1000 samples of
each class, a validation set with 500 samples of each class, and finally a test set with 500
samples of each class.

Here are a few lines of code to do this:

Listing 5.9 Copying images to train, validation and test directories

import os, shutil

# The path to the directory where the original
# dataset was uncompressed
original_dataset_dir = '/Users/fchollet/Downloads/kaggle_original_data'

# The directory where we will
# store our smaller dataset
base_dir = '/Users/fchollet/Downloads/cats_and_dogs_small'
os.mkdir(base_dir)

# Directories for our training,
# validation and test splits
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)

# Directory with our training cat pictures
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)

# Directory with our training dog pictures
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)

# Directory with our validation cat pictures
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir)

# Directory with our validation dog pictures
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir)

# Directory with our validation cat pictures
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir)

# Directory with our validation dog pictures
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir)

# Copy first 1000 cat images to train_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_cats_dir, fname)
    shutil.copyfile(src, dst)

# Copy next 500 cat images to validation_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_cats_dir, fname)
    shutil.copyfile(src, dst)

# Copy next 500 cat images to test_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_cats_dir, fname)
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As a sanity check, let’s count how many pictures we have in each training split
(train/validation/test):

Listing 5.10 Counting our images

So we have indeed 2000 training images, and then 1000 validation images and 1000
test images. In each split, there is the same number of samples from each class: this is a
balanced binary classification problem, which means that classification accuracy will be
an appropriate measure of success.

We’ve already built a small convnet for MNIST in the previous example, so you should
being familiar with them. We will reuse the same general structure: our convnet will be a
stack of alternated  (with  activation) and  layers.Conv2D relu MaxPooling2D

However, since we are dealing with bigger images and a more complex problem, we
will make our network accordingly larger: it will have one more  + Conv2D

 stage. This serves both to augment the capacity of the network, and toMaxPooling2D

further reduce the size of the feature maps, so that they aren’t overly large when we reach
the  layer. Here, since we start from inputs of size 150x150 (a somewhatFlatten

arbitrary choice), we end up with feature maps of size 7x7 right before the Flatten
layer.

    shutil.copyfile(src, dst)

# Copy first 1000 dog images to train_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_dogs_dir, fname)
    shutil.copyfile(src, dst)

# Copy next 500 dog images to validation_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_dogs_dir, fname)
    shutil.copyfile(src, dst)

# Copy next 500 dog images to test_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_dogs_dir, fname)
    shutil.copyfile(src, dst)

>>> print('total training cat images:', len(os.listdir(train_cats_dir)))
total training cat images: 1000
>>> print('total training dog images:', len(os.listdir(train_dogs_dir)))
total training dog images: 1000
>>> print('total validation cat images:', len(os.listdir(validation_cats_dir)))
total validation cat images: 500
>>> print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
total validation dog images: 500
>>> print('total test cat images:', len(os.listdir(test_cats_dir)))
total test cat images: 500
>>> print('total test dog images:', len(os.listdir(test_dogs_dir)))
total test dog images: 500

5.2.3 Building our network
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Note that the depth of the feature maps is progressively increasing in the network
(from 32 to 128), while the size of the feature maps is decreasing (from 148x148 to 7x7).
This is a pattern that you will see in almost all convnets.

Since we are attacking a binary classification problem, we are ending the network
with a single unit (a  layer of size 1) and a  activation. This unit willDense sigmoid

encode the probability that the network is looking at one class or the other.

Listing 5.11 Instantiating a small convnet for cats vs. dogs classification

Let’s take a look at how the dimensions of the feature maps change with every
successive layer:

Listing 5.12 Displaying a summary of the model

For our compilation step, we’ll go with the  optimizer as usual. Since weRMSprop

from keras import layers
from keras import models

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

>>> model.summary()

Layer (type)                     Output Shape          Param #
================================================================
conv2d_1 (Conv2D)                (None, 148, 148, 32)  896
________________________________________________________________
maxpooling2d_1 (MaxPooling2D)    (None, 74, 74, 32)    0
________________________________________________________________
conv2d_2 (Conv2D)                (None, 72, 72, 64)    18496
________________________________________________________________
maxpooling2d_2 (MaxPooling2D)    (None, 36, 36, 64)    0
________________________________________________________________
conv2d_3 (Conv2D)                (None, 34, 34, 128)   73856
________________________________________________________________
maxpooling2d_3 (MaxPooling2D)    (None, 17, 17, 128)   0
________________________________________________________________
conv2d_4 (Conv2D)                (None, 15, 15, 128)   147584
________________________________________________________________
maxpooling2d_4 (MaxPooling2D)    (None, 7, 7, 128)     0
________________________________________________________________
flatten_1 (Flatten)              (None, 6272)          0
________________________________________________________________
dense_1 (Dense)                  (None, 512)           3211776
________________________________________________________________
dense_2 (Dense)                  (None, 1)             513
================================================================
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0
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ended our network with a single sigmoid unit, we will use binary crossentropy as our loss
(as a reminder, check out the table in Chapter 4, section 5 for a cheatsheet on what loss
function to use in various situations).

Listing 5.13 Configuring our model for training

As you already know by now, data should be formatted into appropriately pre-processed
floating point tensors before being fed into our network. Currently, our data sits on a
drive as JPEG files, so the steps for getting it into our network are roughly:

Read the picture files.
Decode the JPEG content to RBG grids of pixels.
Convert these into floating point tensors.
Rescale the pixel values (between 0 and 255) to the [0, 1] interval (as you know, neural
networks prefer to deal with small input values).

It may seem a bit daunting, but thankfully Keras has utilities to take care of these
steps automatically. Keras has a module with image processing helper tools, located at 

. In particular, it contains the class keras.preprocessing.image ImageDataGenerator

which allows to quickly set up Python generators that can automatically turn image files
on disk into batches of pre-processed tensors. This is what we will use here.

from keras import optimizers

model.compile(loss='binary_crossentropy',
              optimizer=optimizers.RMSprop(lr=1e-4),
              metrics=['acc'])

5.2.4 Data preprocessing
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NOTE Understanding Python generators

A Python generator is an object that acts as an iterator, i.e. an object you
can use with the  operator. Generators are built using the for/in yield

operator.

Here is an example of a generator that yields integers:

It prints:

Listing 5.14 Using ImageDataGenerator to read images from directories

Let’s take a look at the output of one of these generators: it yields batches of 150x150
RGB images (shape ) and binary labels (shape ). 20 is the(20, 150, 150, 3) (20,)

number of samples in each batch (the batch size). Note that the generator yields these
batches indefinitely: it just loops endlessly over the images present in the target folder.
For this reason, we need to  the iteration loop at some point.break

Listing 5.15 Displaying the shapes of a batch of data and labels

def generator():
    i = 0
    while True:
        i += 1
        yield i

for item in generator():
    print(item)
    if item > 4:
        break

1
2
3
4
5

from keras.preprocessing.image import ImageDataGenerator

# All images will be rescaled by 1./255
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        # This is the target directory
        train_dir,
        # All images will be resized to 150x150
        target_size=(150, 150),
        batch_size=20,
        # Since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=20,
        class_mode='binary')
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Let’s fit our model to the data using the generator. We do it using the 
 method, the equivalent of  for data generators like ours. It expects asfit_generator fit

first argument a Python generator that will yield batches of inputs and targets
indefinitely, like ours does. Because the data is being generated endlessly, the generator
needs to know example how many samples to draw from the generator before declaring
an epoch over. This is the role of the  argument: after having drawn steps_per_epoch

 batches from the generator, i.e. after having run for steps_per_epoch

 gradient descent steps, the fitting process will go to the next epoch. Insteps_per_epoch

our case, batches are 20-sample large, so it will take 100 batches until we see our target
of 2000 samples.

When using , one may pass a  argument, muchfit_generator validation_data

like with the  method. Importantly, this argument is allowed to be a data generatorfit

itself, but it could be a tuple of Numpy arrays as well. If you pass a generator as 
, then this generator is expected to yield batches of validation datavalidation_data

endlessly, and thus you should also specify the  argument, whichvalidation_steps

tells the process how many batches to draw from the validation generator for evaluation.

Listing 5.16 Fitting our model using a batch generator

It is good practice to always save your models after training:

Listing 5.17 Saving our model

Let’s plot the loss and accuracy of the model over the training and validation data
during training:

Listing 5.18 Displaying curves of loss and accuracy during training

>>> for data_batch, labels_batch in train_generator:
>>>     print('data batch shape:', data_batch.shape)
>>>     print('labels batch shape:', labels_batch.shape)
>>>     break
data batch shape: (20, 150, 150, 3)
labels batch shape: (20,)

history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=30,
      validation_data=validation_generator,
      validation_steps=50)

model.save('cats_and_dogs_small_1.h5')

import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
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Figure 5.9 Training and validation accuracy (training values as dots, validation values as
solid lines)

Figure 5.10 Training and validation loss (training values as dots, validation values as
solid lines)

These plots are characteristic of overfitting. Our training accuracy increases linearly
over time, until it reaches nearly 100%, while our validation accuracy stalls at 70-72%.
Our validation loss reaches its minimum after only five epochs then stalls, while the

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()
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training loss keeps decreasing linearly until it reaches nearly 0.
Because we only have relatively few training samples (2000), overfitting is going to

be our number one concern. You already know about a number of techniques that can
help mitigate overfitting, such as dropout and weight decay (L2 regularization). We are
now going to introduce a new one, specific to computer vision, and used almost
universally when processing images with deep learning models: .data augmentation

Overfitting is caused by having too few samples to learn from, rendering us unable to
train a model able to generalize to new data. Given infinite data, our model would be
exposed to every possible aspect of the data distribution at hand: we would never overfit.
Data augmentation takes the approach of generating more training data from existing
training samples, by "augmenting" the samples via a number of random transformations
that yield believable-looking images. The goal is that at training time, our model would
never see the exact same picture twice. This helps the model get exposed to more aspects
of the data and generalize better.

In Keras, this can be done by configuring a number of random transformations to be
performed on the images read by our  instance. Let’s get startedImageDataGenerator

with an example:

Listing 5.19 Setting up a data augmentation configuration via
ImageDataGenerator

These are just a few of the options available (for more, see the Keras documentation).
Let’s quickly go over what we just wrote:

rotation_range is a value in degrees (0-180), a range within which to randomly rotate
pictures.
width_shift and  are ranges (as a fraction of total width or height)height_shift
within which to randomly translate pictures vertically or horizontally.
shear_range is for randomly applying shearing transformations.
zoom_range is for randomly zooming inside pictures.
horizontal_flip is for randomly flipping half of the images horizontally—relevant
when there are no assumptions of horizontal asymmetry (e.g. real-world pictures).
fill_mode is the strategy used for filling in newly created pixels, which can appear after
a rotation or a width/height shift.

Let’s take a look at our augmented images:

Listing 5.20 Displaying some randomly augmented training images

5.2.5 Using data augmentation

datagen = ImageDataGenerator(
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')
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Figure 5.11 Generation of cat pictures via random data augmentation

If we train a new network using this data augmentation configuration, our network
will never see twice the same input. However, the inputs that it sees are still heavily
intercorrelated, since they come from a small number of original images—we cannot

# This is module with image preprocessing utilities
from keras.preprocessing import image

fnames = [os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)]

# We pick one image to "augment"
img_path = fnames[3]

# Read the image and resize it
img = image.load_img(img_path, target_size=(150, 150))

# Convert it to a Numpy array with shape (150, 150, 3)
x = image.img_to_array(img)

# Reshape it to (1, 150, 150, 3)
x = x.reshape((1,) + x.shape)

# The .flow() command below generates batches of randomly transformed images.
# It will loop indefinitely, so we need to `break` the loop at some point!
i = 0
for batch in datagen.flow(x, batch_size=1):
    plt.figure(i)
    imgplot = plt.imshow(image.array_to_img(batch[0]))
    i += 1
    if i % 4 == 0:
        break

plt.show()
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produce new information, we can only remix existing information. As such, this might
not be quite enough to completely get rid of overfitting. To further fight overfitting, we
will also add a Dropout layer to our model, right before the densely-connected classifier:

Listing 5.21 Defining a new convnet that includes dropout

Let’s train our network using data augmentation and dropout:

Listing 5.22 Training our convnet using data augmentation generators

Let’s save our model—we will be using it in the section on convnet visualization.

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer=optimizers.RMSprop(lr=1e-4),
              metrics=['acc'])

train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,)

# Note that the validation data should not be augmented!
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        # This is the target directory
        train_dir,
        # All images will be resized to 150x150
        target_size=(150, 150),
        batch_size=32,
        # Since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')

history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=100,
      validation_data=validation_generator,
      validation_steps=50)
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Listing 5.23 Saving our model

Let’s plot our results again:

Figure 5.12 Training and validation accuracy (training values as dots, validation values as
solid lines)

Figure 5.13 Training and validation loss (training values as dots, validation values as
solid lines)

Thanks to data augmentation and dropout, we are no longer overfitting: the training
curves are rather closely tracking the validation curves. We are now able to reach an
accuracy of 82%, a 15% relative improvement over the non-regularized model.

By leveraging regularization techniques even further and by tuning the network’s
parameters (such as the number of filters per convolution layer, or the number of layers
in the network), we may be able to get an even better accuracy, likely up to 86-87%.
However, it would prove very difficult to go any higher just by training our own convnet

model.save('cats_and_dogs_small_2.h5')
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from scratch, simply because we have so little data to work with. As a next step to
improve our accuracy on this problem, we will have to leverage a pre-trained model,
which will be the focus of the next two sections.

A common and highly effective approach to deep learning on small image datasets is to
leverage a pre-trained network. A pre-trained network is simply a saved network
previously trained on a large dataset, typically on a large-scale image classification task.
If this original dataset is large enough and general enough, then the spatial feature
hierarchy learned by the pre-trained network can effectively act as a generic model of our
visual world, and hence its features can prove useful for many different computer vision
problems, even though these new problems might involve completely different classes
from those of the original task. For instance, one might train a network on ImageNet
(where classes are mostly animals and everyday objects) and then re-purpose this trained
network for something as remote as identifying furniture items in images. Such
portability of learned features across different problems is a key advantage of deep
learning compared to many older shallow learning approaches, and it makes deep
learning very effective for small-data problems.

In our case, we will consider a large convnet trained on the ImageNet dataset (1.4
million labeled images and 1000 different classes). ImageNet contains many animal
classes, including different species of cats and dogs, and we can thus expect to perform
very well on our cat vs. dog classification problem.

We will use the VGG16 architecture, developed by Karen Simonyan and Andrew
Zisserman in 2014, a simple and widely used convnet architecture for ImageNet.
Although it is a bit of an older model, far from the current state of the art and somewhat
heavier than many other recent models, we chose it because its architecture is similar to
what you are already familiar with, and easy to understand without introducing any new
concepts. This may be your first encounter with one of these cutesie model
names—VGG, ResNet, Inception, Inception-ResNet, Xception… you will get used to
them, as they will come up frequently if you keep doing deep learning for computer
vision.

There are two ways to leverage a pre-trained network:  and feature extraction
. We will cover both of them. Let’s start with feature extraction.fine-tuning

Feature extraction consists of using the representations learned by a previous network to
extract interesting features from new samples. These features are then run through a new
classifier, which is trained from scratch.

As we saw previously, convnets used for image classification comprise two parts:
they start with a series of pooling and convolution layers, and they end with a
densely-connected classifier. The first part is called the "convolutional base" of the
model. In the case of convnets, "feature extraction" will simply consist of taking the

5.3 Using a pre-trained convnet

5.3.1 Feature extraction
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convolutional base of a previously-trained network, running the new data through it, and
training a new classifier on top of the output.

Figure 5.14 Swapping classifiers while keeping the same convolutional base

Why only reuse the convolutional base? Could we reuse the densely-connected
classifier as well? In general, it should be avoided. The reason is simply that the
representations learned by the convolutional base are likely to be more generic and
therefore more reusable: the feature maps of a convnet are presence maps of generic
concepts over a picture, which is likely to be useful regardless of the computer vision
problem at hand. On the other end, the representations learned by the classifier will
necessarily be very specific to the set of classes that the model was trained on—they will
only contain information about the presence probability of this or that class in the entire
picture. Additionally, representations found in densely-connected layers no longer
contain any information about  objects are located in the input image: these layerswhere
get rid of the notion of space, whereas the object location is still described by
convolutional feature maps. For problems where object location matters,
densely-connected features would be largely useless.

Note that the level of generality (and therefore reusability) of the representations
extracted by specific convolution layers depends on the depth of the layer in the model.
Layers that come earlier in the model extract local, highly generic feature maps (such as
visual edges, colors, and textures), while layers higher-up extract more abstract concepts
(such as "cat ear" or "dog eye"). So if your new dataset differs a lot from the dataset that
the original model was trained on, you may be better off using only the first few layers of
the model to do feature extraction, rather than using the entire convolutional base.

In our case, since the ImageNet class set did contain multiple dog and cat classes, it is
likely that it would be beneficial to reuse the information contained in the
densely-connected layers of the original model. However, we will chose not to, in order
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to cover the more general case where the class set of the new problem does not overlap
with the class set of the original model.

Let’s put this in practice by using the convolutional base of the VGG16 network,
trained on ImageNet, to extract interesting features from our cat and dog images, and
then training a cat vs. dog classifier on top of these features.

The VGG16 model, among others, comes pre-packaged with Keras. You can import
it from the  module. Here’s the list of image classification modelskeras.applications

(all pre-trained on the ImageNet dataset) that are available as part of 
:keras.applications

Xception
InceptionV3
ResNet50
VGG16
VGG19
MobileNet

Let’s instantiate the VGG16 model:

Listing 5.24 Instantiating the VGG16 convolutional base

We passed three arguments to the constructor:

weights, to specify which weight checkpoint to initialize the model from
include_top, which refers to including or not the densely-connected classifier on top of
the network. By default, this densely-connected classifier would correspond to the 1000
classes from ImageNet. Since we intend to use our own densely-connected classifier
(with only two classes, cat and dog), we don’t need to include it.
input_shape, the shape of the image tensors that we will feed to the network. This
argument is purely optional: if we don’t pass it, then the network will be able to process
inputs of any size.

Here’s the detail of the architecture of the VGG16 convolutional base: it’s very
similar to the simple convnets that you are already familiar with.

Listing 5.25 Displaying a summary of the convolutional base

from keras.applications import VGG16

conv_base = VGG16(weights='imagenet',
                  include_top=False,
                  input_shape=(150, 150, 3))

>>> conv_base.summary()

Layer (type)                     Output Shape          Param #
================================================================
input_1 (InputLayer)             (None, 150, 150, 3)   0
________________________________________________________________
block1_conv1 (Convolution2D)     (None, 150, 150, 64)  1792
________________________________________________________________
block1_conv2 (Convolution2D)     (None, 150, 150, 64)  36928
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The final feature map has shape . That’s the feature on top of which we(4, 4, 512)

will stick a densely-connected classifier.
At this point, there are two ways we could proceed:

Running the convolutional base over our dataset, recording its output to a Numpy array
on disk, then using this data as input to a standalone densely-connected classifier similar
to those you have seen in the first chapters of this book. This solution is very fast and
cheap to run, because it only requires running the convolutional base once for every input
image, and the convolutional base is by far the most expensive part of the pipeline.
However, for the exact same reason, this technique would not allow us to leverage data
augmentation at all.
Extending the model we have ( ) by adding  layers on top, and runningconv_base Dense
the whole thing end-to-end on the input data. This allows us to use data augmentation,
because every input image is going through the convolutional base every time it is seen
by the model. However, for this same reason, this technique is far more expensive than
the first one.

We will cover both techniques. Let’s walk through the code required to set-up the
first one: recording the output of  on our data and using these outputs asconv_base

inputs to a new model.
We will start by simply running instances of the previously-introduced 

 to extract images as Numpy arrays as well as their labels. We willImageDataGenerator

extract features from these images simply by calling the  method of the predict

________________________________________________________________
block1_pool (MaxPooling2D)       (None, 75, 75, 64)    0
________________________________________________________________
block2_conv1 (Convolution2D)     (None, 75, 75, 128)   73856
________________________________________________________________
block2_conv2 (Convolution2D)     (None, 75, 75, 128)   147584
________________________________________________________________
block2_pool (MaxPooling2D)       (None, 37, 37, 128)   0
________________________________________________________________
block3_conv1 (Convolution2D)     (None, 37, 37, 256)   295168
________________________________________________________________
block3_conv2 (Convolution2D)     (None, 37, 37, 256)   590080
________________________________________________________________
block3_conv3 (Convolution2D)     (None, 37, 37, 256)   590080
________________________________________________________________
block3_pool (MaxPooling2D)       (None, 18, 18, 256)   0
________________________________________________________________
block4_conv1 (Convolution2D)     (None, 18, 18, 512)   1180160
________________________________________________________________
block4_conv2 (Convolution2D)     (None, 18, 18, 512)   2359808
________________________________________________________________
block4_conv3 (Convolution2D)     (None, 18, 18, 512)   2359808
________________________________________________________________
block4_pool (MaxPooling2D)       (None, 9, 9, 512)     0
________________________________________________________________
block5_conv1 (Convolution2D)     (None, 9, 9, 512)     2359808
________________________________________________________________
block5_conv2 (Convolution2D)     (None, 9, 9, 512)     2359808
________________________________________________________________
block5_conv3 (Convolution2D)     (None, 9, 9, 512)     2359808
________________________________________________________________
block5_pool (MaxPooling2D)       (None, 4, 4, 512)     0
================================================================
Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0
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 model.conv_base

Listing 5.26 Extracting features using the pre-trained convolutional base

The extracted features are currently of shape . We will feed(samples, 4, 4, 512)

them to a densely-connected classifier, so first we must flatten them to (samples,
:8192)

At this point, we can define our densely-connected classifier (note the use of dropout
for regularization), and train it on the data and labels that we just recorded:

import os
import numpy as np
from keras.preprocessing.image import ImageDataGenerator

base_dir = '/Users/fchollet/Downloads/cats_and_dogs_small'
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')

datagen = ImageDataGenerator(rescale=1./255)
batch_size = 20

def extract_features(directory, sample_count):
    features = np.zeros(shape=(sample_count, 4, 4, 512))
    labels = np.zeros(shape=(sample_count))
    generator = datagen.flow_from_directory(
        directory,
        target_size=(150, 150),
        batch_size=batch_size,
        class_mode='binary')
    i = 0
    for inputs_batch, labels_batch in generator:
        features_batch = conv_base.predict(inputs_batch)
        features[i * batch_size : (i + 1) * batch_size] = features_batch
        labels[i * batch_size : (i + 1) * batch_size] = labels_batch
        i += 1
        if i * batch_size >= sample_count:
            # Note that since generators yield data indefinitely in a loop,
            # we must `break` after every image has been seen once.
            break
    return features, labels

train_features, train_labels = extract_features(train_dir, 2000)
validation_features, validation_labels = extract_features(validation_dir, 1000)
test_features, test_labels = extract_features(test_dir, 1000)

train_features = np.reshape(train_features, (2000, 4 * 4 * 512))
validation_features = np.reshape(validation_features, (1000, 4 * 4 * 512))
test_features = np.reshape(test_features, (1000, 4 * 4 * 512))

from keras import models
from keras import layers
from keras import optimizers

model = models.Sequential()
model.add(layers.Dense(256, activation='relu', input_dim=4 * 4 * 512))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer=optimizers.RMSprop(lr=2e-5),
              loss='binary_crossentropy',
              metrics=['acc'])
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Training is very fast, since we only have to deal with two  layers—an epochDense

takes less than one second even on CPU.
Let’s take a look at the loss and accuracy curves during training:

Listing 5.27 Plotting our results

Figure 5.15 Training and validation accuracy for simple feature extraction (training values
as dots, validation values as solid lines)

history = model.fit(train_features, train_labels,
                    epochs=30,
                    batch_size=20,
                    validation_data=(validation_features, validation_labels))

import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()
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Figure 5.16 Training and validation loss for simple feature extraction (training values as
dots, validation values as solid lines)

We reach a validation accuracy of about 90%, much better than what we could
achieve in the previous section with our small model trained from scratch. However, our
plots also indicate that we are overfitting almost from the start—despite using dropout
with a fairly large rate. This is because this technique does not leverage data
augmentation, which is essential to preventing overfitting with small image datasets.

Now, let’s review the second technique we mentioned for doing feature extraction,
which is much slower and more expensive, but which allows us to leverage data
augmentation during training: extending the  model and running it end-to-endconv_base

on the inputs. Note that this technique is in fact so expensive that you should only
attempt it if you have access to a GPU: it is absolutely intractable on CPU. If you cannot
run your code on GPU, then the previous technique is the way to go.

Because models behave just like layers, you can add a model (like our ) toconv_base

a  model just like you would add a layer. So you can do the following:Sequential

Listing 5.28 Adding a densely-connected classifier on top of the convolutional
base

This is what our model looks like now:

Listing 5.29 Summary of the extended model

from keras import models
from keras import layers

model = models.Sequential()
model.add(conv_base)
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

>>> model.summary()

Layer (type)                     Output Shape          Param #
================================================================
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As you can see, the convolutional base of VGG16 has 14,714,688 parameters, which
is very large. The classifier we are adding on top has 2 million parameters.

Before we compile and train our model, a very important thing to do is to freeze the
convolutional base. "Freezing" a layer or set of layers means preventing their weights
from getting updated during training. If we don’t do this, then the representations that
were previously learned by the convolutional base would get modified during training.
Since the  layers on top are randomly initialized, very large weight updates wouldDense

be propagated through the network, effectively destroying the representations previously
learned.

In Keras, freezing a network is done by setting its  attribute to :trainable False

Listing 5.30 Freezing the convolutional base

With this setup, only the weights from the two  layers that we added will beDense

trained. That’s a total of four weight tensors: two per layer (the main weight matrix and
the bias vector). Note that in order for these changes to take effect, we must first compile
the model. If you ever modify weight trainability after compilation, you should then
re-compile the model, or these changes would be ignored.

Now we can start training our model, with the same data augmentation configuration
that we used in our previous example:

Listing 5.31 Training the model end-to-end with a frozen convolutional base

vgg16 (Model)                    (None, 4, 4, 512)     14714688
________________________________________________________________
flatten_1 (Flatten)              (None, 8192)          0
________________________________________________________________
dense_1 (Dense)                  (None, 256)           2097408
________________________________________________________________
dense_2 (Dense)                  (None, 1)             257
================================================================
Total params: 16,812,353
Trainable params: 16,812,353
Non-trainable params: 0

>>> print('This is the number of trainable weights '
         'before freezing the conv base:', len(model.trainable_weights))
This is the number of trainable weights before freezing the conv base: 30
>>> conv_base.trainable = False
>>> print('This is the number of trainable weights '
          'after freezing the conv base:', len(model.trainable_weights))
This is the number of trainable weights after freezing the conv base: 4

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(
      rescale=1./255,
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')
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Let’s plot our results again:

Figure 5.17 Training and validation accuracy for feature extraction with data
augmentation (training values as dots, validation values as solid lines)

# Note that the validation data should not be augmented!
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        # This is the target directory
        train_dir,
        # All images will be resized to 150x150
        target_size=(150, 150),
        batch_size=20,
        # Since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=20,
        class_mode='binary')

model.compile(loss='binary_crossentropy',
              optimizer=optimizers.RMSprop(lr=2e-5),
              metrics=['acc'])

history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=30,
      validation_data=validation_generator,
      validation_steps=50)
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Figure 5.18 Training and validation loss for feature extraction with data augmentation
(training values as dots, validation values as solid lines)

As you can see, we reach a validation accuracy of about 96%. This is much better
than our small convnet trained from scratch.

Another widely used technique for model reuse, complementary to feature extraction, is 
. Fine-tuning consists in unfreezing a few of the top layers of a frozen modelfine-tuning

base used for feature extraction, and jointly training both the newly added part of the
model (in our case, the fully-connected classifier) and these top layers. This is called
"fine-tuning" because it slightly adjusts the more abstract representations of the model
being reused, in order to make them more relevant for the problem at hand.

5.3.2 Fine-tuning
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Figure 5.19 Fine-tuning the last convolutional block of the VGG16 network

We have stated before that it was necessary to freeze the convolution base of VGG16
in order to be able to train a randomly initialized classifier on top. For the same reason, it
is only possible to fine-tune the top layers of the convolutional base once the classifier on
top has already been trained. If the classified wasn’t already trained, then the error signal
propagating through the network during training would be too large, and the
representations previously learned by the layers being fine-tuned would be destroyed.
Thus the steps for fine-tuning a network are as follow:

1) Add your custom network on top of an already trained base network.
2) Freeze the base network.
3) Train the part you added.
4) Unfreeze some layers in the base network.
5) Jointly train both these layers and the part you added.
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We have already completed the first 3 steps when doing feature extraction. Let’s
proceed with the 4th step: we will unfreeze our , and then freeze individualconv_base

layers inside of it.
As a reminder, this is what our convolutional base looks like:

Listing 5.32 Displaying a summary of the convolutional base

We will fine-tune the last 3 convolutional layers, which means that all layers up until 
 should be frozen, and the layers ,  and block4_pool block5_conv1 block5_conv2

 should be trainable.block5_conv3

Why not fine-tune more layers? Why not fine-tune the entire convolutional base? We
could. However, we need to consider that:

Earlier layers in the convolutional base encode more generic, reusable features, while
layers higher up encode more specialized features. It is more useful to fine-tune the more
specialized features, as these are the ones that need to be repurposed on our new problem.
There would be fast-decreasing returns in fine-tuning lower layers.
The more parameters we are training, the more we are at risk of overfitting. The

>>> conv_base.summary()

Layer (type)                     Output Shape          Param #
================================================================
input_1 (InputLayer)             (None, 150, 150, 3)   0
________________________________________________________________
block1_conv1 (Convolution2D)     (None, 150, 150, 64)  1792
________________________________________________________________
block1_conv2 (Convolution2D)     (None, 150, 150, 64)  36928
________________________________________________________________
block1_pool (MaxPooling2D)       (None, 75, 75, 64)    0
________________________________________________________________
block2_conv1 (Convolution2D)     (None, 75, 75, 128)   73856
________________________________________________________________
block2_conv2 (Convolution2D)     (None, 75, 75, 128)   147584
________________________________________________________________
block2_pool (MaxPooling2D)       (None, 37, 37, 128)   0
________________________________________________________________
block3_conv1 (Convolution2D)     (None, 37, 37, 256)   295168
________________________________________________________________
block3_conv2 (Convolution2D)     (None, 37, 37, 256)   590080
________________________________________________________________
block3_conv3 (Convolution2D)     (None, 37, 37, 256)   590080
________________________________________________________________
block3_pool (MaxPooling2D)       (None, 18, 18, 256)   0
________________________________________________________________
block4_conv1 (Convolution2D)     (None, 18, 18, 512)   1180160
________________________________________________________________
block4_conv2 (Convolution2D)     (None, 18, 18, 512)   2359808
________________________________________________________________
block4_conv3 (Convolution2D)     (None, 18, 18, 512)   2359808
________________________________________________________________
block4_pool (MaxPooling2D)       (None, 9, 9, 512)     0
________________________________________________________________
block5_conv1 (Convolution2D)     (None, 9, 9, 512)     2359808
________________________________________________________________
block5_conv2 (Convolution2D)     (None, 9, 9, 512)     2359808
________________________________________________________________
block5_conv3 (Convolution2D)     (None, 9, 9, 512)     2359808
________________________________________________________________
block5_pool (MaxPooling2D)       (None, 4, 4, 512)     0
================================================================
Total params: 14714688
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convolutional base has 15M parameters, so it would be risky to attempt to train it on our
small dataset.

Thus, in our situation, it is a good strategy to only fine-tune the top 2 to 3 layers in the
convolutional base.

Let’s set this up, starting from where we left off in the previous example:

Listing 5.33 Freezing all layers up to a specific one

Now we can start fine-tuning our network. We will do this with the RMSprop
optimizer, using a very low learning rate. The reason for using a low learning rate is that
we want to limit the magnitude of the modifications we make to the representations of
the 3 layers that we are fine-tuning. Updates that are too large may harm these
representations.

Now let’s proceed with fine-tuning:

Listing 5.34 Fine-tuning our model

Let’s plot our results using the same plotting code as before:

conv_base.trainable = True

set_trainable = False
for layer in conv_base.layers:
    if layer.name == 'block5_conv1':
        set_trainable = True
    if set_trainable:
        layer.trainable = True
    else:
        layer.trainable = False

model.compile(loss='binary_crossentropy',
              optimizer=optimizers.RMSprop(lr=1e-5),
              metrics=['acc'])

history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=100,
      validation_data=validation_generator,
      validation_steps=50)
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Figure 5.20 Training and validation accuracy for fine-tuning (training values as dots,
validation values as solid lines)

Figure 5.21 Training and validation loss for fine-tuning (training values as dots, validation
values as solid lines)

These curves look very noisy. To make them more readable, we can smooth them by
replacing every loss and accuracy with exponential moving averages of these quantities.
Here’s a trivial utility function to do this:

Listing 5.35 Smoothing our plots

def smooth_curve(points, factor=0.8):
  smoothed_points = []
  for point in points:
    if smoothed_points:
      previous = smoothed_points[-1]
      smoothed_points.append(previous * factor + point * (1 - factor))
    else:
      smoothed_points.append(point)
  return smoothed_points

plt.plot(epochs,
         smooth_curve(acc), 'bo', label='Smoothed training acc')
plt.plot(epochs,
         smooth_curve(val_acc), 'b', label='Smoothed validation acc')
plt.title('Training and validation accuracy')
plt.legend()
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Figure 5.22 Smoothed curves for training and validation accuracy for fine-tuning (training
values as dots, validation values as solid lines)

Figure 5.23 Smoothed curves for training and validation loss for fine-tuning (training
values as dots, validation values as solid lines)

These curves look much cleaner and more stable. We are seeing a nice 1% absolute
improvement.

Note that the loss curve does not show any real improvement (in fact, it is
deteriorating). You may wonder, how could accuracy improve if the loss isn’t
decreasing? The answer is simple: what we display is an average of pointwise loss
values, but what actually matters for accuracy is the distribution of the loss values, not
their average, since accuracy is the result of a binary thresholding of the class probability

plt.figure()

plt.plot(epochs,
         smooth_curve(loss), 'bo', label='Smoothed training loss')
plt.plot(epochs,
         smooth_curve(val_loss), 'b', label='Smoothed validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()
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predicted by the model. The model may still be improving even if this isn’t reflected in
the average loss.

We can now finally evaluate this model on the test data:

Here we get a test accuracy of 97%. In the original Kaggle competition around this
dataset, this would have been one of the top results. However, using modern deep
learning techniques, we managed to reach this result using only a very small fraction of
the training data available (about 10%). There is a huge difference between being able to
train on 20,000 samples compared to 2,000 samples!

Here’s what you should take away from the exercises of these past two sections:

Convnets are the best type of machine learning models for computer vision tasks. It is
possible to train one from scratch even on a very small dataset, with decent results.
On a small dataset, overfitting will be the main issue. Data augmentation is a powerful
way to fight overfitting when working with image data.
It is easy to reuse an existing convnet on a new dataset, via feature extraction. This is a
very valuable technique for working with small image datasets.
As a complement to feature extraction, one may use fine-tuning, which adapts to a new
problem some of the representations previously learned by an existing model. This
pushes performance a bit further.

Now you have a solid set of tools for dealing with image classification problems, in
particular with small datasets.

It is often said that deep learning models are "black boxes", learning representations that
are difficult to extract and present in a human-readable form. While this is partially true
for certain types of deep learning models, it is definitely not true for convnets. The
representations learned by convnets are highly amenable to visualization, in large part
because they are . Since 2013, a wide array ofrepresentations of visual concepts
techniques have been developed for visualizing and interpreting these representations.
We won’t survey all of them, but we will cover three of the most accessible and useful
ones:

Visualizing intermediate convnet outputs ("intermediate activations"). This is useful to
understand how successive convnet layers transform their input, and to get a first idea of
the meaning of individual convnet filters.
Visualizing convnets filters. This is useful to understand precisely what visual pattern or
concept each filter in a convnet is receptive to.

5.4 Visualizing what convnets learn

test_generator = test_datagen.flow_from_directory(
        test_dir,
        target_size=(150, 150),
        batch_size=20,
        class_mode='binary')

test_loss, test_acc = model.evaluate_generator(test_generator, steps=50)
print('test acc:', test_acc)

5.3.3 Take-aways: using convnets with small datasets
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Visualizing heatmaps of class activation in an image. This is useful to understand which
part of an image where identified as belonging to a given class, and thus allows to
localize objects in images.

For the first method—activation visualization—we will use the small convnet that we
trained from scratch on the cat vs. dog classification problem two sections ago. For the
next two methods, we will use the VGG16 model that we introduced in the previous
section.

Visualizing intermediate activations consists in displaying the feature maps that are
output by various convolution and pooling layers in a network, given a certain input (the
output of a layer is often called its "activation", the output of the activation function).
This gives a view into how an input is decomposed unto the different filters learned by
the network. These feature maps we want to visualize have 3 dimensions: width, height,
and depth (channels). Each channel encodes relatively independent features, so the
proper way to visualize these feature maps is by independently plotting the contents of
every channel, as a 2D image. Let’s start by loading the model that we saved in section
5.2:

Listing 5.36 Loading a saved model and printing a summary

This will be the input image we will use—a picture of a cat, not part of images that
the network was trained on:

5.4.1 Visualizing intermediate activations

>>> from keras.models import load_model
>>> model = load_model('cats_and_dogs_small_2.h5')
>>> model.summary()  # As a reminder.
________________________________________________________________
Layer (type)                     Output Shape          Param #
================================================================
conv2d_5 (Conv2D)                (None, 148, 148, 32)  896
________________________________________________________________
maxpooling2d_5 (MaxPooling2D)    (None, 74, 74, 32)    0
________________________________________________________________
conv2d_6 (Conv2D)                (None, 72, 72, 64)    18496
________________________________________________________________
maxpooling2d_6 (MaxPooling2D)    (None, 36, 36, 64)    0
________________________________________________________________
conv2d_7 (Conv2D)                (None, 34, 34, 128)   73856
________________________________________________________________
maxpooling2d_7 (MaxPooling2D)    (None, 17, 17, 128)   0
________________________________________________________________
conv2d_8 (Conv2D)                (None, 15, 15, 128)   147584
________________________________________________________________
maxpooling2d_8 (MaxPooling2D)    (None, 7, 7, 128)     0
________________________________________________________________
flatten_2 (Flatten)              (None, 6272)          0
________________________________________________________________
dropout_1 (Dropout)              (None, 6272)          0
________________________________________________________________
dense_3 (Dense)                  (None, 512)           3211776
________________________________________________________________
dense_4 (Dense)                  (None, 1)             513
================================================================
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0
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Listing 5.37 Preprocessing a single image

Let’s display our picture:

Listing 5.38 Displaying the test picture

Figure 5.24 Our test cat picture

In order to extract the feature maps we want to look at, we will create a Keras model
that takes batches of images as input, and outputs the activations of all convolution and
pooling layers. To do this, we will use the Keras class . A  is instantiatedModel Model

using two arguments: an input tensor (or list of input tensors), and an output tensor (or
list of output tensors). The resulting class is a Keras model, just like the Sequential
models that you are familiar with, mapping the specified inputs to the specified outputs.
What sets the  class apart is that it allows for models with multiple outputs, unlike Model

. For more information about the  class, see Chapter 7, Section 1.Sequential Model

Listing 5.39 Instantiating a Model from an input tensor and a list of output tensors

img_path = '/Users/fchollet/Downloads/cats_and_dogs_small/test/cats/cat.1700.jpg'

# We preprocess the image into a 4D tensor
from keras.preprocessing import image
import numpy as np

img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img)
img_tensor = np.expand_dims(img_tensor, axis=0)
# Remember that the model was trained on inputs
# that were preprocessed in the following way:
img_tensor /= 255.

# Its shape is (1, 150, 150, 3)
print(img_tensor.shape)

import matplotlib.pyplot as plt

plt.imshow(img_tensor[0])
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When fed an image input, this model returns the values of the layer activations in the
original model. This is the first time you encounter a multi-output model in this book:
until now the models you have seen only had exactly one input and one output. In the
general case, a model could have any number of inputs and outputs. This one has one
input and 5 outputs, one output per layer activation.

Listing 5.40 Running our model in predict mode

For instance, this is the activation of the first convolution layer for our cat image
input:

Listing 5.41 First entry in the outputs: the output of the first layer of the original
model

It’s a 148x148 feature map with 32 channels. Let’s try visualizing the 4th channel:

Listing 5.42 Plotting the 4th channel of the activation of the first layer of the
original model

from keras import models

# Extracts the outputs of the top 8 layers:
layer_outputs = [layer.output for layer in model.layers[:8]]
# Creates a model that will return these outputs, given the model input:
activation_model = models.Model(inputs=model.input, outputs=layer_outputs)

# This will return a list of 5 Numpy arrays:
# one array per layer activation
activations = activation_model.predict(img_tensor)

>>> first_layer_activation = activations[0]
>>> print(first_layer_activation.shape)
(1, 148, 148, 32)

import matplotlib.pyplot as plt

plt.matshow(first_layer_activation[0, :, :, 4], cmap='viridis')
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Figure 5.25 4th channel of the
activation of the first layer on our test
cat picture

This channel appears to encode a diagonal edge detector. Let’s try the 7th
channel—but note that your own channels may vary, since the specific filters learned by
convolution layers are not deterministic.

Listing 5.43 Plotting the 7th channel of the activation of the first layer of the
original model

Figure 5.26 7th of the activation of the
first layer on our test cat picture

This one looks like a "bright green dot" detector, useful to encode cat eyes. At this
point, let’s go and plot a complete visualization of all the activations in the network.
We’ll extract and plot every channel in each of our 5 activation maps, and we will stack
the results in one big image tensor, with channels stacked side by side.

Listing 5.44 Visualizing every channel in every intermediate activation

plt.matshow(first_layer_activation[0, :, :, 7], cmap='viridis')

# These are the names of the layers, so can have them as part of our plot
layer_names = []
for layer in model.layers[:8]:
    layer_names.append(layer.name)

images_per_row = 16

# Now let's display our feature maps
for layer_name, layer_activation in zip(layer_names, activations):
    # This is the number of features in the feature map
    n_features = layer_activation.shape[-1]

    # The feature map has shape (1, size, size, n_features)
    size = layer_activation.shape[1]

    # We will tile the activation channels in this matrix
    n_cols = n_features // images_per_row
    display_grid = np.zeros((size * n_cols, images_per_row * size))
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    # We'll tile each filter into this big horizontal grid
    for col in range(n_cols):
        for row in range(images_per_row):
            channel_image = layer_activation[0,
                                             :, :,
                                             col * images_per_row + row]
            # Post-process the feature to make it visually palatable
            channel_image -= channel_image.mean()
            channel_image /= channel_image.std()
            channel_image *= 64
            channel_image += 128
            channel_image = np.clip(channel_image, 0, 255).astype('uint8')
            display_grid[col * size : (col + 1) * size,
                         row * size : (row + 1) * size] = channel_image

    # Display the grid
    scale = 1. / size
    plt.figure(figsize=(scale * display_grid.shape[1],
                        scale * display_grid.shape[0]))
    plt.title(layer_name)
    plt.grid(False)
    plt.imshow(display_grid, aspect='auto', cmap='viridis')
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Figure 5.27 Every channel of every layer activation on our test cat picture

A few remarkable things to note here:

The first layer acts as a collection of various edge detectors. At that stage, the activations
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are still retaining almost all of the information present in the initial picture.
As we go higher-up, the activations become increasingly abstract and less visually
interpretable. They start encoding higher-level concepts such as "cat ear" or "cat eye".
Higher-up presentations carry increasingly less information about the visual contents of
the image, and increasingly more information related to the class of the image.
The sparsity of the activations is increasing with the depth of the layer: in the first layer,
all filters are activated by the input image, but in the following layers more and more
filters are blank. This means that the pattern encoded by the filter isn’t found in the input
image.

We have just evidenced a very important universal characteristic of the
representations learned by deep neural networks: the features extracted by a layer get
increasingly abstract with the depth of the layer. The activations of layers higher-up carry
less and less information about the specific input being seen, and more and more
information about the target (in our case, the class of the image: cat or dog). A deep
neural network effectively acts as an , with raw datainformation distillation pipeline
going in (in our case, RBG pictures), and getting repeatedly transformed so that
irrelevant information gets filtered out (e.g. the specific visual appearance of the image)
while useful information get magnified and refined (e.g. the class of the image).

This is analogous to the way humans and animals perceive the world: after observing
a scene for a few seconds, a human can remember which abstract objects were present in
it (e.g. bicycle, tree) but could not remember the specific appearance of these objects. In
fact, if you tried to draw a generic bicycle from mind right now, chances are you could
not get it even remotely right, even though you have seen thousands of bicycles in your
lifetime. Try it right now: this effect is absolutely real. You brain has learned to
completely abstract its visual input, to transform it into high-level visual concepts while
completely filtering out irrelevant visual details, making it tremendously difficult to
remember how things around us actually look.

Figure 5.28 Left: attempts to draw a bicycle from memory. Right: what a schematic
bicycle should look like.
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Another easy thing to do to inspect the filters learned by convnets is to display the visual
pattern that each filter is meant to respond to. This can be done with gradient ascent in

: applying  to the value of the input image of a convnet so asinput space gradient descent
to maximize the response of a specific filter, starting from a blank input image. The
resulting input image would be one that the chosen filter is maximally responsive to.

The process is simple: we will build a loss function that maximizes the value of a
given filter in a given convolution layer, then we will use stochastic gradient descent to
adjust the values of the input image so as to maximize this activation value. For instance,
here’s a loss for the activation of filter 0 in the layer "block3_conv1" of the VGG16
network, pre-trained on ImageNet:

Listing 5.45 Defining the loss tensor for filter visualization

To implement gradient descent, we will need the gradient of this loss with respect to
the model’s input. To do this, we will use the  function packaged with the gradients

 module of Keras:backend

Listing 5.46 Obtaining the gradient of the loss with regard to the input

A non-obvious trick to use for the gradient descent process to go smoothly is to
normalize the gradient tensor, by dividing it by its L2 norm (the square root of the
average of the square of the values in the tensor). This ensures that the magnitude of the
updates done to the input image is always within a same range.

Listing 5.47 The gradient normalization trick

Now we need a way to compute the value of the loss tensor and the gradient tensor,
given an input image. We can define a Keras backend function to do this:  is aiterate

5.4.2 Visualizing convnet filters

from keras.applications import VGG16
from keras import backend as K

model = VGG16(weights='imagenet',
              include_top=False)

layer_name = 'block3_conv1'
filter_index = 0

layer_output = model.get_layer(layer_name).output
loss = K.mean(layer_output[:, :, :, filter_index])

# The call to `gradients` returns a list of tensors (of size 1 in this case)
# hence we only keep the first element -- which is a tensor.
grads = K.gradients(loss, model.input)[0]

# We add 1e-5 before dividing so as to avoid accidentally dividing by 0.
grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)
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function that takes a Numpy tensor (as a list of tensors of size 1) and returns a list of two
Numpy tensors: the loss value and the gradient value.

Listing 5.48 Defining a Keras function for fetching Numpy output values given
Numpy input values

At this point we can define a Python loop to do stochastic gradient descent:

Listing 5.49 Loss maximization via stochastic gradient descent over the input
parameters

The resulting image tensor will be a floating point tensor of shape (1, 150, 150,
, with values that may not be integer within . Hence we would need to3) [0, 255]

post-process this tensor to turn it into a displayable image. We do it with the following
straightforward utility function:

Listing 5.50 Utility function to convert a tensor into a valid image

Now we have all the pieces, let’s put them together into a Python function that takes
as input a layer name and a filter index, and that returns a valid image tensor representing
the pattern that maximizes the activation the specified filter:

Listing 5.51 Putting it all together: a function to generate filter visualizations

iterate = K.function([model.input], [loss, grads])

# Let's test it:
import numpy as np
loss_value, grads_value = iterate([np.zeros((1, 150, 150, 3))])

# We start from a gray image with some noise
input_img_data = np.random.random((1, 150, 150, 3)) * 20 + 128.

# Run gradient ascent for 40 steps
step = 1.  # this is the magnitude of each gradient update
for i in range(40):
    # Compute the loss value and gradient value
    loss_value, grads_value = iterate([input_img_data])
    # Here we adjust the input image in the direction that maximizes the loss
    input_img_data += grads_value * step

def deprocess_image(x):
    # normalize tensor: center on 0., ensure std is 0.1
    x -= x.mean()
    x /= (x.std() + 1e-5)
    x *= 0.1

    # clip to [0, 1]
    x += 0.5
    x = np.clip(x, 0, 1)

    # convert to RGB array
    x *= 255
    x = np.clip(x, 0, 255).astype('uint8')
    return x
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Let’s try this:

Listing 5.52 Visualising the response patterns of filter 0 of block3_conv1

Figure 5.29 Pattern that the 0th
channel in layer block3_conv1
maximally responds to

It seems that filter 0 in layer  is responsive to a polka dot pattern.block3_conv1

Now the fun part: we can start visualising every single filter in every layer. For
simplicity, we will only look at the first 64 filters in each layer, and will only look at the
first layer of each convolution block (block1_conv1, block2_conv1, block3_conv1,
block4_conv1, block5_conv1). We will arrange the outputs on a 8x8 grid of 64x64 filter
patterns, with some black margins between each filter pattern.

def generate_pattern(layer_name, filter_index, size=150):
    # Build a loss function that maximizes the activation
    # of the nth filter of the layer considered.
    layer_output = model.get_layer(layer_name).output
    loss = K.mean(layer_output[:, :, :, filter_index])

    # Compute the gradient of the input picture wrt this loss
    grads = K.gradients(loss, model.input)[0]

    # Normalization trick: we normalize the gradient
    grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)

    # This function returns the loss and grads given the input picture
    iterate = K.function([model.input], [loss, grads])

    # We start from a gray image with some noise
    input_img_data = np.random.random((1, size, size, 3)) * 20 + 128.

    # Run gradient ascent for 40 steps
    step = 1.
    for i in range(40):
        loss_value, grads_value = iterate([input_img_data])
        input_img_data += grads_value * step

    img = input_img_data[0]
    return deprocess_image(img)

>>> plt.imshow(generate_pattern('block3_conv1', 0))
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Listing 5.53 Generating of grid of all filter response patterns in a layer

Figure 5.30 Filter patterns for layer block1_conv1

layer_name = 'block1_conv1'
size = 64
margin = 5

# This a empty (black) image where we will store our results.
results = np.zeros((8 * size + 7 * margin, 8 * size + 7 * margin, 3))

for i in range(8):  # iterate over the rows of our results grid
    for j in range(8):  # iterate over the columns of our results grid
        # Generate the pattern for filter `i + (j * 8)` in `layer_name`
        filter_img = generate_pattern(layer_name, i + (j * 8), size=size)

        # Put the result in the square `(i, j)` of the results grid
        horizontal_start = i * size + i * margin
        horizontal_end = horizontal_start + size
        vertical_start = j * size + j * margin
        vertical_end = vertical_start + size
        results[horizontal_start: horizontal_end, vertical_start: vertical_end, :] = filter_img

# Display the results grid
plt.figure(figsize=(20, 20))
plt.imshow(results)
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Figure 5.31 Filter patterns for layer block2_conv1

Figure 5.32 Filter patterns for layer block3_conv1
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Figure 5.33 Filter patterns for layer block4_conv1

These filter visualizations tell us a lot about how convnet layers see the world: each
layer in a convnet simply learns a collection of filters such that their inputs can be
expressed as a combination of the filters. This is similar to how the Fourier transform
decomposes signals onto a bank of cosine functions. The filters in these convnet filter
banks get increasingly complex and refined as we go higher-up in the model:

The filters from the first layer in the model ( ) encode simple directionalblock1_conv1
edges and colors (or colored edges in some cases).
The filters from  encode simple textures made from combinations of edgesblock2_conv1
and colors.
The filters in higher-up layers start resembling textures found in natural images: feathers,
eyes, leaves, etc.

We will introduce one more visualization technique, one that is useful for understanding
which parts of a given image led a convnet to its final classification decision. This is
helpful for "debugging" the decision process of a convnet, in particular in case of a
classification mistake. It also allows you to locate specific objects in an image.

This general category of techniques is called "Class Activation Map" (CAM)
visualization, and consists in producing heatmaps of "class activation" over input images.
A "class activation" heatmap is a 2D grid of scores associated with an specific output
class, computed for every location in any input image, indicating how important each

5.4.3 Visualizing heatmaps of class activation
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location is with respect to the class considered. For instance, given a image fed into one
of our "cat vs. dog" convnet, Class Activation Map visualization allows us to generate a
heatmap for the class "cat", indicating how cat-like different parts of the image are, and
likewise for the class "dog", indicating how dog-like differents parts of the image are.

The specific implementation we will use is the one described in [Grad-CAM: Why
did you say that? Visual Explanations from Deep Networks via Gradient-based
Localization]( ). It is very simple: it consists in taking the outputarxiv.org/abs/1610.02391
feature map of a convolution layer given an input image, and weighing every channel in
that feature map by the gradient of the class with respect to the channel. Intuitively, one
way to understand this trick is that we are weighting a spatial map of "how intensely the
input image activates different channels" by "how important each channel is with regard
to the class", resulting in a spatial map of "how intensely the input image activates the
class".

We will demonstrate this technique using the pre-trained VGG16 network again:

Listing 5.54 Loading the VGG16 network with pre-trained weights

Let’s consider the following image of two African elephants, possible a mother and
its cub, strolling in the savanna (under a Creative Commons license):

Figure 5.34 Our test picture of African elephants

from keras.applications.vgg16 import VGG16

# Note that we are including the densely-connected classifier on top;
# all previous times, we were discarding it.
model = VGG16(weights='imagenet')
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Let’s convert this image into something the VGG16 model can read: the model was
trained on images of size 224x244, preprocessed according to a few rules that are
packaged in the utility function . Sokeras.applications.vgg16.preprocess_input

we need to load the image, resize it to 224x224, convert it to a Numpy float32 tensor, and
apply these pre-processing rules.

Listing 5.55 Pre-processing an input image for VGG16

We can then run the pre-trained network on the image, and decode its prediction
vector back to a human-readable format:

Listing 5.56 Predicting the class of our image

The top-3 classes predicted for this image are:

African elephant (with 92.5% probability)
Tusker (with 7% probability)
Indian elephant (with 0.4% probability)

Thus our network has recognized our image as containing an undetermined quantity
of African elephants. The entry in the prediction vector that was maximally activated is
the one corresponding to the "African elephant" class, at index 386:

Listing 5.57 Retrieving the index of maximum prediction

from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input, decode_predictions
import numpy as np

# The local path to our target image
img_path = '/Users/fchollet/Downloads/creative_commons_elephant.jpg'

# `img` is a PIL image of size 224x224
img = image.load_img(img_path, target_size=(224, 224))

# `x` is a float32 Numpy array of shape (224, 224, 3)
x = image.img_to_array(img)

# We add a dimension to transform our array into a "batch"
# of size (1, 224, 224, 3)
x = np.expand_dims(x, axis=0)

# Finally we preprocess the batch
# (this does channel-wise color normalization)
x = preprocess_input(x)

>>> preds = model.predict(x)
>>> print('Predicted:', decode_predictions(preds, top=3)[0])
Predicted:', [(u'n02504458', u'African_elephant', 0.92546833),
(u'n01871265', u'tusker', 0.070257246),
(u'n02504013', u'Indian_elephant', 0.0042589349)]

>>> np.argmax(preds[0])
386
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To visualize which parts of our image were the most "African elephant"-like, let’s set
up the Grad-CAM process:

Listing 5.58 Setting up the Grad-CAM algorithm

For visualization purpose, we will also normalize the heatmap between 0 and 1:

Listing 5.59 Heatmap post-processing

# This is the "african elephant" entry in the prediction vector
african_elephant_output = model.output[:, 386]

# The is the output feature map of the `block5_conv3` layer,
# the last convolutional layer in VGG16
last_conv_layer = model.get_layer('block5_conv3')

# This is the gradient of the "african elephant" class with regard to
# the output feature map of `block5_conv3`
grads = K.gradients(african_elephant_output, last_conv_layer.output)[0]

# This is a vector of shape (512,), where each entry
# is the mean intensity of the gradient over a specific feature map channel
pooled_grads = K.mean(grads, axis=(0, 1, 2))

# This function allows us to access the values of the quantities we just defined:
# `pooled_grads` and the output feature map of `block5_conv3`,
# given a sample image
iterate = K.function([model.input], [pooled_grads, last_conv_layer.output[0]])

# These are the values of these two quantities, as Numpy arrays,
# given our sample image of two elephants
pooled_grads_value, conv_layer_output_value = iterate([x])

# We multiply each channel in the feature map array
# by "how important this channel is" with regard to the elephant class
for i in range(512):
    conv_layer_output_value[:, :, i] *= pooled_grads_value[i]

# The channel-wise mean of the resulting feature map
# is our heatmap of class activation
heatmap = np.mean(conv_layer_output_value, axis=-1)

heatmap = np.maximum(heatmap, 0)
heatmap /= np.max(heatmap)
plt.matshow(heatmap)
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Figure 5.35 African elephant class
activation heatmap over our test
picture

Finally, we will use OpenCV to generate an image that superimposes the original
image with the heatmap we just obtained:

Listing 5.60 Superimposing the heatmap with the original picture, and saving it to
disk

Figure 5.36 Superimposing the class activation heatmap with the original picture

This visualisation technique answers two important questions:

Why did the network think this image contained an African elephant?

import cv2

# We use cv2 to load the original image
img = cv2.imread(img_path)

# We resize the heatmap to have the same size as the original image
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))

# We convert the heatmap to RGB
heatmap = np.uint8(255 * heatmap)

# We apply the heatmap to the original image
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)

# 0.4 here is a heatmap intensity factor
superimposed_img = heatmap * 0.4 + img

# Save the image to disk
cv2.imwrite('/Users/fchollet/Downloads/elephant_cam.jpg', superimposed_img)
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Where is the African elephant located in the picture?

In particular, it is interesting the note that the ears of the elephant cub are strongly
activated: this is probably how the network can tell the difference between African and
Indian elephants.

Here’s what you should take away from this chapter:

Convnets are the best tool for attacking visual classification problems.
They work by learning a hierarchy of modular patterns and concepts to represent the
visual world.
The representations they learn are easy to inspect—they are the opposite of a black box!

Additionally, you should have picked up practical skills:

You are capable of training your own convnet from scratch to solve an image
classification problem.
You understand how to use visual data augmentation to fight overfitting.
You know how to use a pre-trained convnet to do feature extraction and fine-tuning.
You can generate visualizations of the filters learned by your convnets, as well as
heatmaps of class activity.

5.5 Wrapping up: deep learning for computer vision
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6
Here’s what you have learned in this chapter:

How to tokenize text.
What word embeddings are, and how to use them.
What recurrent networks are, and how to use them.
How to stack RNN layers and use bidirectional RNNs to build more powerful sequence
processing models.
How to use 1D convnets for sequence processing.
How to combine 1D convnets and RNNs to process long sequences.

These techniques are widely applicable to any dataset of sequence data, from text to
timeseries.

For instance, you could use RNNs for:

Timeseries regression ("predicting the future").
Timeseries classification.
Anomaly detection in timeseries.
Sequence labeling, e.g. identifying names or dates in sentences.
…

Similarly, you could use 1D convnets for:

Machine translation (sequence-to-sequence convolutional models, like SliceNet).
Document classification.
Spelling correction.
…

Remember: if  in your sequence data, then it is preferable to useglobal order matters
a recurrent network to process it. This is typically the case for timeseries, where the
recent past is likely to be more informative than the distant past. But if global ordering
isn’t fundamentally meaningful, then 1D convnets will turn out to work at least as well,
while being cheaper. This is often the case for text data, where a keyword found at the
beginning of a sentence is just as meaningful as a keyword found at the end.

Deep learning for text and sequences
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Text is one of the most widespread form of sequence data. It can be understood either as
a sequence of characters, or a sequence of words, albeit it is most common to work at the
level of words. The deep learning sequence processing models that we will introduce in
the next sections are able to leverage text to produce a basic form of natural language
understanding, sufficient for applications ranging from document classification,
sentiment analysis, author identification, or even question answering (in a constrained
context). Of course, keep in mind throughout this chapter that none of the deep learning
models you see truly "understands" text in a human sense, rather, these models are able
to map the statistical structure of written language, which is sufficient to solve many
simple textual tasks. Deep learning for natural language processing is simply pattern
recognition applied to words, sentences, and paragraphs, in much the same way that
computer vision is simply pattern recognition applied to pixels.

Like all other neural networks, deep learning models do not take as input raw text:
they only work with numeric tensors. Vectorizing text is the process of transforming text
into numeric tensors. This can be done in multiple ways:

By segmenting text into words, and transforming each word into a vector.
By segmenting text into characters, and transforming each character into a vector.
By extracting "N-grams" of words or characters, and transforming each N-gram into a
vector. "N-grams" are overlapping groups of multiple consecutive words or characters.

Collectively, the different units into which you can break down text (words,
characters or N-grams) are called "tokens", and breaking down text into such tokens is
called "tokenization". All text vectorization processes consist in applying some
tokenization scheme, then associating numeric vectors with the generated tokens. These
vectors, packed into sequence tensors, are what gets fed into deep neural networks. There
are multiple ways to associate a vector to a token. In this section we will present two
major ones: , and  (typically usedone-hot encoding of tokens token embeddings
exclusively for words, and called ). In the remainder of this section,"word embeddings"
we will explain these techniques and show concretely how to use them to go from raw
text to a Numpy tensor that you can send to a Keras network.

6.1 Working with text data
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Figure 6.1 From text to tokens to vectors

NOTE Understanding N-grams and "bag-of-words".

Word N-grams are groups of N (or fewer) consecutive words that you can
extract from a sentence. The same concept may also be applied to
characters instead of words.

Here’s a simple example. Consider the sentence: "The cat sat on the
. It may be decomposed as the following set of 2-grams:mat"

It may also be decomposed as the following set of 3-grams:

Such a set is called a "bag-of-3-grams" (resp. 2-grams). The term "bag"
here refers to the fact that we are dealing with a  of tokens rather thanset
a list or sequence: the tokens have no specific order. This family of
tokenization method is called "bag-of-words."

Because bag-of-words are not an order-preserving tokenization
method (the tokens generated are understood as a set, not a sequence,
and the general structure of the sentences is lost), bag-of-words tend to
be used in shallow language processing models rather than in deep
learning models. Extracting N-grams is a form of feature engineering, and
deep learning does away with this kind of rigid and brittle feature
engineering, replacing it with hierarchical feature learning.
One-dimensional convnets and recurrent neural networks, introduced
later in this chapter, are capable of learning representations for groups of
words and characters without being explicitly told about the existence of
such groups, simply by looking at continuous word or character
sequences. For this reason, we will not be covering N-grams any further
in this book. But do keep in mind that they are a powerful, unavoidable
feature engineering tool when using lightweight shallow text processing
models such as logistic regression and random forests.

One-hot encoding is the most common, most basic way to turn a token into a vector. You
already saw it in action in our initial IMDB and Reuters examples from chapter 3 (done
with words, in our case). It consists in associating a unique integer index to every word,
then turning this integer index i into a binary vector of size N, the size of the vocabulary,
that would be all-zeros except for the i-th entry, which would be 1.

Of course, one-hot encoding can be done at the character level as well. To
unambiguously drive home what one-hot encoding is and how to implement it, here are

{"The", "The cat", "cat", "cat sat", "sat",
  "sat on", "on", "on the", "the", "the mat", "mat"}

{"The", "The cat", "cat", "cat sat", "The cat sat",
  "sat", "sat on", "on", "cat sat on", "on the", "the",
  "sat on the", "the mat", "mat", "on the mat"}

6.1.1 One-hot encoding of words or characters
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two toy examples of one-hot encoding: one for words, the other for characters.

Listing 6.1 Word level one-hot encoding (toy example)

Listing 6.2 Character level one-hot encoding (toy example)

Note that Keras has built-in utilities for doing one-hot encoding text at the word level
or character level, starting from raw text data. This is what you should actually be using,
as it will take care of a number of important features, such as stripping special characters
from strings, or only taking into the top N most common words in your dataset (a
common restriction to avoid dealing with very large input vector spaces).

Listing 6.3 Using Keras for word-level one-hot encoding

import numpy as np

# This is our initial data; one entry per "sample"
# (in this toy example, a "sample" is just a sentence, but
# it could be an entire document).
samples = ['The cat sat on the mat.', 'The dog ate my homework.']

# First, build an index of all tokens in the data.
token_index = {}
for sample in samples:
    # We simply tokenize the samples via the `split` method.
    # in real life, we would also strip punctuation and special characters
    # from the samples.
    for word in sample.split():
        if word not in token_index:
            # Assign a unique index to each unique word
            token_index[word] = len(token_index) + 1
            # Note that we don't attribute index 0 to anything.

# Next, we vectorize our samples.
# We will only consider the first `max_length` words in each sample.
max_length = 10

# This is where we store our results:
results = np.zeros((len(samples), max_length, max(token_index.values()) + 1))
for i, sample in enumerate(samples):
    for j, word in list(enumerate(sample.split()))[:max_length]:
        index = token_index.get(word)
        results[i, j, index] = 1.

import string

samples = ['The cat sat on the mat.', 'The dog ate my homework.']
characters = string.printable  # All printable ASCII characters.
token_index = dict(zip(range(1, len(characters) + 1), characters))

max_length = 50
results = np.zeros((len(samples), max_length, max(token_index.keys()) + 1))
for i, sample in enumerate(samples):
    for j, character in enumerate(sample):
        index = token_index.get(character)
        results[i, j, index] = 1.

from keras.preprocessing.text import Tokenizer

samples = ['The cat sat on the mat.', 'The dog ate my homework.']

# We create a tokenizer, configured to only take
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A variant of one-hot encoding is the so-called "one-hot hashing trick", which can be
used when the number of unique tokens in your vocabulary is too large to handle
explicitly. Instead of explicitly assigning an index to each word and keeping a reference
of these indices in a dictionary, one may hash words into vectors of fixed size. This is
typically done with a very lightweight hashing function. The main advantage of this
method is that it does away with maintaining an explicit word index, which saves
memory and allows online encoding of the data (starting to generate token vectors right
away, before having seen all of the available data). The one drawback of this method is
that it is susceptible to "hash collisions": two different words may end up with the same
hash, and subsequently any machine learning model looking at these hashes won’t be
able to tell the difference between these words. The likelihood of hash collisions
decreases when the dimensionality of the hashing space is much larger than the total
number of unique tokens being hashed.

Listing 6.4 Word-level one-hot encoding with hashing trick (toy example)

# into account the top-1000 most common on words
tokenizer = Tokenizer(num_words=1000)
# This builds the word index
tokenizer.fit_on_texts(samples)

# This turns strings into lists of integer indices.
sequences = tokenizer.texts_to_sequences(samples)

# You could also directly get the one-hot binary representations.
# Note that other vectorization modes than one-hot encoding are supported!
one_hot_results = tokenizer.texts_to_matrix(samples, mode='binary')

# This is how you can recover the word index that was computed
word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))

samples = ['The cat sat on the mat.', 'The dog ate my homework.']

# We will store our words as vectors of size 1000.
# Note that if you have close to 1000 words (or more)
# you will start seeing many hash collisions, which
# will decrease the accuracy of this encoding method.
dimensionality = 1000
max_length = 10

results = np.zeros((len(samples), max_length, dimensionality))
for i, sample in enumerate(samples):
    for j, word in list(enumerate(sample.split()))[:max_length]:
        # Hash the word into a "random" integer index
        # that is between 0 and 1000
        index = abs(hash(word)) % dimensionality
        results[i, j, index] = 1.
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Another popular and powerful way to associate a vector with a word is the use of dense
"word vectors", also called "word embeddings". While the vectors obtained through
one-hot encoding are binary, sparse (mostly made of zeros) and very high-dimensional
(same dimensionality as the number of words in the vocabulary), "word embeddings" are
low-dimensional floating point vectors (i.e. "dense" vectors, as opposed to sparse
vectors). Unlike word vectors obtained via one-hot encoding, word embeddings are
learned from data. It is common to see word embeddings that are 256-dimensional,
512-dimensional, or 1024-dimensional when dealing with very large vocabularies. On the
other hand, one-hot encoding words generally leads to vectors that are
20,000-dimensional or higher (capturing a vocabulary of 20,000 token in this case). So,
word embeddings pack more information into far fewer dimensions.

Figure 6.2 While word representations obtained from one-hot encoding or hashing are
sparse, high-dimensional, and hard-coded, word embeddings are dense, relatively
low-dimensional, and learned from data.

There are two ways to obtain word embeddings:

Learn word embeddings jointly with the main task you care about (e.g. document
classification or sentiment prediction). In this setup, you would start with random word
vectors, then learn your word vectors in the same way that you learn the weights of a
neural network.
Load into your model word embeddings that were pre-computed using a different
machine learning task than the one you are trying to solve. These are called "pre-trained
word embeddings".

6.1.2 Using word embeddings
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Let’s take a look at both.

The simplest way to associate a dense vector to a word would be to pick the vector at
random. The problem with this approach is that the resulting embedding space would
have no structure: for instance, the words "accurate" and "exact" may end up with
completely different embeddings, even though they are interchangeable in most
sentences. It would be very difficult for a deep neural network to make sense of such a
noisy, unstructured embedding space.

To get a bit more abstract: the geometric relationships between word vectors should
reflect the semantic relationships between these words. Word embeddings are meant to
map human language into a geometric space. For instance, in a reasonable embedding
space, we would expect synonyms to be embedded into similar word vectors, and in
general we would expect the geometric distance (e.g. L2 distance) between any two word
vectors to relate to the semantic distance of the associated words (words meaning very
different things would be embedded to points far away from each other, while related
words would be closer). Even beyond mere distance, we may want specific  indirections
the embedding space to be meaningful. To make this clearer, let’s look at a concrete
example.

In figure 6.3, we embedded four words on a 2D plane, "cat", "dog", "wolf" and
"tiger". With the vector representations we chose here, some semantic relationships
between these words can be encoded as geometric transformations. For instance, a same
vector allows to go from "cat" to "tiger" and from "dog" to "wolf": this vector could be
interpreted as the "from pet to wild animal" vector. Similarly, another vector allows to go
from "dog" to "cat" and from "wolf" to "tiger", which could be interpreted as a "from
canine to feline" vector.

Figure 6.3 A toy example of a word embedding space

In real-world word embedding spaces, common examples of meaningful geometric
transformations are "gender vectors" and "plural vector". For instance, by adding a
"female vector" to the vector "king", one obtain the vector "queen". By adding a "plural

LEARNING WORD EMBEDDINGS WITH THE  LAYEREMBEDDING
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vector", one obtain "kings". Word embedding spaces typically feature thousands of such
interpretable and potentially useful vectors.

Is there some "ideal" word embedding space that would perfectly map human
language and could be used for any natural language processing task? Possibly, but in
any case, we have yet to compute anything of the sort. Also, there isn’t such a thing as
"human language", there are many different languages and they are not isomorphic, as a
language is the reflection of a specific culture and a specific context. But more
pragmatically, what makes a good word embedding space depends heavily on your task:
the perfect word embedding space for an English-language movie review sentiment
analysis model may look very different from the perfect embedding space for an
English-language legal document classification model, because the importance of certain
semantic relationships varies from task to task.

It is thus reasonable to  a new embedding space with every new task.learn
Thankfully, backpropagation makes this really easy, and Keras makes it even easier. It’s
just about learning the weights a layer: the  layer.Embedding

Listing 6.5 Instantiating an Embedding layer.

The  layer is best understood as a dictionary mapping integer indicesEmbedding

(which stand for specific words) to dense vectors. It takes as input integers, it looks up
these integers into an internal dictionary, and it returns the associated vectors. It’s
effectively a dictionary lookup.

The  layer takes as input a 2D tensor of integers, of shape Embedding (samples,

, where each entry is a sequence of integers. It can embed sequencessequence_length)

of variable lengths, so for instance we could feed into our embedding layer above batches
that could have shapes  (batch of 32 sequences of length 10) or (32, 10) (64, 15)

(batch of 64 sequences of length 15). All sequences in a batch must have the same length,
though (since we need to pack them into a single tensor), so sequences that are shorter
than others should be padded with zeros, and sequences that are longer should be
truncated.

This layer returns a 3D floating point tensor, of shape (samples,

. Such a 3D tensor can then besequence_length, embedding_dimensionality)

processed by a RNN layer or a 1D convolution layer (both will be introduced in the next
sections).

from keras.layers import Embedding

# The Embedding layer takes at least two arguments:
# the number of possible tokens, here 1000 (1 + maximum word index),
# and the dimensionality of the embeddings, here 64.
embedding_layer = Embedding(1000, 64)

word index -> Embedding layer -> corresponding word vector
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When you instantiate an  layer, its weights (its internal dictionary of tokenEmbedding

vectors) are initially random, just like with any other layer. During training, these word
vectors will be gradually adjusted via backpropagation, structuring the space into
something that the downstream model can exploit. Once fully trained, your embedding
space will show a lot of structure—a kind of structure specialized for the specific
problem you were training your model for.

Let’s apply this idea to the IMDB movie review sentiment prediction task that you are
already familiar with. With, let’s quickly prepare the data. We will restrict the movie
reviews to the top 10,000 most common words (like we did the first time we worked with
this dataset), and cut the reviews after only 20 words. Our network will simply learn
8-dimensional embeddings for each of the 10,000 words, turn the input integer sequences
(2D integer tensor) into embedded sequences (3D float tensor), flatten the tensor to 2D,
and train a single  layer on top for classification.Dense

Listing 6.6 Loading the IMDB data for use with an Embedding layer.

Listing 6.7 Using an Embedding layer and classifier on the IMDB data.

from keras.datasets import imdb
from keras import preprocessing

# Number of words to consider as features
max_features = 10000
# Cut texts after this number of words
# (among top max_features most common words)
maxlen = 20

# Load the data as lists of integers.
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)

# This turns our lists of integers
# into a 2D integer tensor of shape `(samples, maxlen)`
x_train = preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = preprocessing.sequence.pad_sequences(x_test, maxlen=maxlen)

from keras.models import Sequential
from keras.layers import Flatten, Dense

model = Sequential()
# We specify the maximum input length to our Embedding layer
# so we can later flatten the embedded inputs
model.add(Embedding(10000, 8, input_length=maxlen))
# After the Embedding layer,
# our activations have shape `(samples, maxlen, 8)`.

# We flatten the 3D tensor of embeddings
# into a 2D tensor of shape `(samples, maxlen * 8)`
model.add(Flatten())

# We add the classifier on top
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
model.summary()

history = model.fit(x_train, y_train,
                    epochs=10,
                    batch_size=32,
                    validation_split=0.2)
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We get to a validation accuracy of ~76%, which is pretty good considering that we
are only look at the first 20 words in every review. But note that merely flattening the
embedded sequences and training a single  layer on top leads to a model that treatsDense

each word in the input sequence separately, without considering inter-word relationships
and structure sentence (e.g. it would likely treat both  and "this movie is shit" "this movie

 as being negative "reviews"). It would be much better to add recurrent layersis the shit"
or 1D convolutional layers on top of the embedded sequences to learn features that take
into account each sequence as a whole. That’s what we will focus on in the next few
sections.

Sometimes, you have so little training data available that could never use your data alone
to learn an appropriate task-specific embedding of your vocabulary. What to do then?

Instead of learning word embeddings jointly with the problem you want to solve, you
could be loading embedding vectors from a pre-computed embedding space known to be
highly structured and to exhibit useful properties—that captures generic aspects of
language structure. The rationale behind using pre-trained word embeddings in natural
language processing is very much the same as for using pre-trained convnets in image
classification: we don’t have enough data available to learn truly powerful features on
our own, but we expect the features that we need to be fairly generic, i.e. common visual
features or semantic features. In this case it makes sense to reuse features learned on a
different problem.

Such word embeddings are generally computed using word occurrence statistics
(observations about what words co-occur in sentences or documents), using a variety of
techniques, some involving neural networks, others not. The idea of a dense,
low-dimensional embedding space for words, computed in an unsupervised way, was
initially explored by Bengio et al. in the early 2000s, but it only started really taking off
in research and industry applications after the release of one of the most famous and
successful word embedding scheme: the Word2Vec algorithm, developed by Mikolov at
Google in 2013. Word2Vec dimensions capture specific semantic properties, e.g. gender.

There are various pre-computed databases of word embeddings that can download
and start using in a Keras  layer. Word2Vec is one of them. Another popularEmbedding

one is called "GloVe", developed by Stanford researchers in 2014. It stands for "Global
Vectors for Word Representation", and it is an embedding technique based on factorizing
a matrix of word co-occurrence statistics. Its developers have made available
pre-computed embeddings for millions of English tokens, obtained from Wikipedia data
or from Common Crawl data.

Let’s take a look at how you can get started using GloVe embeddings in a Keras
model. The same method will of course be valid for Word2Vec embeddings or any other
word embedding database that you can download. We will also use this example to
refresh the text tokenization techniques we introduced a few paragraphs ago: we will start
from raw text, and work our way up.

USING PRE-TRAINED WORD EMBEDDINGS
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We will be using a model similar to the one we just went over—embedding sentences in
sequences of vectors, flattening them and training a  layer on top. But we will do itDense

using pre-trained word embeddings, and instead of using the pre-tokenized IMDB data
packaged in Keras, we will start from scratch, by downloading the original text data.

First, head to  and download the rawai.stanford.edu/~amaas/data/sentiment/

IMDB dataset (if the URL isn’t working anymore, just Google "IMDB dataset").
Uncompress it.

Now let’s collect the individual training reviews into a list of strings, one string per
review, and let’s also collect the review labels (positive / negative) into a  list:labels

Listing 6.8 Processing the labels of the raw IMDB data

Let’s vectorize the texts we collected, and prepare a training and validation split. We will
merely be using the concepts we introduced earlier in this section.

Because pre-trained word embeddings are meant to be particularly useful on
problems where little training data is available (otherwise, task-specific embeddings are
likely to outperform them), we will add the following twist: we restrict the training data
to its first 200 samples. So we will be learning to classify movie reviews after looking at
just 200 examples…

Listing 6.9 Tokenizing the text of the raw IMDB data

6.1.3 Putting it all together: from raw text to word embeddings

DOWNLOAD THE IMDB DATA AS RAW TEXT

import os

imdb_dir = '/Users/fchollet/Downloads/aclImdb'
train_dir = os.path.join(imdb_dir, 'train')

labels = []
texts = []

for label_type in ['neg', 'pos']:
    dir_name = os.path.join(train_dir, label_type)
    for fname in os.listdir(dir_name):
        if fname[-4:] == '.txt':
            f = open(os.path.join(dir_name, fname))
            texts.append(f.read())
            f.close()
            if label_type == 'neg':
                labels.append(0)
            else:
                labels.append(1)

TOKENIZE THE DATA

from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
import numpy as np

maxlen = 100  # We will cut reviews after 100 words
training_samples = 200  # We will be training on 200 samples
validation_samples = 10000  # We will be validating on 10000 samples
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Head to  (where you can learn more about thenlp.stanford.edu/projects/glove/

GloVe algorithm), and download the pre-computed embeddings from 2014 English
Wikipedia. It’s a 822MB zip file named , containing 100-dimensionalglove.6B.zip

embedding vectors for 400,000 words (or non-word tokens). Un-zip it.

Let’s parse the un-zipped file (it’s a  file) to build an index mapping words (astxt

strings) to their vector representation (as number vectors).

Listing 6.10 Parsing the GloVe word embeddings file

Now let’s build an embedding matrix that we will be able to load into an Embedding
layer. It must be a matrix of shape , where each entry (max_words, embedding_dim) i

contains the -dimensional vector for the word of index  in our referenceembedding_dim i

word index (built during tokenization). Note that the index  is not supposed to stand for0

any word or token—it’s a placeholder.

max_words = 10000  # We will only consider the top 10,000 words in the dataset

tokenizer = Tokenizer(num_words=max_words)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)

word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))

data = pad_sequences(sequences, maxlen=maxlen)

labels = np.asarray(labels)
print('Shape of data tensor:', data.shape)
print('Shape of label tensor:', labels.shape)

# Split the data into a training set and a validation set
# But first, shuffle the data, since we started from data
# where sample are ordered (all negative first, then all positive).
indices = np.arange(data.shape[0])
np.random.shuffle(indices)
data = data[indices]
labels = labels[indices]

x_train = data[:training_samples]
y_train = labels[:training_samples]
x_val = data[training_samples: training_samples + validation_samples]
y_val = labels[training_samples: training_samples + validation_samples]

DOWNLOAD THE GLOVE WORD EMBEDDINGS

PRE-PROCESS THE EMBEDDINGS

glove_dir = '/Users/fchollet/Downloads/glove.6B'

embeddings_index = {}
f = open(os.path.join(glove_dir, 'glove.6B.100d.txt'))
for line in f:
    values = line.split()
    word = values[0]
    coefs = np.asarray(values[1:], dtype='float32')
    embeddings_index[word] = coefs
f.close()

print('Found %s word vectors.' % len(embeddings_index))
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Listing 6.11 Preparing the GloVe word embeddings matrix

We will be using the same model architecture as before:

Listing 6.12 Model definition

The  layer has a single weight matrix: a 2D float matrix where each entry  isEmbedding i

the word vector meant to be associated with index . Simple enough. Let’s just load thei

GloVe matrix we prepared into our  layer, the first layer in our model:Embedding

Listing 6.13 Loading the matrix of pre-trained word embeddings into the
Embedding layer

Additionally, we freeze the embedding layer (we set its  attribute to trainable False

), following the same rationale as what you are already familiar with in the context of
pre-trained convnet features: when parts of a model are pre-trained (like our Embedding
layer), and parts are randomly initialized (like our classifier), the pre-trained parts should
not be updated during training to avoid forgetting what they already know. The large
gradient updated triggered by the randomly initialized layers would be very disruptive to
the already learned features.

Let’s compile our model and train it:

Listing 6.14 Training and evaluation

embedding_dim = 100

embedding_matrix = np.zeros((max_words, embedding_dim))
for word, i in word_index.items():
    embedding_vector = embeddings_index.get(word)
    if i < max_words:
        if embedding_vector is not None:
            # Words not found in embedding index will be all-zeros.
            embedding_matrix[i] = embedding_vector

DEFINE A MODEL

from keras.models import Sequential
from keras.layers import Embedding, Flatten, Dense

model = Sequential()
model.add(Embedding(max_words, embedding_dim, input_length=maxlen))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()

LOAD THE GLOVE EMBEDDINGS IN THE MODEL

model.layers[0].set_weights([embedding_matrix])
model.layers[0].trainable = False

TRAIN AND EVALUATE
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Let’s plot its performance over time:

Listing 6.15 Plotting results

Figure 6.4 Training and validation loss when using pre-trained word embeddings

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['acc'])
history = model.fit(x_train, y_train,
                    epochs=10,
                    batch_size=32,
                    validation_data=(x_val, y_val))
model.save_weights('pre_trained_glove_model.h5')

import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()
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Figure 6.5 Training and validation accuracy when using pre-trained word embeddings

The model quickly starts overfitting, unsurprisingly given the small number of
training samples. Validation accuracy has high variance for the same reason, but seems to
reach high 50s.

Note that your mileage may vary: since we have so few training samples,
performance is heavily dependent on which exact 200 samples we picked, and we picked
them at random. If it worked really poorly for you, try picking a different random set of
200 samples, just for the sake of the exercise (in real life you don’t get to pick your
training data).

We can also try to train the same model without loading the pre-trained word
embeddings and without freezing the embedding layer. In that case, we would be
learning a task-specific embedding of our input tokens, which is generally more powerful
than pre-trained word embeddings when lots of data is available. However, in our case,
we have only 200 training samples. Let’s try it:

Listing 6.16 Defining a training the same model without pre-trained word
embeddings

from keras.models import Sequential
from keras.layers import Embedding, Flatten, Dense

model = Sequential()
model.add(Embedding(max_words, embedding_dim, input_length=maxlen))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['acc'])
history = model.fit(x_train, y_train,
                    epochs=10,
                    batch_size=32,
                    validation_data=(x_val, y_val))
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Figure 6.6 Training and validation loss without using pre-trained word embeddings

Figure 6.7 Training and validation accuracy without using pre-trained word embeddings

Validation accuracy stalls in the low 50s. So in our case, pre-trained word
embeddings does outperform jointly learned embeddings. If you increase the number of
training samples, this will quickly stop being the case—try it as an exercise.

Finally, let’s evaluate the model on the test data. First, we will need to tokenize the
test data:

Listing 6.17 Tokenizing the data of the test set

test_dir = os.path.join(imdb_dir, 'test')

labels = []
texts = []

for label_type in ['neg', 'pos']:
    dir_name = os.path.join(test_dir, label_type)
    for fname in sorted(os.listdir(dir_name)):
        if fname[-4:] == '.txt':
            f = open(os.path.join(dir_name, fname))
            texts.append(f.read())
            f.close()
            if label_type == 'neg':
                labels.append(0)
            else:
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And let’s load and evaluate the first model:

Listing 6.18 Evaluating the model on the test set

We get an appalling test accuracy of 56%. Working with just a handful of training
samples is hard!

Wrapping up: now you are be able to…

Turn raw text into something that a neural network can process.
Use the  layer in a Keras model to learn task-specific token embeddings.Embedding

Leverage pre-trained word embeddings to get an extra boost on small natural language
processing problems.

A major characteristic of all neural networks that you have seen so far, such as
densely-connected networks and convnets, is that they had no memory. Each input shown
to them gets processed independently, with no state kept in between inputs. With such
networks, in order to process a sequence or a temporal series of data points, you have to
show the entire sequence to the network at once, i.e. turn it into a single datapoint. For
instance, this is what we have been doing in our IMDB example: an entire movie review
would get transformed into a single large vector, and would be processed in one go. Such
networks are called "feedforward networks".

By contrast, as you are reading the present sentence, you are processing it word by
word, or rather, eye saccade by eye saccade, while keeping around memories of what
came before—a fluid representation of the meaning that I am conveying with this
sentence. Biological intelligence processes information incrementally while maintaining
an internal model of what it is processing, built from past information and constantly
getting updated as new information comes in.

Recurrent Neural Networks (RNNs) adopt the same principle, albeit in an extremely
simplified version: they process sequences by iterating through the sequence elements
and maintaining a "state" containing information relative to what they have seen so far.
In effect, RNNs are a type of neural network that has an internal loop (Figure 6.8). The
state of the RNN is reset in-between processing two different, independent sequences

6.2 Understanding recurrent neural networks

                labels.append(1)

sequences = tokenizer.texts_to_sequences(texts)
x_test = pad_sequences(sequences, maxlen=maxlen)
y_test = np.asarray(labels)

model.load_weights('pre_trained_glove_model.h5')
model.evaluate(x_test, y_test)

6.1.4 Wrapping up
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(e.g. two different IMDB reviews), so we still consider one sequence as a single
datapoint, a single input to the network—what changes is that this datapoint is no longer
processed in a single step, rather, the network internally loops over sequence elements.

Figure 6.8 A recurrent network: a network with a loop.

To make these notions of loop and state completely clear, let’s implement the forward
pass of a toy RNN in Numpy. This RNN takes as input a sequence of vectors, which we
will encode as a 2D tensor of size . It loops over(timesteps, input_features)

timesteps, and at each timestep, it considers its current state at , the input at  (of shape t t

, and combines them to obtain the output at . We then set the state(input_features,) t

for the next step to simply be this previous output. For the very first timestep, the
"previous output" is not defined, hence there is no "current state", so we will initialize the
state as an all-zero vector, called the "initial state" of the network.

In pseudo code, this is our RNN:

Listing 6.19 A pseudo-code simple RNN

We can even flesh out a bit the function : the transformation of the input and statef

into an output will be parametrized by two matrices, W and U, and a bias vector. It is
very similar to the transformation operated by a densely connected layer in a feedforward
network.

Listing 6.20 More detailed pseudo-code simple RNN

To make these notions absolutely unambiguous, let’s go ahead and write down a
naive Numpy implementation of the forward pass of our simple RNN.

state_t = 0  # This is the state at t.
for input_t in input_sequence:  # We iterate over sequence elements.
    output_t = f(input_t, state_t)  # `f` is our "step function"
    state_t = output_t  # The previous output becomes the new state.

state_t = 0
for input_t in input_sequence:
    output_t = activation(dot(W, input_t) + dot(U, state_t) + b)
    state_t = output_t
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Listing 6.21 Numpy implementation of a simple RNN

Easy enough: in summary, a RNN is just a  loop that reuses quantities computedfor

. Nothing more. Of course, there are manyduring the previous iteration of the loop
different RNNs fitting this definition that one could build—the example we just showed
is one of the simplest RNN formulations out there. RNNs are characterized by their "step
function", e.g. in our case, the function:

Figure 6.9 A simple RNN, unrolled over time.

Note: in our example, the final output is a 2D tensor of shape (timesteps,

timesteps = 100  # Number of timesteps in the input sequence
inputs_features = 32  # Dimensionality of the input feature space
output_features = 64  # Dimensionality of the output feature space

# This is our input data - just random noise for the sake of our example.
inputs = np.random.random((timesteps, features))

# This is our "initial state": an all-zero vector.
state_t = np.zeros((output_features,))

# Create random weight matrices
W = np.random.random((input_features, output_features))
U = np.random.random((output_features, output_features))
b = np.random.random((output_features,))

successive_outputs = []
for input_t in inputs:  # input_t is a vector of shape (input_features,)
    # We combine the input with the current state
    # (i.e. the previous output) to obtain the current output.
    output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t) + b)

    # We store this output in a list.
    successive_outputs.append(output_t)

    # We update the "state" of the network for the next timestep
    state_t = output_t

# The final output is a 2D tensor of shape (timesteps, output_features).
final_output_sequence = np.concatenate(successive_outputs, axis=0)

output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t) + b)
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, where each timestep is the output of the loop at time . Eachoutput_features) t

timestep  in the output tensor contains information about timesteps  to  in the inputt 0 t

sequence—about the entire past. For this reason, in many cases you don’t need this full
sequence of outputs, you just need the very last output (  at the end of the loop),output_t

since it already contains information about the entire sequence.

The process we just naively implemented in Numpy corresponds to an actual Keras layer:
the  layer:SimpleRNN

Listing 6.22 The Keras SimpleRNN layer

There is just one minor difference:  processes batches of sequences, likeSimpleRNN

all other Keras layers, not just a single sequence like in our Numpy example. This means
that it takes inputs of shape , rather than(batch_size, timesteps, input_features)

.(timesteps, input_features)

Like all recurrent layers in Keras,  can be run in two different modes: itSimpleRNN

can return either the full sequences of successive outputs for each timestep (a 3D tensor
of shape ), or it can return only the last(batch_size, timesteps, output_features)

output for each input sequence (a 2D tensor of shape (batch_size,

). These two modes are controlled by the output_features) return_sequences

constructor argument. Let’s take a look at an example:

Listing 6.23 Using SimpleRNN and returning the last state

Listing 6.24 Using SimpleRNN and returning the full state sequence

6.2.1 A first recurrent layer in Keras

from keras.layers import SimpleRNN

>>> from keras.models import Sequential
>>> from keras.layers import Embedding, SimpleRNN
>>> model = Sequential()
>>> model.add(Embedding(10000, 32))
>>> model.add(SimpleRNN(32))
>>> model.summary()
________________________________________________________________
Layer (type)                     Output Shape          Param #
================================================================
embedding_22 (Embedding)         (None, None, 32)      320000
________________________________________________________________
simplernn_10 (SimpleRNN)         (None, 32)            2080
================================================================
Total params: 322,080
Trainable params: 322,080
Non-trainable params: 0

>>> model = Sequential()
>>> model.add(Embedding(10000, 32))
>>> model.add(SimpleRNN(32, return_sequences=True))
>>> model.summary()
________________________________________________________________
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It is sometimes useful to stack several recurrent layers one after the other in order to
increase the representational power of a network. In such a setup, you have to get all
intermediate layers to return full sequences:

Listing 6.25 Stacking RNN layers on top of each other

Now let’s try to use such a model on the IMDB movie review classification problem.
First, let’s preprocess the data:

Listing 6.26 Preparing the IMDB data

Layer (type)                     Output Shape          Param #
================================================================
embedding_23 (Embedding)         (None, None, 32)      320000
________________________________________________________________
simplernn_11 (SimpleRNN)         (None, None, 32)      2080
================================================================
Total params: 322,080
Trainable params: 322,080
Non-trainable params: 0

>>> model = Sequential()
>>> model.add(Embedding(10000, 32))
>>> model.add(SimpleRNN(32, return_sequences=True))
>>> model.add(SimpleRNN(32, return_sequences=True))
>>> model.add(SimpleRNN(32, return_sequences=True))
>>> model.add(SimpleRNN(32))  # This last layer only returns the last outputs.
>>> model.summary()
________________________________________________________________
Layer (type)                     Output Shape          Param #
================================================================
embedding_24 (Embedding)         (None, None, 32)      320000
________________________________________________________________
simplernn_12 (SimpleRNN)         (None, None, 32)      2080
________________________________________________________________
simplernn_13 (SimpleRNN)         (None, None, 32)      2080
________________________________________________________________
simplernn_14 (SimpleRNN)         (None, None, 32)      2080
________________________________________________________________
simplernn_15 (SimpleRNN)         (None, 32)            2080
================================================================
Total params: 328,320
Trainable params: 328,320
Non-trainable params: 0

from keras.datasets import imdb
from keras.preprocessing import sequence

max_features = 10000  # number of words to consider as features
maxlen = 500  # cut texts after this number of words (among top max_features most common words)
batch_size = 32

print('Loading data...')
(input_train, y_train), (input_test, y_test) = imdb.load_data(num_words=max_features)
print(len(input_train), 'train sequences')
print(len(input_test), 'test sequences')

print('Pad sequences (samples x time)')
input_train = sequence.pad_sequences(input_train, maxlen=maxlen)
input_test = sequence.pad_sequences(input_test, maxlen=maxlen)
print('input_train shape:', input_train.shape)
print('input_test shape:', input_test.shape)
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Let’s train a simple recurrent network using an  layer and a Embedding SimpleRNN

layer:

Listing 6.27 Training our model including an Embedding layer and a SimpleRNN
layer

Let’s display the training and validation loss and accuracy:

Listing 6.28 Plotting results

from keras.layers import Dense

model = Sequential()
model.add(Embedding(max_features, 32))
model.add(SimpleRNN(32))
model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
history = model.fit(input_train, y_train,
                    epochs=10,
                    batch_size=128,
                    validation_split=0.2)

import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and 
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders. 

https://forums.manning.com/forums/deep-learning-with-python

186

Licensed to Bram van Ginneken <bramvanginneken@gmail.com>

https://forums.manning.com/forums/deep-learning-with-python


Figure 6.10 Training and validation loss on IMDB with SimpleRNN.

Figure 6.11 Training and validation accuracy on IMDB with SimpleRNN.

As a reminder, in chapter 3, our very first naive approach to this very dataset got us to
88% test accuracy. Unfortunately, our small recurrent network doesn’t perform very well
at all compared to this baseline (only up to 85% validation accuracy). Part of the problem
is that our inputs only consider the first 500 words rather the full sequences—hence our
RNN has access to less information than our earlier baseline model. The remainder of the
problem is simply that  isn’t very good at processing long sequences, likeSimpleRNN

text. Other types of recurrent layers perform much better. Let’s take a look at some more
advanced layers.

SimpleRNN isn’t the only recurrent layer available in Keras: there are two more, LSTM
and . In practice, you will always be using one of these two, as  isGRU SimpleRNN

generally too simplistic to be of any real use. Indeed,  has a major issue: albeitSimpleRNN

it should theoretically be able to retain at time  information about inputs seen manyt

timesteps before, in practice such long-term dependencies prove to be impossible to
learn. This is due to the "vanishing gradient problem", an effect that is similar to what
can be observed with non-recurrent networks (feedforward networks) that are many
layers deep: as one keeps adding layers to a network, the network eventually becomes
un-trainable. The theoretical reasons for this effect have been studied by Hochreiter,
Schmidhuber, and Bengio in the early 1990s. The  and  layers are designed toLSTM GRU

solve this very problem.
Let’s consider the  layer. The abbreviation stands for "Long-Short TermLSTM

Memory". The underlying algorithm was developed by Hochreiter and Schmidhuber in
1997, the culmination of their research on the vanishing gradient problem.

It is a variant of the simple RNN you already know about, that adds a way to carry
information across many timesteps. Imagine a conveyor belt running parallel to the
sequence we are processing. Information from the sequence can jump on the conveyor

6.2.2 Understanding the LSTM and GRU layers
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belt on at any point, get transported to a later timestep, and jump off, intact, when we
need it. This is essentially what LSTM does: it saves information for later, thus
preventing older signals to gradually vanish during processing.

To understand it detail, let’s start from our simple RNN cell. Because we are going to
have a lot of weight matrices, we will index our  and  matrices in the cell with theW U

letter  (  and ). It’s for "output".o Wo Uo

Figure 6.12 The starting point of a LSTM layer: a simple RNN.

Let’s literally add to this picture an additional data flow that carries information
across timesteps. We’ll call its values at different timesteps ,  standing for "carry".Ct C

This information will have the following impact on the cell: it will get combined with the
input connection and the recurrent connection (via a dense transformation, i.e. a dot
product with a weight matrix followed by a bias add and the application of an activation
function), and it affects the state being sent to the next timestep (via an activation
function an a multiplication operation). Conceptually, our "carry" dataflow is simply a
way to modulate the next output and the next state. Super simple so far.

Figure 6.13 Going from a simple RNN to a LSTM: adding a "carry" track.
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Now the subtlety: the way the next value of the carry dataflow is computed. It
involves 3 distinct transformations. All three have the form of a simple RNN cell, i.e.:

But all three transformations have their own weight matrices, which we will index by
the letters , , and . Let’s write down what we have so far (it may seem a bit arbitrary,i f k

but bear with me):

Listing 6.29 Pseudo-code details of the LSTM architecture (1/2)

We obtain the new carry state (the next ) by simply combining ,  and :c_t i_t f_t k_t

Listing 6.30 Pseudo-code details of the LSTM architecture (2/2)

Let’s add this to our figure:

Figure 6.14 Anatomy of a LSTM.

That’s it. Not so complicated after all, merely a tad complex.
Now if we want to get all philosophical, we can start interpreting what each of these

operations are "meant" to do. For instance, one might say that multiplying  with c_t f_t

is a way to deliberately "forget" some irrelevant information in the carry dataflow.
Meanwhile  and  provide information about the present, updating the carry tracki_t k_t

with new information. However, at the end of the day, these interpretations may not
mean much, because what these operations  do is determined by contents of theactually
weights parametrizing them, and the weights are learned in an end-to-end fashion, anew
with each training round, making it impossible to credit this or that operation with a

y = activation(dot(state_t, U) + dot(input_t, W) + b)

output_t = activation(dot(state_t, Uo) + dot(input_t, Wo) + dot(C_t, Vo) + bo)

i_t = activation(dot(state_t, Ui) + dot(input_t, Wi) + bi)
f_t = activation(dot(state_t, Uf) + dot(input_t, Wf) + bf)
k_t = activation(dot(state_t, Uk) + dot(input_t, Wk) + bk)

c_t+1 = i_t * k_t + c_t * f_t
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specific purpose. The specification of a RNN cell (what we just described above)
determines your hypothesis space—the space in which you will search for a good model
configuration during training—but it does not determine what the cell does; that is up to
the cell weights. A same cell with different weights can be doing very different things. So
the combination of operations making up a RNN cell is a better interpreted as set of 

 on your search, not as a  in an engineering sense.constraints design
As a researcher, it seems to me that the choice of such constraints—the question of

how to implement RNN cells—is better left to optimization algorithms (like genetic
algorithms or reinforcement learning processes) than to human engineers. And in the
future, that’s how we will build our networks anyway. In summary: you don’t need to
understand anything about the specific architecture of a LSTM cell; as a human, it
shouldn’t be your job to understand it. Just keep in mind what the LSTM cell is meant to
do: allowing past information to be reinjected at a later time, thus fighting the vanishing
gradient problem.

Now let’s switch to more practical concerns: we will set up a model using a LSTM layer
and train it on the IMDB data. Here’s the network, similar to the one with SimpleRNN
that we just presented. We only specify the output dimensionality of the LSTM layer, and
leave every other argument (there are lots) to the Keras defaults. Keras has good defaults,
and things will almost always "just work" without you having to spend time tuning
parameters by hand.

Listing 6.31 Using the LSTM layer in Keras

6.2.3 A concrete LSTM example in Keras

from keras.layers import LSTM

model = Sequential()
model.add(Embedding(max_features, 32))
model.add(LSTM(32))
model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['acc'])
history = model.fit(input_train, y_train,
                    epochs=10,
                    batch_size=128,
                    validation_split=0.2)
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Figure 6.15 Training and validation loss on IMDB with LSTM.

Figure 6.16 Training and validation accuracy on IMDB with LSTM.

Here’s what we are getting this time: up to 89% validation accuracy. Not bad:
certainly much better than the  network—that’s largely because LSTM suffersSimpleRNN

much less from the vanishing gradient problem—and even slightly better than our
fully-connected approach from chapter 3, even though we are looking at less data than
we were in chapter 3—we are truncating sequences after 500 timesteps, whereas in
chapter 3 we were considering full sequences.

However, it’s not groundbreaking either for such a computationally intensive
approach. Why isn’t our LSTM performing better? One reason is that we did no effort to
tune hyperparameters such as the embeddings dimensionality or the LSTM output
dimensionality. Another may be lack of regularization. But honestly, the reason is mostly
that analysing the global, long-term structure of the reviews (what LSTM is really good
at) isn’t very helpful for a sentiment analysis problem. Such a basic problem is very well
solved by simply looking at what words occur in each review, and at what frequency.
That’s what our first fully-connected approach was looking at. But there are far more
difficult natural language processing problems out there, where the strength of LSTM
will become apparent: in particular, question answering and machine translation.
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To wrap up—now you understand:

What RNNs are, and how they work.
What LSTM is, and why it works better on long sequences than a naive RNN.
How to use Keras RNN layers to process sequence data.

Next, we will review a number of more advanced features of RNNs, to get the most
out of your deep learning sequence models.

In this section, we will review three advanced techniques for improving the performance
and generalization power of recurrent neural networks. By the end of the section, you
will know most of what there is to know about using recurrent networks with Keras. We
will demonstrate all three concepts on a weather forecasting problem, where we have
access to a timeseries of data points coming from sensors installed on the roof of a
building, such as temperature, air pressure, and humidity, which we use to predict what
the temperature will be 24 hours after the last data point collected. This is a fairly
challenging problem that exemplifies many common difficulties encountered when
working with timeseries.

We will cover the following techniques:

Recurrent dropout, a specific, built-in way to use dropout to fight overfitting in recurrent
layers.
Stacking recurrent layers, to increase the representational power of the network (at the
cost of higher computational loads).
Bidirectional recurrent layers, which presents the same information to a recurrent
network in different ways, increasing accuracy and mitigating forgetting issues.

Until now, the only sequence data we have covered has been text data, for instance the
IMDB dataset and the Reuters dataset. But sequence data is found in many more
problems than just language processing. In all of our examples in this section, will be
playing with a weather timeseries dataset recorded at the Weather Station at the
Max-Planck-Institute for Biogeochemistry in Jena, Germany. .1

Footnote 1mOlaf Kolle - www.bgc-jena.mpg.de/wetter/

In this dataset, fourteen different quantities (such air temperature, atmospheric
pressure, humidity, wind direction, etc.) are recorded every ten minutes, over several
years. The original data goes back to 2003, but we limit ourselves to data from
2009-2016. This dataset is perfect for learning to work with numerical timeseries. We
will use it to build a model that takes as input some data from the recent past (a few days
worth of data points) and predicts the air temperature 24 hours in the future.

The data can be downloaded and uncompressed via e.g.:

6.3 Advanced usage of recurrent neural networks

6.2.4 Wrapping up

6.3.1 A temperature forecasting problem
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Listing 6.32 Downloading the Jena weather dataset

Let’s take a look at the data:

Listing 6.33 Inspecting the data of the Jena weather dataset

This outputs a count of 420,551 lines of data (each line is a timestep, i.e. a record of a
date and 14 weather-related values), as well as the following header:

Listing 6.34 The header of the Jena weather data

Let’s convert all of these 420,551 lines of data into a Numpy array:

Listing 6.35 Parsing the data

cd ~/Downloads
mkdir jena_climate
cd jena_climate
wget https://s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip
unzip jena_climate_2009_2016.csv.zip

import os

data_dir = '/users/fchollet/Downloads/jena_climate'
fname = os.path.join(data_dir, 'jena_climate_2009_2016.csv')

f = open(fname)
data = f.read()
f.close()

lines = data.split('\n')
header = lines[0].split(',')
lines = lines[1:]

print(header)
print(len(lines))

["Date Time",
 "p (mbar)",
 "T (degC)",
 "Tpot (K)",
 "Tdew (degC)",
 "rh (%)",
 "VPmax (mbar)",
 "VPact (mbar)",
 "VPdef (mbar)",
 "sh (g/kg)",
 "H2OC (mmol/mol)",
 "rho (g/m**3)",
 "wv (m/s)",
 "max. wv (m/s)",
 "wd (deg)"]

import numpy as np

float_data = np.zeros((len(lines), len(header) - 1))
for i, line in enumerate(lines):
    values = [float(x) for x in line.split(',')[1:]]
    float_data[i, :] = values
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For instance, here is the plot of temperature (in degrees Celsius) over time:

Listing 6.36 Plotting the temperature timeseries

Figure 6.17 Temperature over the full temporal range of the dataset (oC).

On this plot, you can clearly see the yearly periodicity of temperature.
Here is a more narrow plot of the first ten days of temperature data (since the data is

recorded every ten minutes, we get 144 data points per day):

Listing 6.37 Plotting the first ten days of the temperature timeseries

Figure 6.18 Temperature over the first ten days of the dataset (oC).

from matplotlib import pyplot as plt

temp = float_data[:, 1]  # temperature (in degrees Celsius)
plt.plot(range(len(temp)), temp)

plt.plot(range(1440), temp[:1440])
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On this plot, you can see daily periodicity, especially evident for the last 4 days. We
can also note that this ten-days period must be coming from a fairly cold winter month.

If we were trying to predict average temperature for the next month given a few
month of past data, the problem would be easy, due to the reliable year-scale periodicity
of the data. But looking at the data over a scale of days, the temperature looks a lot more
chaotic. So is this timeseries predictable at a daily scale? Let’s find out.

The exact formulation of our problem will be the following: given data going as far back
as  timesteps (a timestep is 10 minutes) and sampled every  timesteps,lookback steps

can we predict the temperature in  timesteps?delay

We will use the following parameter values:

lookback = 720, i.e. our observations will go back 5 days.
steps = 6, i.e. our observations will be sampled at one data point per hour.
delay = 144, i.e. our targets will be 24 hour in the future.

To get started, we need to do two things:

Preprocess the data to a format a neural network can ingest. This is easy: the data is
already numerical, so we don’t need to do any vectorization. However each timeseries in
the data is one a different scale (e.g. temperature is typically between -20 and +30, but
pressure, measured in mbar, is around 1000). So we will normalize each timeseries
independently so that they all take small values on a similar scale.
Write a Python generator that takes our current array of float data and yields batches of
data from the recent past, alongside with a target temperature in the future. Since the
samples in our dataset are highly redundant (e.g. sample  and sample  will haveN N + 1
most of their timesteps in common), it would be very wasteful to explicitly allocate every
sample. Instead, we will generate the samples on the fly using the original data.

We preprocess the data by subtracting the mean of each timeseries and dividing by
the standard deviation. We plan on using the first 200,000 timesteps as training data, so
we compute the mean and standard deviation only on this fraction of the data:

Listing 6.38 Normalizing the data

Now here is the data generator that we will use. It yields a tuple (samples,
 where  is one batch of input data and  is the correspondingtargets) samples targets

array of target temperatures. It takes the following arguments:

data: The original array of floating point data, which we just normalized in the code
snippet above.
lookback: How many timesteps back should our input data go.
delay: How many timesteps in the future should our target be.

6.3.2 Preparing the data

mean = float_data[:200000].mean(axis=0)
float_data -= mean
std = float_data[:200000].std(axis=0)
float_data /= std
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min_index and : Indices in the  array that delimit which timesteps tomax_index data
draw from. This is useful for keeping a segment of the data for validation and another one
for testing.
shuffle: Whether to shuffle our samples or draw them in chronological order.
batch_size: The number of samples per batch.
step: The period, in timesteps, at which we sample data. We will set it 6 in order to draw
one data point every hour.

Listing 6.39 Generator yielding timeseries samples and their targets

Now let’s use our abstract generator function to instantiate three generators, one for
training, one for validation and one for testing. Each will look at different temporal
segments of the original data: the training generator looks at the first 200,000 timesteps,
the validation generator looks at the following 100,000, and the test generator looks at the
remainder.

Listing 6.40 Preparing the training, validation and test generators

def generator(data, lookback, delay, min_index, max_index,
              shuffle=False, batch_size=128, step=6):
    if max_index is None:
        max_index = len(data) - delay - 1
    i = min_index + lookback
    while 1:
        if shuffle:
            rows = np.random.randint(
                min_index + lookback, max_index, size=batch_size)
        else:
            if i + batch_size >= max_index:
                i = min_index + lookback
            rows = np.arange(i, min(i + batch_size, max_index))
            i += len(rows)

        samples = np.zeros((len(rows),
                           lookback // step,
                           data.shape[-1]))
        targets = np.zeros((len(rows),))
        for j, row in enumerate(rows):
            indices = range(rows[j] - lookback, rows[j], step)
            samples[j] = data[indices]
            targets[j] = data[rows[j] + delay][1]
        yield samples, targets

lookback = 1440
step = 6
delay = 144
batch_size = 128

train_gen = generator(float_data,
                      lookback=lookback,
                      delay=delay,
                      min_index=0,
                      max_index=200000,
                      shuffle=True,
                      step=step,
                      batch_size=batch_size)
val_gen = generator(float_data,
                    lookback=lookback,
                    delay=delay,
                    min_index=200001,
                    max_index=300000,
                    step=step,
                    batch_size=batch_size)
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Before we start leveraging black-box deep learning models to solve our temperature
prediction problem, let’s try out a simple common-sense approach. It will serve as a
sanity check, and it will establish a baseline that we will have to beat in order to
demonstrate the usefulness of more advanced machine learning models. Such
common-sense baselines can be very useful when approaching a new problem for which
there is no known solution (yet). A classic example is that of unbalanced classification
tasks, where some classes can be much more common than others. If your dataset
contains 90% of instances of class A and 10% of instances of class B, then a common
sense approach to the classification task would be to always predict "A" when presented
with a new sample. Such a classifier would be 90% accurate overall, and any
learning-based approach should therefore beat this 90% score in order to demonstrate
usefulness. Sometimes such elementary baseline can prove surprisingly hard to beat.

In our case, the temperature timeseries can safely be assumed to be continuous (the
temperatures tomorrow are likely to be close to the temperatures today) as well as
periodical with a daily period. Thus a common sense approach would be to always
predict that the temperature 24 hours from now will be equal to the temperature right
now. Let’s evaluate this approach, using the Mean Absolute Error metric (MAE). Mean
Absolute Error is simply equal to:

Listing 6.41 The Mean Absolute Error (MAE)

Here’s our evaluation loop:

Listing 6.42 Computing the common-sense baseline MAE

test_gen = generator(float_data,
                     lookback=lookback,
                     delay=delay,
                     min_index=300001,
                     max_index=None,
                     step=step,
                     batch_size=batch_size)

# This is how many steps to draw from `val_gen`
# in order to see the whole validation set:
val_steps = (300000 - 200001 - lookback) // batch_size

# This is how many steps to draw from `test_gen`
# in order to see the whole test set:
test_steps = (len(float_data) - 300001 - lookback) // batch_size

6.3.3 A common sense, non-machine learning baseline

np.mean(np.abs(preds - targets))

def evaluate_naive_method():
    batch_maes = []
    for step in range(val_steps):
        samples, targets = next(val_gen)
        preds = samples[:, -1, 1]
        mae = np.mean(np.abs(preds - targets))
        batch_maes.append(mae)
    print(np.mean(batch_maes))
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It yields a MAE of 0.29. Since our temperature data has been normalized to be
centered on 0 and have a standard deviation of one, this number is not immediately
interpretable. It translates to an average absolute error of 0.29 * temperature_std
degrees Celsius, i.e. 2.57°C. That’s a fairly large average absolute error—now the game
is to leverage our knowledge of deep learning to do better.

Listing 6.43 Converting the MAE back to a Celsius error

In the same way that it is useful to establish a common sense baseline before trying
machine learning approaches, it is useful to try simple and cheap machine learning
models (such as small densely-connected networks) before looking into complicated and
computationally expensive models such as RNNs. This is the best way to make sure that
any further complexity we throw at the problem later on is legitimate and delivers real
benefits.

Here is a simply fully-connected model in which we start by flattening the data, then
run it through two  layers. Note the lack of activation function on the last Dense Dense

layer, which is typical for a regression problem. We use MAE as the loss. Since we are
evaluating on the exact same data and with the exact same metric as with our common
sense approach, the results will be directly comparable.

Listing 6.44 Training and evaluating a densely-connected model using the data
generators

Let’s display the loss curves for validation and training:

Listing 6.45 Plotting results

evaluate_naive_method()

celsius_mae = 0.29 * std[1]

6.3.4 A basic machine learning approach

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.Flatten(input_shape=(lookback // step, float_data.shape[-1])))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,
                              steps_per_epoch=500,
                              epochs=20,
                              validation_data=val_gen,
                              validation_steps=val_steps)

import matplotlib.pyplot as plt
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Figure 6.19 Training and validation loss on the Jena temperature forecasting task with a
simple densely-connected network.

Some of our validation losses get close to the no-learning baseline, but not very
reliably. This goes to show the merit of having had this baseline in the first place: it turns
out not to be so easy to outperform. Our common sense contains already a lot of valuable
information that a machine learning model does not have access to.

You may ask, if there exists a simple, well-performing model to go from the data to
the targets (our common sense baseline), why doesn’t the model we are training find it
and improve on it? Simply put: because this simple solution is not what our training setup
is looking for. The space of models in which we are searching for a solution, i.e. our
hypothesis space, is the space of all possible 2-layer networks with the configuration that
we defined. These networks are already fairly complicated. When looking for a solution
with a space of complicated models, the simple well-performing baseline might be
unlearnable, even if it’s technically part of the hypothesis space. That is a pretty
significant limitation of machine learning in general: unless the learning algorithm is
hard-coded to look for a specific kind of simple model, parameter learning can
sometimes fail to find a simple solution to a simple problem.

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()
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Our first fully-connected approach didn’t do so well, but that doesn’t mean machine
learning is not applicable to our problem. The approach above consisted in first flattening
the timeseries, which removed the notion of time from the input data. Let us instead look
at our data as what it is: a sequence, where causality and order matter. We will try a
recurrent sequence processing model—it should be the perfect fit for such sequence data,
precisely because it does exploit the temporal ordering of data points, unlike our first
approach.

Instead of the  layer introduced in the previous section, we will use the LSTM GRU

layer, developed by Cho et al. in 2014.  layers (which stands for "gated recurrentGRU

unit") work by leveraging the same principle as LSTM, but they are somewhat
streamlined and thus cheaper to run, albeit they may not have quite as much
representational power as LSTM. This trade-off between computational expensiveness
and representational power is seen everywhere in machine learning.

Listing 6.46 Training and evaluating a GRU-based model

Let look at our results:

Figure 6.20 Training and validation loss on the Jena temperature forecasting task with a
GRU.

6.3.5 A first recurrent baseline

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.GRU(32, input_shape=(None, float_data.shape[-1])))
model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,
                              steps_per_epoch=500,
                              epochs=20,
                              validation_data=val_gen,
                              validation_steps=val_steps)
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Much better! We are able to significantly beat the common sense baseline, such
demonstrating the value of machine learning here, as well as the superiority of recurrent
networks compared to sequence-flattening dense networks on this type of task.

Our new validation MAE of ~0.265 (before we start significantly overfitting)
translates to a mean absolute error of 2.35°C after de-normalization. That’s a solid gain
on our initial error of 2.57°C, but we probably still have a bit of margin for improvement.

It is evident from our training and validation curves that our model is overfitting: the
training and validation losses start diverging considerably after a few epochs. You are
already familiar with a classic technique for fighting this phenomenon: dropout,
consisting in randomly zeroing-out input units of a layer in order to break happenstance
correlations in the training data that the layer is exposed to. How to correctly apply
dropout in recurrent networks, however, is not a trivial question. It has long been known
that applying dropout before a recurrent layer hinders learning rather than helping with
regularization. In 2015, Yarin Gal, as part of his Ph.D. thesis on Bayesian deep learning,
determined the proper way to use dropout with a recurrent network: the same dropout
mask (the same pattern of dropped units) should be applied at every timestep, instead of a
dropout mask that would vary randomly from timestep to timestep. What’s more: in order
to regularize the representations formed by the recurrent gates of layers such as GRU and
LSTM, a temporally constant dropout mask should be applied to the inner recurrent
activations of the layer (a "recurrent" dropout mask). Using the same dropout mask at
every timestep allows the network to properly propagate its learning error through time; a
temporally random dropout mask would instead disrupt this error signal and be harmful
to the learning process.

Yarin Gal did his research using Keras and helped build this mechanism directly into
Keras recurrent layers. Every recurrent layer in Keras has two dropout-related arguments:

, a float specifying the dropout rate for input units of the layer, and dropout

, specifying the dropout rate of the recurrent units. Let’s addrecurrent_dropout

dropout and recurrent dropout to our GRU layer and see how it impacts overfitting.
Because networks being regularized with dropout always take longer to fully converge,
we train our network for twice as many epochs.

Listing 6.47 Training and evaluating a dropout-regularized GRU-based model

6.3.6 Using recurrent dropout to fight overfitting

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.GRU(32,
                     dropout=0.2,
                     recurrent_dropout=0.2,
                     input_shape=(None, float_data.shape[-1])))
model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,
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Let’s take a look at our results:

Figure 6.21 Training and validation loss on the Jena temperature forecasting task with a
dropout-regularized GRU.

Great success; we are no longer overfitting during the first 30 epochs. However,
while we have more stable evaluation scores, our best scores are not much lower than
they were previously.

Since we are no longer overfitting yet we seem to have hit a performance bottleneck, we
should start considering increasing the capacity of our network. If you remember our
description of the "universal machine learning workflow": it is a generally a good idea to
increase the capacity of your network until overfitting becomes your primary obstacle
(assuming that you are already taking basic steps to mitigate overfitting, such as using
dropout). As long as you are not overfitting too badly, then you are likely under-capacity.

Increasing network capacity is typically done by increasing the number of units in the
layers, or adding more layers. Recurrent layer stacking is a classic way to build more
powerful recurrent networks: for instance, what currently powers the Google translate
algorithm is a stack of seven large LSTM layers—that’s huge.

To stack recurrent layers on top of each other in Keras, all intermediate layers should
return their full sequence of outputs (a 3D tensor) rather than their output at the last
timestep. This is done by specifying :return_sequences=True

Listing 6.48 Training and evaluating a dropout-regularized stacked GRU model

                              steps_per_epoch=500,
                              epochs=40,
                              validation_data=val_gen,
                              validation_steps=val_steps)

6.3.7 Stacking recurrent layers

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
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Let’s take a look at our results:

Figure 6.22 Training and validation loss on the Jena temperature forecasting task with a
stacked GRU network.

We can see that the added layers does improve ours results by a bit, albeit not very
significantly. We can draw two conclusions:

Since we are still not overfitting too badly, we could safely increase the size of our
layers, in quest for a bit of validation loss improvement. This does have a non-negligible
computational cost, though.
Since adding a layer did not help us by a significant factor, we may be seeing
diminishing returns to increasing network capacity at this point.

The last technique that we will introduce in this section is called "bidirectional RNNs". A
bidirectional RNN is common RNN variant which can offer higher performance than a
regular RNN on certain tasks. It is frequently used in natural language processing—you
could call it the Swiss army knife of deep learning for NLP.

RNNs are notably order-dependent, or time-dependent: they process the timesteps of
their input sequences in order, and shuffling or reversing the timesteps can completely
change the representations that the RNN will extract from the sequence. This is precisely
the reason why they perform well on problems where order is meaningful, such as our

model.add(layers.GRU(32,
                     dropout=0.1,
                     recurrent_dropout=0.5,
                     return_sequences=True,
                     input_shape=(None, float_data.shape[-1])))
model.add(layers.GRU(64, activation='relu',
                     dropout=0.1,
                     recurrent_dropout=0.5))
model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,
                              steps_per_epoch=500,
                              epochs=40,
                              validation_data=val_gen,
                              validation_steps=val_steps)

6.3.8 Using bidirectional RNNs
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temperature forecasting problem. A bidirectional RNN exploits the order-sensitivity of
RNNs: it simply consists of two regular RNNs, such as the GRU or LSTM layers that
you are already familiar with, each processing input sequence in one direction
(chronologically and antichronologically), then merging their representations. By
processing a sequence both way, a bidirectional RNN is able to catch patterns that may
have been overlooked by a one-direction RNN.

Remarkably, the fact that the RNN layers in this section have so far processed
sequences in chronological order (older timesteps first) may have been an arbitrary
decision. At least, it’s a decision we made no attempt at questioning so far. Could it be
that our RNNs could have performed well enough if it were processing input sequences
in antichronological order, for instance (newer timesteps first)? Let’s try this in practice
and see what we get. All we need to do is write a variant of our data generator, where the
input sequences get reverted along the time dimension (replace the last line with yield

). Training the same one-GRU-layer network as wesamples[:, ::-1, :], targets

used in the first experiment in this section, we get the following results:

Figure 6.23 Training and validation loss on the Jena temperature forecasting task with a
GRU trained on reversed sequences.

So the reversed-order GRU strongly underperforms even the common-sense baseline,
indicating that the in our case chronological processing is very important to the success
of our approach. This makes perfect sense: the underlying GRU layer will typically be
better at remembering the recent past than the distant past, and naturally the more recent
weather data points are more predictive than older data points in our problem (that is
precisely what makes the common-sense baseline a fairly strong baseline). Thus the
chronological version of the layer is bound to outperform the reversed-order version.
Importantly, this is generally not true for many other problems, including natural
language: intuitively, the importance of a word in understanding a sentence is not usually
dependent on its position in the sentence. Let’s try the same trick on the LSTM IMDB
example from the previous section:

Listing 6.49 Training and evaluating a LSTM using  sequences on thereversed
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IMDB data

We get near-identical performance as the chronological-order LSTM we tried in the
previous section.

Thus, remarkably, on such a text dataset, reversed-order processing works just as well
as chronological processing, confirming our hypothesis that, albeit word order does
matter in understanding language,  order you use isn’t crucial. Importantly, a RNNwhich
trained on reversed sequences will learn different representations than one trained on the
original sequences, in much the same way that you would have quite different mental
models if time flowed backwards in the real world—if you lived a life where you died on
your first day and you were born on your last day. In machine learning, representations
that are  yet  are always worth exploiting, and the more they differ thedifferent useful
better: they offer a new angle from which to look at your data, capturing aspects of the
data that were missed by other approaches, and thus they can allow to boost performance
on a task. This is the intuition behind "ensembling", a concept that we will introduce in
the next chapter.

A bidirectional RNN exploits this idea to improve upon the performance of
chronological-order RNNs: it looks at its inputs sequence both ways, obtaining
potentially richer representations and capturing patterns that may have been missed by
the chronological-order version alone.

from keras.datasets import imdb
from keras.preprocessing import sequence
from keras import layers
from keras.models import Sequential

# Number of words to consider as features
max_features = 10000
# Cut texts after this number of words (among top max_features most common words)
maxlen = 500

# Load data
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)

# Reverse sequences
x_train = [x[::-1] for x in x_train]
x_test = [x[::-1] for x in x_test]

# Pad sequences
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)

model = Sequential()
model.add(layers.Embedding(max_features, 128))
model.add(layers.LSTM(32))
model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['acc'])
history = model.fit(x_train, y_train,
                    epochs=10,
                    batch_size=128,
                    validation_split=0.2)
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Figure 6.24 How a bidirectional RNN layer
works.

To instantiate a bidirectional RNN in Keras, one would use the Bidirectional
layer, which takes as first argument a recurrent layer instance.  willBidirectional

create a second, separate instance of this recurrent layer, and will use one instance for
processing the input sequences in chronological order and the other instance for
processing the input sequences in reversed order. Let’s try it on the IMDB sentiment
analysis task:

Listing 6.50 Training and evaluating a bidirectional LSTM on the IMDB data

It performs slightly better than the regular LSTM we tried in the previous section,
going above 89% validation accuracy. It also seems to overfit faster, which is
unsurprising since a bidirectional layer has twice more parameters than a chronological
LSTM. With some regularization, the bidirectional approach would likely be a strong
performer on this task.

Now let’s try the same approach on the weather prediction task:

Listing 6.51 Training a bidirectional GRU on the Jena data

model = Sequential()
model.add(layers.Embedding(max_features, 32))
model.add(layers.Bidirectional(layers.LSTM(32)))
model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=10, batch_size=128, validation_split=0.2)

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.Bidirectional(
    layers.GRU(32), input_shape=(None, float_data.shape[-1])))
model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,
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It performs about as well as the regular GRU layer. It’s easy to understand why: all of
the predictive capacity must be coming from the chronological half of the network, since
the anti-chronological half is known to be severely underperforming on this task (again,
because the recent past matters much more than the distant past in this case).

At this stage, there are still many other things you could try in order to improve
performance on our weather forecasting problem:

Adjust the number of units in each recurrent layer in the stacked setup. Our current
choices are largely arbitrary and thus likely suboptimal.
Adjust the learning rate used by our  optimizer.RMSprop

Try using  layers instead of  layers.LSTM GRU

Try using a bigger densely-connected regressor on top of the recurrent layers, i.e. a
bigger  layer or even a stack of  layers.Dense Dense

Don’t forget to eventually run the best performing models (in terms of validation MAE)
on the test set! Least you start developing architectures that are overfitting to the
validation set.

As usual: deep learning is more an art than a science, and while we can provide
guidelines as to what is likely to work or not work on a given problem, ultimately every
problem is unique and you will have to try and evaluate different strategies empirically.
There is currently no theory that will tell you in advance precisely what you should do to
optimally solve a problem. You must try and iterate.

Here’s what you should take away from this section:

As you first learned in Chapter 4, when approaching a new problem, it is good to first
establish common sense baselines for your metric of choice. If you don’t have a baseline
to beat, you can’t tell if you are making any real progress.
Try simple models before expensive ones, to justify the additional expense. Sometimes a
simple model will turn out to be your best option.
On data where temporal ordering matters, recurrent networks are a great fit and easily
outperform models that first flatten the temporal data.
To use dropout with recurrent networks, one should use a time-constant dropout mask
and recurrent dropout mask. This is built into Keras recurrent layers, so all you have to
do is use the  and  arguments of recurrent layers.dropout recurrent_dropout

Stacked RNNs provide more representational power than a single RNN layer. They are
also much more expensive, and thus not always worth it. While they offer clear gains on
complex problems (e.g. machine translation), they might not always be relevant to
smaller, simpler problems.
Bidirectional RNNs, which look at a sequence both ways, are very useful on natural
language processing problems. However, they will not be strong performers on sequence
data where the recent past is much more informative than the beginning of the sequence.

                              steps_per_epoch=500,
                              epochs=40,
                              validation_data=val_gen,
                              validation_steps=val_steps)

6.3.9 Going even further

6.3.10 Wrapping up
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Note there are two important concepts that we will not cover in detail here: recurrent
"attention", and sequence masking. Both tend to be especially relevant for natural
language processing, and are not particularly applicable to our temperature forecasting
problem. We will leave them for future study outside of this book.

One last remark to close this section—some readers are bound to want to take the
techniques we introduced here and try them on the problem of forecasting the future price
of securities on the stock market (or currency exchange rates, etc.). A warning: markets
have very different statistical characteristics from natural phenomena such as weather
patterns. Trying to use machine learning to beat markets while only having access to
publicly available data is a very difficult endeavor, and you are likely to waste your time
and resources with nothing to show for it. Always remember that when it comes to
markets, past performance is not a good predictor of future returns—looking in the
rearview mirror is a bad way to drive. Machine learning, on the other hand, is only
applicable to datasets where to past  a good predictor of the future.is

In chapter 5, you learned about convolutional neural networks (convnets), and how they
perform particularly well on computer vision problems, due to their ability to operate
"convolutionally", extracting features from local input patches, allowing for
representation modularity and data efficiency. The same properties that make convnets
excel at computer vision also make them highly relevant to sequence processing. Indeed,
time can be treated as a spatial dimension, like the height or the width of a 2D image.

Such 1D convnets can be competitive with RNNs on certain sequence processing
problems, usually at a considerably cheaper computational cost. Recently, 1D convnets,
typically used with dilated kernels, have been with great success for audio generation and
machine translation. And besides these specific successes, it has long been known that
small 1D convnets can offer a fast alternative to RNNs for simple tasks such as text
classification or timeseries forecasting.

The convolution layers we introduced previously were 2D convolutions, extracting 2D
patches out of image tensors and applying a same transformation to every patch. In the
same way, we can use 1D convolutions, extracting local 1D patches (sub-sequences) out
of sequences.

6.4 Sequence processing with convnets

6.4.1 1D Convnets as an alternative to RNNs for sequence processing

6.4.2 Understanding 1D convolution for sequence data
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Figure 6.25 How 1D convolution works: each output timestep is obtained from a temporal
patch in the input sequence.

Such 1D convolution layers will be able to recognize local patterns in a sequence.
Because the same input transformation is performed on every patch, a pattern learned at a
certain position in a sentence can later be recognized at a different position, making 1D
convnets translation invariants (for temporal translations). For instance, a 1D convnet
processing sequences of characters using convolution windows of size 5 should be able
to learn words or word fragments of length 5 or lower, and should be able to recognize
these words in any context in an input sequence. A character-level 1D convnet is thus
capable to learn about word morphology.

You are already familiar with 2D pooling operations, such as 2D average pooling or max
pooling, used in convnets to spatially downsample image tensors. The 2D pooling
operation has a 1D equivalent, extracting 1D patches (subsequences) from an input and
outputting the maximum value ("max pooling") or average value ("average pooling").
Just like in 2D convnets, his is used for reducing the length of 1D inputs
("subsampling").

In Keras, you would use a 1D convnet via the  layer, which has a very similarConv1D

interface to . It takes as input 3D tensors with shape Conv2D (samples, time,

 and also returns similarly-shaped 3D tensors. The convolution window is afeatures)

1D window on the temporal axis, axis 1 in the input tensor.
Let’s build a simple 2-layer 1D convnet and apply it to the IMDB sentiment

classification task that you are already familiar with.
As a reminder, this is the code for obtaining and preprocessing the data:

6.4.3 1D Pooling for sequence data

6.4.4 Implementing a 1D convnet
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Listing 6.52 Preparing the IMDB data

1D convnets are structured in the same way as their 2D counter-parts that you have
used in Chapter 5: they consist of a stack of  and  layers,Conv1D MaxPooling1D

eventually ending in either a global pooling layer or a  layer, turning the 3DFlatten

outputs into 2D outputs, allowing to add one or more  layers to the model, forDense

classification or regression.
One difference, though, is the fact that we can afford to use larger convolution

windows with 1D convnets. Indeed, with a 2D convolution layer, a 3x3 convolution
window contains 3*3 = 9 feature vectors, but with a 1D convolution layer, a convolution
window of size 3 would only contain 3 feature vectors. We can thus easily afford 1D
convolution windows of size 7 or 9.

This is our example 1D convnet for the IMDB dataset:

Listing 6.53 Training and evaluating a simple 1D convnet on the IMDB data

Here are our training and validation results: validation accuracy is somewhat lower
than that of the LSTM we used two sections ago, but runtime is faster, both on CPU and
GPU (albeit the exact speedup will vary greatly depending on your exact configuration).

from keras.datasets import imdb
from keras.preprocessing import sequence

max_features = 10000  # number of words to consider as features
max_len = 500  # cut texts after this number of words (among top max_features most common words)

print('Loading data...')
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')

print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=max_len)
x_test = sequence.pad_sequences(x_test, maxlen=max_len)
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.Embedding(max_features, 128, input_length=max_len))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))

model.summary()

model.compile(optimizer=RMSprop(lr=1e-4),
              loss='binary_crossentropy',
              metrics=['acc'])
history = model.fit(x_train, y_train,
                    epochs=10,
                    batch_size=128,
                    validation_split=0.2)
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At that point, we could re-train this model for the right number of epochs (8), and run it
on the test set. This is a convincing demonstration that a 1D convnet can offer a fast,
cheap alternative to a recurrent network on a word-level sentiment classification task.

Figure 6.26 Training and validation loss on IMDB with a simple 1D convnet.

Figure 6.27 Training and validation accuracy on IMDB with a simple 1D convnet.

Because 1D convnets process input patches independently, they are not sensitive to the
order of the timesteps (beyond a local scale, the size of the convolution windows), unlike
RNNs. Of course, in order to be able to recognize longer-term patterns, one could stack
many convolution layers and pooling layers, resulting in upper layers that would "see"
long chunks of the original inputs—but that’s still a fairly weak way to induce
order-sensitivity. One way to evidence this weakness is to try 1D convnets on the
temperature forecasting problem from the previous section, where order-sensitivity was
key to produce good predictions. Let’s see:

Listing 6.54 Training and evaluating a simple 1D convnet on the Jena data

6.4.5 Combining CNNs and RNNs to process long sequences

# We reuse the following variables defined in the last section:
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Here are our training and validation Mean Absolute Errors:

Figure 6.28 Training and validation loss on the Jena temperature forecasting task with a
simple 1D convnet.

The validation MAE stays in the low 0.40s: we cannot even beat our common-sense
baseline using the small convnet. Again, this is because our convnet looks for patterns
anywhere in the input timeseries, and has no knowledge of the temporal position of a
pattern it sees (e.g. towards the beginning, towards the end, etc.). Since more recent
datapoints should be interpreted differently from older datapoints in the case of this
specific forecasting problem, the convnet fails at producing meaningful results here. This
limitation of convnets was not an issue on IMDB, because patterns of keywords that are
associated with a positive or a negative sentiment will be informative independently of
where they are found in the input sentences.

One strategy to combine the speed and lightness of convnets with the order-sensitivity
of RNNs is to use a 1D convnet as a preprocessing step before a RNN. This is especially
beneficial when dealing with sequences that are so long that they couldn’t realistically be
processed with RNNs, e.g. sequences with thousands of steps. The convnet will turn the

# float_data, train_gen, val_gen, val_steps

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.Conv1D(32, 5, activation='relu',
                        input_shape=(None, float_data.shape[-1])))
model.add(layers.MaxPooling1D(3))
model.add(layers.Conv1D(32, 5, activation='relu'))
model.add(layers.MaxPooling1D(3))
model.add(layers.Conv1D(32, 5, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
cnn_history = model.fit_generator(train_gen,
                                  steps_per_epoch=500,
                                  epochs=20,
                                  validation_data=val_gen,
                                  validation_steps=val_steps)
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long input sequence into much shorter (downsampled) sequences of higher-level features.
This sequence of extracted features then becomes the input to the RNN part of the
network.

Figure 6.29 Combining a 1D convnet and a RNN for processing long sequences.

This technique is not seen very often in research papers and practical applications,
possibly because it is not very well known. It is very effective and ought to be more
common. Let’s try this out on the temperature forecasting dataset. Because this strategy
allows us to manipulate much longer sequences, we could either look at data from further
back (by increasing the  parameter of the data generator), or look atlookback

high-resolution timeseries (by decreasing the  parameter of the generator). Here, westep

will chose (somewhat arbitrarily) to use a  twice smaller, resulting in twice longerstep

timeseries, where the weather data is being sampled at a rate of one point per 30 minutes.

Listing 6.55 Preparing higher-resolution data generators for the Jena dataset

# We reuse the `generator` function defined at the previous section.

# This was previously set to 6 (one point per hour).
# Now 3 (one point per 30 min).
step = 3
lookback = 720  # Unchanged
delay = 144 # Unchanged

train_gen = generator(float_data,
                      lookback=lookback,
                      delay=delay,
                      min_index=0,
                      max_index=200000,
                      shuffle=True,
                      step=step)
val_gen = generator(float_data,
                    lookback=lookback,
                    delay=delay,
                    min_index=200001,
                    max_index=300000,
                    step=step)
test_gen = generator(float_data,
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This is our model, starting with two  layers and following-up with a  layer:Conv1D GRU

Listing 6.56 Model combining a 1D convolutional base and a GRU layer

Figure 6.30 Training and validation loss on the Jena temperature forecasting task with a
1D convnet followed by a GRU.

Judging from the validation loss, this setup is not quite as good as the regularized
GRU alone, but it’s significantly faster. It is looking at twice more data, which in this
case doesn’t appear to be hugely helpful, but may be important for other datasets.

Here’s what you should take away from this section:

In the same way that 2D convnets perform well for processing visual patterns in 2D

                     lookback=lookback,
                     delay=delay,
                     min_index=300001,
                     max_index=None,
                     step=step)
val_steps = (300000 - 200001 - lookback) // 128
test_steps = (len(float_data) - 300001 - lookback) // 128

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.Conv1D(32, 5, activation='relu',
                        input_shape=(None, float_data.shape[-1])))
model.add(layers.MaxPooling1D(3))
model.add(layers.Conv1D(32, 5, activation='relu'))
model.add(layers.GRU(32, dropout=0.1, recurrent_dropout=0.5))
model.add(layers.Dense(1))

model.summary()

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,
                              steps_per_epoch=500,
                              epochs=20,
                              validation_data=val_gen,
                              validation_steps=val_steps)

6.4.6 Wrapping up
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space, 1D convnets perform well for processing temporal patterns. They offer a faster
alternative to RNNs on some problems, in particular NLP tasks.
Typically 1D convnets are structured much like their 2D equivalents from the world of
computer vision: they consist of stacks of  layers and  layers,Conv1D MaxPooling1D
eventually ending in a global pooling operation or flattening operation.
Because RNNs are extremely expensive for processing very long sequences, but 1D
convnets are cheap, it can be a good idea to use a 1D convnet as a preprocessing step
before a RNN, shortening the sequence and extracting useful representations for the RNN
to process.

One useful and important concept that we will not cover in these pages is that of 1D
convolution with dilated kernels.

Here’s what you have learned in this chapter:

How to tokenize text.
What word embeddings are, and how to use them.
What recurrent networks are, and how to use them.
How to stack RNN layers and use bidirectional RNNs to build more powerful sequence
processing models.
How to use 1D convnets for sequence processing.
How to combine 1D convnets and RNNs to process long sequences.

These techniques are widely applicable to any dataset of sequence data, from text to
timeseries.

For instance, you could use RNNs for:

Timeseries regression ("predicting the future").
Timeseries classification.
Anomaly detection in timeseries.
Sequence labeling, e.g. identifying names or dates in sentences.
…

Similarly, you could use 1D convnets for:

Machine translation (sequence-to-sequence convolutional models, like SliceNet).
Document classification.
Spelling correction.
…

Remember: if  in your sequence data, then it is preferable to useglobal order matters
a recurrent network to process it. This is typically the case for timeseries, where the
recent past is likely to be more informative than the distant past. But if global ordering
isn’t fundamentally meaningful, then 1D convnets will turn out to work at least as well,
while being cheaper. This is often the case for text data, where a keyword found at the
beginning of a sentence is just as meaningful as a keyword found at the end.

6.5 Wrapping up: deep learning for text and sequences
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7
In this chapter, we cover more advanced techniques for designing and manipulating deep
neural networks:

The Keras functional API, with which you will be able to build graph-like models, share
a same layer across different inputs, and use Keras models just like Python functions.
Keras callbacks, and the TensorBoard browser-based visualization tool, to monitor
models during training.
Important best practices such as batch normalization, residual connections,
hyperparameter optimization, and model ensembling.

These are powerful tools that will bring you closer to being able to develop
state-of-art models on difficult problems.

Until now, all neural networks introduced in this book have been implemented using the 
 model. The  model makes the assumption that the network hasSequential Sequential

exactly one input and exactly one output, and that it consists of a linear stack of layers.

Figure 7.1 A Sequential model: a linear stack of layers.

Advanced deep learning best practices

7.1 Going beyond the  model: the Keras functional APISequential
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This is a very commonly verified assumption; this configuration is in fact so common
that we have been able to cover many topics and practical applications in these pages so
far using only the  model class. However, this set of assumptions is tooSequential

inflexible in a number of cases. Some networks require several independent inputs, some
others require multiple outputs, and some networks have internal branching between
layers making them look like  of layers rather than linear stacks of layers.graphs

Some tasks, for instance, require  inputs: they merge data coming frommulti-modal
different input sources, processing each type of data using different kinds of neural
layers. Imagine a deep learning model trying to predict the most likely market price of a
second-hand piece of clothing, using as input: 1) some user-provided metadata (such as
the brand, the age, etc.), 2) a user-provided text description, and 3) a picture of the item.
If we only had the metadata available, we could one-hot encode it and use a
densely-connected network to predict the price. If we only had the text description
available, we could use a RNN or a 1D convnet. If we only had the picture, we could use
a 2D convnet. But how can all leverage all three at the same time? A naive approach
would be to train three separate models, and then do a weighted average of their
predictions. However, this may well be suboptimal, because the information extracted by
the models may be high redundant. A better way is to  learn a more accurate modeljointly
of the data by using a model that can see all available input modalities simultaneously: a
model with three input branches (see Figure 7.2).

Figure 7.2 A multi-input model.

Similarly, some tasks require predicting multiple target attributes of some input data.
Given the text of a novel or short-story, one might want to automatically classify it by
genre (e.g. romance, thriller) but also predict the approximate date it was written. Of
course, one could simply train two separate models, one for the genre and one for the
date. However, because these attributes are not statistically independent, we can build a
better model by learning to  predict both genre and date at the same time. Such ajointly
joint model would then have two outputs, or two "heads" (Figure 7.3). Due to
correlations between genre and date, knowing the date of a novel will help the model
learn rich and accurate representations of the space of novel genres, and reciprocally.
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Figure 7.3 A multi-output (or multi-head) model.

Additionally, many recent neural architectures require non-linear network topology:
networks structured as directed acyclic graphs. The Inception family of networks
(developed by Szegedy et al. at Google), for instance, relies on "Inception modules",
where the input is processed by several parallel convolutional branches whose outputs
then get merged back into a single tensor (Figure 7.4). There is also the recent trend of
adding "residual connections" to a model, which started with the ResNet family of
networks (developed by He et al at Microsoft). A residual connection consists simply in
reinjecting previous representations into the downstream flow of data, by adding a past
output tensor to later output tensor (Figure 7.5), which helps prevent information loss
along the data processing flow. And there are many more examples of such graph-like
networks.

Figure 7.4 An Inception module: a subgraph of layers with several parallel convolutional
branches.
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Figure 7.5 A residual connection: reinjection of prior information downstream via feature
map addition.

These three important use cases—multi-input models, multi-output models, and
graph-like models—are not possible when using only the  model class inSequential

Keras. But there is also a different, far more general and flexible way to use Keras: the 
. This sections explains in detail what it is, what it can do, and how to usefunctional API

it.

In the functional API, you are directly manipulating tensors, and you use layers as 
 that take tensors and return tensors (hence the name "functional API").functions

Listing 7.1 Calling layers as function in the functional API

Let’s start with a minimal example: we will show side by side a simple Sequential
model and its equivalent in the functional API.

Listing 7.2 The functional API equivalent to a Sequential model

7.1.1 Introduction to the functional API

from keras import Input, layers

# This is a tensor.
input_tensor = Input(shape=(32,))

# A layer is a function.
dense = layers.Dense(32, activation='relu')

# A layer may be called on a tensor, and it returns a tensor.
output_tensor = dense(input_tensor)

from keras.models import Sequential, Model
from keras import layers
from keras import Input

# A Sequential model, which you already know all about.
seq_model = Sequential()
seq_model.add(layers.Dense(32, activation='relu', input_shape=(64,)))
seq_model.add(layers.Dense(32, activation='relu'))
seq_model.add(layers.Dense(10, activation='softmax'))

# Its functional equivalent.
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This is what our call to  displays:model.summary()

Listing 7.3 Summary of the functional model

The only part that may seem a bit magical at this point is instantiating a  objectModel

using only an input tensor and output tensor. Behind the scenes, Keras will retrieve every
layer that was involved in going from  to , bringing theminput_tensor output_tensor

together into a graph-like data structure—a . Of course, the reason it works isModel

because  was indeed obtained by repeatedly transforming output_tensor input_tensor

. If you tried to build a model from inputs and outputs that were not related, you would
get a :RuntimeError

Listing 7.4 A graph disconnection error

This error tells you, in essence, that Keras was not able to reach  from theinput_1

provided output tensor.
When it comes to compiling, training or evaluating such an instance of , theModel

API is the same as that of :Sequential

Listing 7.5 Training models built with the functional API: business as usual

input_tensor = Input(shape=(64,))
x = layers.Dense(32, activation='relu')(input_tensor)
x = layers.Dense(32, activation='relu')(x)
output_tensor = layers.Dense(10, activation='softmax')(x)

# The Model class turns an input tensor and output tensor into a model
model = Model(input_tensor, output_tensor)

# Let's look at it!
model.summary()

_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, 64)                0
_________________________________________________________________
dense_1 (Dense)              (None, 32)                2080
_________________________________________________________________
dense_2 (Dense)              (None, 32)                1056
_________________________________________________________________
dense_3 (Dense)              (None, 10)                330
=================================================================
Total params: 3,466
Trainable params: 3,466
Non-trainable params: 0
_________________________________________________________________

>>> unrelated_input = Input(shape=(32,))
>>> bad_model = model = Model(unrelated_input, output_tensor)
RuntimeError: Graph disconnected: cannot obtain value for tensor Tensor("input_1:0", shape=(?, 64), d

# Compile the model
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

# Generate dummy Numpy data to train on
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The functional API can be used to build models that have multiple inputs. Typically, such
models will at some point "merge" their different input branches using a layer that can
combine several tensors, i.e. by adding them, concatenating them, etc. This is usually
done via a Keras "merge operation" such as , keras.layers.add

, etc. Let’s take a look at a very simple example of akeras.layers.concatenate

multi-input model: a question-answering model.
A typical question-answering model has two inputs: a natural language question, and

a text snippet (such as a news article) providing information to be used for answering the
question. The model must then produce an answer: in the simplest possible setup, this is
simply a one-word answer obtained via a softmax over some predefined vocabulary. This
is presented in Figure 7.6.

Figure 7.6 A question-answering model

Here is an example of how we can build such a model with the functional API: we set
up two independent branches, encoding the text input and the question input as
representation vectors, then we concatenate these vectors, and finally, we add a softmax
classifier on top of the concatenated representations.

Listing 7.6 Functional API implementation of a two-input question-answering
model

import numpy as np
x_train = np.random.random((1000, 64))
y_train = np.random.random((1000, 10))

# Train the model for 10 epochs
model.fit(x_train, y_train, epochs=10, batch_size=128)

# Evaluate the model
score = model.evaluate(x_train, y_train)

7.1.2 Multi-input models

from keras.models import Model
from keras import layers
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Now, how do we train this two-input model? There are two possible APIs: you could
feed as inputs to the model a list of Numpy arrays, or you could feed it a dictionary
mapping input names to Numpy arrays. Naturally, the latter option is only available if
you gave names to your inputs.

Listing 7.7 Feeding data to a multi-input model

from keras import Input

text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500

# Our text input is a variable-length sequence of integers.
# Note that we can optionally name our inputs!
text_input = Input(shape=(None,), dtype='int32', name='text')

# Which we embed into a sequence of vectors of size 64
embedded_text = layers.Embedding(64, text_vocabulary_size)(text_input)

# Which we encoded in a single vector via a LSTM
encoded_text = layers.LSTM(32)(embedded_text)

# Same process (with different layer instances) for the question
question_input = Input(shape=(None,), dtype='int32', name='question')
embedded_question = layers.Embedding(32, question_vocabulary_size)(question_input)
encoded_question = layers.LSTM(16)(embedded_question)

# We then concatenate the encoded question and encoded text
concatenated = layers.concatenate([encoded_text, encoded_question], axis=-1)

# And we add a softmax classifier on top
answer = layers.Dense(answer_vocabulary_size, activation='softmax')(concatenated)

# At model instantiation, we specify the two inputs and the output:
model = Model([text_input, question_input], answer)
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['acc'])

import numpy as np

# Let's generate some dummy Numpy data
text = np.random.randint(1, text_vocabulary_size, size=(num_samples, max_length))
question = np.random.randint(1, question_vocabulary_size, size=(num_samples, max_length))

# Answers are one-hot encoded, not integers
answers = np.random.randint(0, 1, size=(num_samples, answer_vocabulary_size))

# Fitting using a list of inputs
model.fit([text, question], answers, epochs=10, batch_size=128)

# Fitting using a dictionary of inputs (only if inputs were named!)
model.fit({'text': text, 'question': question}, answers,
          epochs=10, batch_size=128)
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In the same way, the functional API can be used to build models with multiple outputs
(or multiple "heads", as sometimes described in the literature). A simple example would
be a network that attempts to simultaneously predict different properties of the data: let’s
say, a network that takes as input a series of social media posts from one single
anonymous person, and tries to predict attributes of that person, such as age, gender, or
income level (Figure 7.7).

Figure 7.7 A social media model with three heads

Listing 7.8 Functional API implementation of a three-output model

Importantly, training such a model requires the ability to specify different loss
functions for different "heads" of the network: for instance, age prediction is a scalar
regression task, but gender prediction is a binary classification task, requiring a different
training procedure. However, since gradient descent requires us to minimize a , wescalar
must combine these losses into a single value in order to be able to train the model. The
simplest way to combine different losses is simply to sum them all. In Keras, you can use
either a list or a dictionary of losses in  to specify different objects for differentcompile

7.1.3 Multi-output models

from keras import layers
from keras import Input
from keras.models import Model

vocabulary_size = 50000
num_income_groups = 10

posts_input = Input(shape=(None,), dtype='int32', name='posts')
embedded_posts = layers.Embedding(256, vocabulary_size)(posts_input)
x = layers.Conv1D(128, 5, activation='relu')(embedded_posts)
x = layers.MaxPooling1D(5)(x)
x = layers.Conv1D(256, 5, activation='relu')(x)
x = layers.Conv1D(256, 5, activation='relu')(x)
x = layers.MaxPooling1D(5)(x)
x = layers.Conv1D(256, 5, activation='relu')(x)
x = layers.Conv1D(256, 5, activation='relu')(x)
x = layers.GlobalMaxPooling1D()(x)
x = layers.Dense(128, activation='relu')(x)

# Note that we are giving names to the output layers.
age_prediction = layers.Dense(1, name='age')(x)
income_prediction = layers.Dense(num_income_groups, activation='softmax', name='income')(x)
gender_prediction = layers.Dense(1, activation='sigmoid', name='gender')(x)

model = Model(input_posts, [age_prediction, income_prediction, gender_prediction])
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outputs, and the resulting loss values get summed into a global loss, which is what gets
minimized during training.

Listing 7.9 Compilation options of a multi-output model: multiple losses

Note that it is also possible to assign different importances to the loss values in their
contribution to the final loss. This is useful in particular if the different losses take values
on different scales. For instance, the MSE loss used for the age regression task could take
a typical value around 3-5, while the crossentropy loss used for the gender classification
task could be as low as 0.1. In such a situation, in order to make the contribution of the
different losses more balanced, you would assign a weight of 10 to the crossentropy loss,
and a weight of 0.25 to the MSE loss. Very imbalanced loss contributions would cause
the model representations to be optimized preferentially for the task with the largest
individual loss, at the expense of the other tasks.

Listing 7.10 Compilation options of a multi-output model: loss weighting

Much like in the case of multi-input models, passing Numpy data to the model for
training can be done either via a list of arrays or via a dictionary of arrays:

Listing 7.11 Feeding data to a multi-output model

model.compile(optimizer='rmsprop',
              loss=['mse', 'categorical_crossentropy', 'binary_crossentropy'])

# Equivalent (only possible if you gave names to the output layers!):
model.compile(optimizer='rmsprop',
              loss={'age': 'mse',
                    'income': 'categorical_crossentropy',
                    'gender': 'binary_crossentropy'})

model.compile(optimizer='rmsprop',
              loss=['mse', 'categorical_crossentropy', 'binary_crossentropy'],
              loss_weights=[0.25, 1., 10.])

# Equivalent (only possible if you gave names to the output layers!):
model.compile(optimizer='rmsprop',
              loss={'age': 'mse',
                    'income': 'categorical_crossentropy',
                    'gender': 'binary_crossentropy'},
              loss_weights={'age': 0.25,
                            'income': 1.,
                            'gender': 10.})

# age_targets, income_targets and gender_targets are assumed to be Numpy arrays
model.fit(posts, [age_targets, income_targets, gender_targets],
          epochs=10, batch_size=64)

# Equivalent (only possible if you gave names to the output layers!):
model.fit(posts, {'age': age_targets,
                  'income': income_targets,
                  'gender': gender_targets},
          epochs=10, batch_size=64)
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With the functional API, not only can you build models with multiple inputs and multiple
outputs, you can also implement networks with a complex internal topology. Neural
networks in Keras are allowed to be arbitrary  of layers. Thedirected acyclic graphs
qualifier "acyclic" is important: these graphs cannot have cycles, i.e. to is impossible for
a tensor  to become the input of one of the layers that generated ). The only processingx x

"loops" that are allowed (i.e. recurrent connections) are those internal to recurrent layers.
Several common neural network components are implemented as graphs. Two

notable ones are Inception modules, and residual connections. To better understand how
the functional API can be used to build graphs of layers, let’s take a look at how we can
implement both of them in Keras.

Inception is a popular type of network architecture for convolutional neural networks,
developed by Christian Szegedy and colleagues at Google in 2013-2014, inspired by the
earlier "network-in-network" architecture. It consists of a stack of modules which
themselves look like small independent networks, split into several parallel branches. The
most basic form of an inception module has three to four branches starting with a 1x1
convolution, following up with a 3x3 convolution, and ending with the concatenation of
the resulting features. This setup helps the network separately learn spatial features and
channel-wise features, which is more efficient than learning them jointly. More complex
versions of an Inception module are also possible, typically involving pooling operations,
different spatial convolution sizes (e.g. 5x5 instead of 3x3 on some branches), and
branches without a spatial convolution (only a 1x1 convolution). An example of such a
module, taken from Inception V3, is provided in Figure 7.8.

Figure 7.8 An Inception module

7.1.4 Directed acyclic graphs of layers

INCEPTION MODULES
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NOTE The purpose of 1x1 convolutions (also called pointwise
convolution).

You already know that convolutions extract spatial patches around every
tile in an input tensor, and apply a same transformation to each patch. An
edge case is when the patches extracted consist of a single tile. The
convolution operation then becomes equivalent to running each tile vector
through a  layer: it will compute features that mix togetherDense

information from the channels of the input tensor, but it will not mix
information across space at all (since it is looking at one tile at a time).
Such 1x1 convolutions are featured in Inception modules, where they
contribute to factoring out channel-wise feature learning and space-wise
feature learning—a reasonable thing to do if you assume that each
channel is highly auto-correlated across space, but different channels
might not be highly correlated with each other.

Here is how one would implement the module featured in Figure 7.4 using the
functional API:

Listing 7.12 Implementing an Inception module with the functional API

Note that the full Inception V3 architecture is available in Keras as 
, including weights pre-trained onkeras.applications.inception_v3.InceptionV3

the ImageNet dataset. Another closely related model available as part of the Keras
applications module is . "Xception", which stands for "extreme inception", is aXception

convnet architecture loosely inspired by Inception. It takes the idea of separating the
learning of channel-wise and space-wise features to its logical extreme, and replaces
Inception modules with depthwise separable convolutions, consisting in a depthwise
convolution (a spatial convolution where every input channel is handled separately)
followed by a pointwise convolution (i.e. a 1x1 convolution)—effectively, an extreme

from keras import layers

# We assume the existence of a 4D input tensor `x`

# Every branch has the same stride value (2), which is necessary to keep all
# branch outputs the same size, so as to be able to concatenate them.
branch_a = layers.Conv2D(128, 1, activation='relu', strides=2)(x)

# In this branch, the striding occurs in the spatial convolution layer
branch_b = layers.Conv2D(128, 1, activation='relu')(x)
branch_b = layers.Conv2D(128, 3, activation='relu', strides=2)(branch_b)

# In this branch, the striding occurs in the average pooling layer
branch_c = layers.AveragePooling2D(3, strides=2, activation='relu')(x)
branch_c = layers.Conv2D(128, 3, activation='relu')(branch_c)

branch_d = layers.Conv2D(128, 1, activation='relu')(x)
branch_d = layers.Conv2D(128, 3, activation='relu')(branch_d)
branch_d = layers.Conv2D(128, 3, activation='relu', strides=2)(branch_d)

# Finally, we concatenate the branch outputs to obtain the module output
output = layers.concatenate([branch_a, branch_b, branch_c, branch_d], axis=-1)
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form of an Inception module, where spatial features and channel-wise features are fully
separated. Xception has roughly the same number of parameters of Inception V3, but it
shows better runtime performance and higher accuracy on ImageNet as well as other
large-scale datasets, due to a more efficient use of model parameters.

Residual connections are a very common graph-like network component found in many
post-2015 network architectures, including Xception. They were introduced by He et al
from Microsoft in their winning entry in the ILSVRC ImageNet challenge in late 2015.
They tackle two common problems that plague any large-scale deep learning model:
vanishing gradients, and representational bottlenecks. In general, adding residual
connections to any model that has over ten layers is likely to be beneficial.

A residual connection simply consist of making the output of an earlier layer
available as input to a later layer, effectively creating a shortcut in a sequential network
(Figure 7.5). Rather than being concatenated to the later activation, the earlier output is
summed with the later activation, which assumes that both activations have the same
size. In case of differing sizes, one may use a linear transformation to reshape the earlier
activation into the target shape (e.g. a  layer without an activation, or forDense

convolutional feature maps, a 1x1 convolution without an activation).
Here is how you would implement a residual connection in Keras:

Listing 7.13 Implementing a residual connection when feature map sizes are the
same: using identity residual connections

Listing 7.14 Implementing a residual connection when feature map sizes differ:
using a linear residual connection

RESIDUAL CONNECTIONS

from keras import layers

# We assume the existence of a 4D input tensor `x`
x = ...
# We apply some transformation to `x`
y = layers.Conv2D(128, 3, activation='relu')(x)
y = layers.Conv2D(128, 3, activation='relu')(y)
y = layers.Conv2D(128, 3, activation='relu')(y)

# We add the original `x` back to the output features
y = layers.add([y, x])

from keras import layers

# We assume the existence of a 4D input tensor `x`
x = ...
y = layers.Conv2D(128, 3, activation='relu')(x)
y = layers.Conv2D(128, 3, activation='relu')(y)
y = layers.MaxPooling2D(2, strides=2)(y)

# We use a 1x1 convolution to linearly downsample
# the original `x` tensor to the same shape as `y`
residual = layers.Conv2D(1, strides=2)(x)

# We add the residual tensor back to the output features
y = layers.add([y, residual])
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NOTE Representational bottlenecks in deep learning

In a sequential model, each successive representation layer is built on top
of the previous one, which means that it only has access to information
contained in the activation of the previous layer. If one layer happens to
be too small (e.g. have features that are too low-dimensional), then the
model will be constrained by how much information can be crammed into
the activations of this layer. You can think of it with a signal processing
analogy: if you have an audio processing pipeline that consists of a series
of operations that each take as input the output of the previous operation,
then if one operation happens to crop your signal to a low frequency
range (e.g. 0-15 kHz), the operations downstream will never be able to
recover the dropped frequencies. Any loss of information is permanent.
Residual connections, by reinjecting earlier information downstream,
partially solve this issue for deep learning models.

NOTE Vanishing gradients in deep learning

Backpropagation, the master algorithm used to train deep neural
networks, works by propagating a feedback signal from the output loss
down to earlier layers. If this feedback signal has to be propagated
through a very deep stack of layers, the signal may become very tenuous
or even be lost entirely, rendering the network untrainable—this is the
problem of "vanishing gradients". This problem occurs both with very
deep networks and with recurrent networks over very long sequences—in
both cases, a feedback signal must be propagated through a long series
of operations. You are already familiar with the solution that the LSTM
layer uses to address this problem in recurrent networks: it introduces a
"carry track" that propagates information in parallel to the main processing
track. Residual connections work in a very similar way in feedforward
deep networks, but they are even simpler: they introduce a purely linear
information carry track parallel to the main layer stack, thus helping to
propagate gradients through arbitrarily deep stacks of layers.

One more important feature of the functional API is the ability to reuse a layer instance
several time. When you call a layer instance twice, instance of instantiating a new layer
for each call, you are reusing the same weights with every call. This allows you to build
models that have shared branches—several branches that all share the same knowledge
and perform the same operations, i.e. that share the same representations, and learn these
representations simultaneously for different sets of inputs.

One example would be a model that attempts to assess the semantic similarity
between two sentences. The model would have two inputs (the two sentences to
compare) and would output a score between 0 and 1, where 0 are unrelated sentences and
1 are sentences that either identical or mere reformulations of each other. Such a model

7.1.5 Layer weight sharing
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could be useful in many applications, including de-deduplicating natural language
queries in a dialog system.

In this setup, the two input sentences are interchangeable, because semantic similarity
is a symmetrical relationship: the similarity of A to B is identical to the similarity of B to
A. For this reason, it would not make sense to learn two independent models for
processing each input sentence. Rather, we would like to process both with one single
LSTM layer. The representations of this LSTM layer (its weights) would be learned
based on both inputs simultaneously. This is what we would call a "siamese LSTM"
model, or simply a "shared LSTM".

Here is how we would implement such a model using layer sharing in the Keras
functional API:

Listing 7.15 Layer weight sharing (i.e. layer reuse) with the functional API:
implementing a siamese LSTM model

Naturally, a layer instance may be used more than once—it can be called arbitrarily
many times, reusing the same set of weights every time.

from keras import layers
from keras import Input
from keras.models import Model

# We instantiate a single LSTM layer, once
lstm = layers.LSTM(32)

# Building the left branch of the model
# -------------------------------------

# Inputs are variable-length sequences of vectors of size 128
left_input = Input(shape=(None, 128))
left_output = lstm(left_input)

# Building the right branch of the model
# --------------------------------------

right_input = Input(shape=(None, 128))
# When we call an existing layer instance,
# we are reusing its weights
right_output = lstm(right_input)

# Building the classifier on top
# ------------------------------

merged = layers.concatenate([left_output, right_output], axis=-1)
predictions = layers.Dense(1, activation='sigmoid')(merged)

# Instantiating and training the model
# ------------------------------------

model = Model([left_input, right_input], predictions)
# When you train such a model, the weights of the `lstm` layer
# are updated based on both inputs.
model.fit([left_data, right_data], targets)
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Importantly, in the functional API, models can be used as you would use
layers—effectively, you may think of a model as a "bigger layer". This is true of both the

 and  classes. This means that you can call a model on an input tensor,Sequential Model

and retrieve an output tensor:

Listing 7.16 Models as layers, i.e. models as functions

If the model has multiple input tensors and multiple output tensors, it should be called
with a list of tensors:

Listing 7.17 Calling a multi-output, multi-input model

When you call a model instance, you are reusing the weights of the model—exactly
like what happens when you call a layer instance. Simply calling an instance, whether it
is a layer instance or a model instance, will always reuse the existing learned
representations of the instance—which is quite intuitive.

One simple practical example of what you can build by reusing a model instance
would be a vision model that uses a dual camera as its input: two parallel cameras, a few
centimeters (one inch) apart from each other. Such a model could be capable of
perceiving depth, which can be useful in many applications. You shouldn’t need two
independent models for extracting visual features from the left camera and from the right
camera, before merging the two feeds. Such low-level processing can be shared across
the two inputs, i.e. done via layers that use the same weights and thus share the same
representations. Here is how you would implement this in Keras:

Listing 7.18 Implementing a siamese vision model (shared convolutional base)

7.1.6 Models as layers

y = model(x)

y1, y2 = model([x1, x2])

from keras import layers
from keras import applications
from keras import Input

# Our base image processing model with be the Xception network
# (convolutional base only).
xception_base = applications.Xception(weights=None, include_top=False)

# Our inputs are 250x250 RGB images.
left_input = Input(shape=(250, 250, 3))
right_input = Input(shape=(250, 250, 3))

# We call the same vision model twice!
left_features = xception_base(left_input)
right_input = xception_base(right_input)

# The merged features contain information from both
# the right visual feed and the left visual feed
merged_features = layers.concatenate([left_features, right_input], axis=-1)
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This concludes our introduction to the Keras functional API, an essential tool for building
advanced deep neural network architectures. Now you know:

When to step out of the  API: whenever you need anything more than aSequential
linear stack of layers.
How to build Keras models with several inputs, several outputs, and complex internal
network topology, using the Keras functional API.
How to reuse the weights of a layer or model across different processing branches, by
calling a same layer or model instance several times.

In this section, we review ways to gain greater access and control over what goes on
inside your model during training.

Launching a training run on a large dataset, for tens of epochs, using  ormodel.fit()

, can a bit like launching a paper plane: past the initialmodel.fit_generator()

impulse, you don’t have any control over its trajectory or its landing spot. If you want to
avoid bad outcomes (and thus wasted paper planes), it is smarter to use not a paper plane,
but a drone that will be able to sense its environment, send data back to its operator, and
automatically make stirring decisions based on its current state. The techniques we
present here will transform your call to  from a paper plane into a smartmodel.fit()

autonomous drone able to self-introspect and dynamically take action.

When training a model, there are many things you can’t predict from the start. In
particular, you cannot tell how many epochs will be needed to get to an optimal
validation loss. In our examples so far, we have always adopted the strategy of training
for enough epochs that we would start overfitting, using our first run to figure out the
proper number of epochs to train for, then finally launch a new training run from scratch
using this optimal number. Of course, this is quite wasteful.

A much better way to handle this would be stop training when we measure that the
validation loss has stopped improving. This can be achieved using a Keras "callback". A
callback is an object (a class instance implementing specific methods) that is passed to
the model in the call to  and that is called by the model at various points duringfit

training. It has access to all the data available about the state of the model and its
performance, and it is capable to take action, for instance interrupting training, saving a
model, loading a different weight set, or otherwise altering the state of the model.

Callbacks can be used for:

Model checkpointing: saving the current weights of the model at different points during
training.
Early stopping: interrupting training when the validation loss has stopped improving (and

7.2 Inspecting and monitoring deep learning models: using Keras
callbacks and TensorBoard

7.1.7 Wrapping up

7.2.1 Using callbacks to act on a model during training
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of course, saving the best model obtained during training).
Dynamically adjusting the value of certain parameters during training, such as the
learning rate of the optimizer.
Logging the training and validation metrics during training, or visualizing the
representations learned by the model as they get updated. In fact, the Keras progress bar
that you are familiar with is itself a callback!
And more…

There are a number of built-in callbacks found in the  modulekeras.callbacks

(non-exhaustive list):

Listing 7.19 Some of the built-in Keras callbacks

Let’s review a few of them to give you an idea of how to use them: 
, , and .ModelCheckpoint EarlyStopping ReduceLROnPlateau

You can use the  callback to interrupt training once a target metric beingEarlyStopping

monitored has stopped improving for a fixed number of epochs. For instance, this
callback allows you to interrupt training as soon as you start overfitting, thus allowing
you to avoid having to retrain your model for a smaller number of epochs. This callback
is typically used in combination with , which allows to continuallyModelCheckpoint

save the model during training (and optionally, to save only the current best model so far,
i.e. the version of the model that achieved the best performance at the end of an epoch).

Listing 7.20 Using Callbacks: example with EarlyStopping and ModelCheckpoint

keras.callbacks.ModelCheckpoint
keras.callbacks.EarlyStopping
keras.callbacks.LearningRateScheduler
keras.callbacks.ReduceLROnPlateau
keras.callbacks.CSVLogger

THE  AND  CALLBACKSMODELCHECKPOINT EARLYSTOPPING

import keras

# Callbacks are passed to the model fit the `callbacks` argument in `fit`,
# which takes a list of callbacks. You can pass any number of callbacks.
callbacks_list = [
    # This callback will interrupt training when we have stopped improving
    keras.callbacks.EarlyStopping(
        # This callback will monitor the validation accuracy of the model
        monitor='acc',
        # Training will be interrupted when the accuracy
        # has stopped improving for *more* than 1 epochs (i.e. 2 epochs)
        patience=1,
    ),
    # This callback will save the current weights after every epoch
    keras.callbacks.ModelCheckpoint(
        filepath='my_model.h5',  # Path to the destination model file
        # The two arguments below mean that we will not overwrite the
        # model file unless `val_loss` has improved, which
        # allows us to keep the best model every seen during training.
        monitor='val_loss',
        save_best_only=True,
    )
]
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You can use this callback to reduce the learning rate when the validation loss has stopped
improving. Reducing or increasing the learning rate in case of a "loss plateau" is is an
effective strategy to get out of local minima during training.

Listing 7.21 Using the ReduceLROnPlateau Callback

If you need to take any specific action during training that isn’t covered by one of the
built-in callbacks, then you should write your own callback.

Callbacks are implemented by subclassing the class .keras.callbacks.Callback

You can then implement any number of the following transparently-named methods,
which get called at various points during training:

Listing 7.22 Overview of Callback methods

# Since we monitor `acc`, it should be part of the metrics of the model.
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])

# Note that since the callback will be monitor validation accuracy,
# we need to pass some `validation_data` to our call to `fit`.
model.fit(x, y,
          epochs=10,
          batch_size=32,
          callbacks=callbacks_list,
          validation_data=(x_val, y_val))

THE REDUCELRONPLATEAU CALLBACK

callbacks_list = [
    keras.callbacks.ReduceLROnPlateau(
        # This callback will monitor the validation loss of the model
        monitor='val_loss',
        # It will divide the learning by 10 when it gets triggered
        factor=0.1,
        # It will get triggered after the validation loss has stopped improving
        # for at least 10 epochs
        patience=10,
    )
]

# Note that since the callback will be monitor validation loss,
# we need to pass some `validation_data` to our call to `fit`.
model.fit(x, y,
          epochs=10,
          batch_size=32,
          callbacks=callbacks_list,
          validation_data=(x_val, y_val))

WRITING YOUR OWN CALLBACK

# Called at the start of every epoch
on_epoch_begin
# Called at the end of every epoch
on_epoch_end

# Called right before processing each batch
on_batch_begin
# Called right after processing each batch
on_batch_end

# Called at the start of training
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These methods all get called with a  argument, a dictionary containinglogs

information about what the previous batch, epoch, or training run: training and validation
metrics, etc. Additionally, the callback has access to the following attributes:

self.model, the model instance from which the callback is being called.
self.validation_data, the value of what was passed to  as validation data.fit

Here is a simple example of a custom callback, where we save to disk (as Numpy
arrays) the activations of every layer of the model at the end of every epoch, computed
on the first sample of the validation set:

Listing 7.23 Writing a custom Callback

This is all you need to know about callbacks—the rest is technical details, which can
be easily looked up. Now you are equipped to perform any sort of logging or
pre-programmed intervention on a Keras model during training.

on_train_begin
# Called at the end of training
on_train_end

import keras
import numpy as np

class ActivationLogger(keras.callbacks.Callback):

    def set_model(self, model):
        # This method is called by the parent model
        # before training, to inform the callback
        # of what model will be calling it
        self.model = model
        layer_outputs = [layer.output for layer in model.layers]
        # This is a model instance that returns the activations of every layer
        self.activations_model = keras.models.Model(model.input, layer_outputs)

    def on_epoch_end(self, epoch, logs=None):
        if self.validation_data is None:
            raise RuntimeError('Requires validation_data.')

        # Obtain first input sample of the validation data
        validation_sample = self.validation_data[0][0:1]
        activations = self.activations_model.predict(validation_sample)
        # Save arrays to disk
        f = open('activations_at_epoch_' + str(epoch) + '.npz', 'w')
        np.savez(f, activations)
        f.close()
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To do good research, or develop good models, you need to get rich and frequent feedback
about what is going on inside your models during your experiments. That’s the point of
running experiments: to get information about how well a model performs—as much
information as possible. Making progress is an iterative process, a loop: you start with an
idea, then you express it as an experiment, attempting to validate or invalidate your idea.
Your run this experiment, then you process the information generated by the experiment.
This inspires your next idea. The more iterations of this loop you are able to run, the
more refined and powerful your ideas become. Keras helps you go from idea to
experiment in the least possible time, and fast GPUs help you get from experiment to
result as fast as possible. But what about processing the experiment results? That’s where
TensorBoard comes in.

Figure 7.9 The loop of progress

In the next few paragraphs, we introduce TensorBoard, a browser-based visualization
tool that comes packaged with TensorFlow. Note that it is only available for your Keras
models when you are using Keras with the TensorFlow backend.

The key purpose of TensorBoard is to help you visually monitor everything that goes
on inside your model during training. If you are monitoring more information than just
the final loss of your model, then you can develop a clearer vision of the model does or
doesn’t do, and you can make progress faster. TensorBoard gives you access to several
neat features, all inside your browser:

Visually monitoring your metrics during training.
Visualizing your model architecture.
Visualizing histograms of activations and gradients.
Exploring embeddings in 3D.

Let’s demonstrate these features on a simple example. We will be training a 1D
convnet on the IMDB sentiment analysis task.

Below is our model, similar to the one you have seen in the last section of Chapter 6.
We only consider the top 2000 words in the IMDB vocabulary, to make word embedding
visualization more tractable.

7.2.2 Introduction to TensorBoard: the TensorFlow visualization framework
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Listing 7.24 A simple text classification model that we will use with a
TensorBoard Callback

Before we start using TensorBoard, we need to create a directory where we will store
log files generated by TensorBoard:

Listing 7.25 Create a directory for the log files that the TensBoard Callback will
generate

Let’s launch the training, with a  callback instance. This callback willTensorBoard

write log events to disk at the specified location.

Listing 7.26 Training our model together with a TensorBoard Callback

At this point, you can launch the TensorBoard server from the command line,
instructing it to read the logs the callback is currently writing. The  utilitytensorboard

should have been automatically installed on your machine the moment you installed

import keras
from keras import layers
from keras.datasets import imdb
from keras.preprocessing import sequence

max_features = 2000  # number of words to consider as features
max_len = 500  # cut texts after this number of words (among top max_features most common words)

(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
x_train = sequence.pad_sequences(x_train, maxlen=max_len)
x_test = sequence.pad_sequences(x_test, maxlen=max_len)

model = keras.models.Sequential()
model.add(layers.Embedding(max_features, 128, input_length=max_len, name='embed'))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model.summary()
model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['acc'])

mkdir my_log_dir

callbacks = [
    keras.callbacks.TensorBoard(
        # Log files will be written at this location
        log_dir='my_log_dir',
        # We will record activation histograms every 1 epoch
        histogram_freq=1,
        # We will record embedding data every 1 epoch
        embeddings_freq=1,
    )
]
history = model.fit(x_train, y_train,
                    epochs=20,
                    batch_size=128,
                    validation_split=0.2,
                    callbacks=callbacks)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and 
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders. 

https://forums.manning.com/forums/deep-learning-with-python

236

Licensed to Bram van Ginneken <bramvanginneken@gmail.com>

https://forums.manning.com/forums/deep-learning-with-python


TensorFlow (e.g. via ).pip

Listing 7.27 Launching the TensorBoard server from the command line

You can then browse to  and look at your model training:localhost:6006

Figure 7.10 TensorBoard: metrics monitoring

Besides live graphs of the training and validation metrics, you get access to the 
 tab, where you can find pretty visualizations of histograms of activationHistograms

values taken by your layers:

tensorboard --logdir=my_log_dir
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Figure 7.11 TensorBoard: activation histograms

The  tab gives you a way to inspect the embedding locations and spatialEmbeddings

relationships of the 10,000 words in our input vocabulary, as learned by our initial 
 layer. Since the embedding space is actually 128-dimensional, TensorBoardEmbedding

automatically reduces it 2D or 3D using a dimensionality reduction algorithm of your
choice: either PCA or T-SNE. Here, in our point cloud, we can clearly see two clusters:
words with a positive connotation and words with a negative connotation. The
visualization makes it immediately obvious that embeddings trained jointly with a
specific objective result in models that are completely specific to the underlying
task—that’s the reason why using pre-trained generic word embeddings is rarely a good
idea.
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Figure 7.12 TensorBoard: interactive 3D word embedding visualization

The  tab shows an interactive visualization of the graph of low-levelGraphs

TensorFlow operations underlying your Keras model:
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Figure 7.13 TensorBoard: TensorFlow graph visualization

As you can see, there is a lot more going on there than you would expect. The model
we just built may look simple when defined in Keras—a small stack of basic layers—but
under the hood, we need to construct a fairly complex graph structure to make it work. A
lot of it is related to the gradient descent process. This complexity differential between
what you see and what you are actually manipulating is precisely the key motivation for
using Keras as your way of building models, instead of working with raw TensorFlow to
define everything from scratch. Keras makes your workflow dramatically simpler.

Note that Keras also provides another, cleaner way to plot your models, as graphs of
layers rather than graphs of TensorFlow ops: the utility .keras.utils.plot_model

Using it requires to have installed the Python libraries  or , as well as thepydot pydot-ng

library . Let’s take a quick look:graphviz

Listing 7.28 Visualizing model topology using plot_model

This creates the following PNG image:

from keras.utils import plot_model

plot_model(model, to_file='model.png')
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Figure 7.14 A model plot as a graph of layers, generated with plot_model

You also have the option of displaying shape information in the graph of layers:

Listing 7.29 Visualizing model topology using  and the plot_model show_shapes

option:

from keras.utils import plot_model

plot_model(model, show_shapes=True, to_file='model.png')
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Figure 7.15 A model plot with shape information

Keras callbacks provide a simple way to monitor models during training, and
automatically take action based on the state of the model.
When using TensorFlow, TensorBoard is a great way to visualize model activity in your
browser. You can use it in Keras models via the  callback.TensorBoard

Trying out architectures blindly works well enough if you just need something that works
okay. Here we go beyond "works okay" into "works great and wins machine learning
competitions". Here’s a quick explainer on a set of must-know techniques for building
state-of-the-art deep learning models.

We’ve already covered one important design pattern in detail in the previous section:
residual connections. Here are two more that you should know about. These patterns are
especially relevant when building high-performing deep convnets. However, they are
commonly found in many other types of architectures as well.

7.3 Getting the most out of your models

7.2.3 Wrapping up

7.3.1 Advanced architecture patterns
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"Normalization" is a broad category of methods that seek to make different samples seen
by a machine learning model more similar to each other, which helps the model learn and
generalize well to new data. The most common form of data normalization is one that
you have already encountered several times in this book already: centering the data on 0
by subtracting the mean from the data, and giving it a unit standard deviation by dividing
the data by its standard deviation. In effect, this makes the assumption that the data
follows a normal (or Gaussian) distribution, and makes sure that this distribution is
centered and scaled to unit variance.

Listing 7.30 Typical data normalization process

In previous examples, we were only normalizing data before feeding it into our
models. However, data normalization should still be a concern after every transformation
operated by the network: even if the data coming in a  or  network hasDense Conv2D

0-mean and unit variance, there are no reasons to expect a priori that this will still be the
case for the data coming out.

Batch normalization is a type of layer (  in Keras) introduced inBatchNormalization

2015 by Ioffe and Szegedy, capable of adaptively normalizing data even as its mean and
variance change over time during training. It works by internally maintaining an
exponential moving average of the batch-wise mean and variance of the data seen during
training. The main effect of batch normalization is that it helps with gradient
propagation—much like residual connections—and thus it allows for deeper networks.
Some very deep networks can only be trained if they include multiple 

 layers. For instance,  is used liberally inBatchNormalization BatchNormalization

many of the advanced convnets architectures that come packaged with Keras, such as
ResNet50, InceptionV3 and Xception.

The  layer is typically used after a convolutional orBatchNormalization

densely-connected layer:

Listing 7.31 Using the BatchNormalization layer

The  layer takes an  argument, which specifies theBatchNormalization axis

features axis which should be normalized. This argument defaults to , the last axis in-1

the input tensor. This is the correct value when using  layers,  layers, RNNDense Conv1D

BATCH NORMALIZATION

normalized_data = (data - np.mean(data, axis=...)) / np.std(data, axis=...)

# After a Conv layer:
conv_model.add(layers.Conv2D(32, 3, activation='relu'))
conv_model.add(layers.BatchNormalization())

# After a Dense layer:
dense_model.add(layers.Dense(32, activation='relu'))
dense_model.add(layers.BatchNormalization())
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layers, as well as  layers with  set to "channels_last". However, inConv2D data_format

the niche use case of  layers with  set to "channels_first", theConv2D data_format

features axis is axis number , and the  argument in  should1 axis BatchNormalization

then be set to  accordingly.1

A recent improvement over regular batch normalization has been "batch
renormalization", introduced by Ioffe in 2017. It offers clears benefits over batch
normalization, at no apparent cost. It is still too early to tell, as I am writing these lines,
whether it will come to completely supplant batch normalization—but I would say it is
rather likely. Even more recently, Klambauer et al introduced "self-normalizing neural
networks", which manage to keep data normalized after going through any  layer,Dense

by using a specific activation function ( ) and a specific initializer ( ).selu lecun_normal

This scheme, while highly interesting, is limited to densely-connected networks for now,
and its usefulness has not yet been broadly replicated.

What if I told you that there is a layer you can use as a drop-in replacement for ,Conv2D

that will make your model lighter (fewer trainable weight parameters), faster (fewer
floating point operations), and perform a few percent better on its task? That is precisely
what the  layer does ( ). A depthwisedepthwise separable convolution SeparableConv2D

separable convolution performs a spatial convolution on each channel of its input,
independently, before mixing output channels via a "pointwise" convolution (a 1x1
convolution). This is equivalent to separating the learning of spatial features and the
learning of channel-wise features, which makes a lot of sense if you assume that spatial
locations in the input are highly correlated, while its different channels are fairly
independent. It requires significantly fewer parameters, and involves fewer computations,
thus resulting in smaller and speedier models. And because it’s a more representationally
efficient way to perform convolution, it tends to learn better representations using less
data, resulting in better-performing models.

Figure 7.16 A depthwise separable convolution: a depthwise convolution followed by a
pointwise convolution

DEPTHWISE SEPARABLE CONVOLUTION
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These advantages become especially important when training small models from
scratch on limited data. For instance, here is how you would build a lightweight
depthwise separable convnet for an image classification task (softmax categorical
classification) on a small dataset:

Listing 7.32 A small depthwise separable convnet

When it comes to larger-scale models, depthwise separable convolutions are the basis
of the Xception architecture, a high-performing convnet that comes packaged with Keras.
You can read more about the theoretical grounding for depthwise separable convolutions
and Xception in my paper "Xception: deep learning with depthwise separable

 (CVPR 2017).convolutions"

When building a deep learning model, there are many seemingly arbitrary decisions that
you have to make: how many layers should you stack? How many units or filters should
go into each layer? Should you use  as activation, or a different function? Shouldrelu

you use  after a given layer? How much dropout should you use?BatchNormalization

And so on… These architecture-level parameters are called "hyperparameters", to
distinguish them from the parameters of a model, which are trained via backpropagation.

In practice, experienced machine learning engineers and researchers are able to build
some intuition over time as to what works and what doesn’t when it comes to these
choices—they develop "hyperparameter tuning" skills. But there are no formal rules. If
you want to get to the very limit of what can be achieved on a given task, you cannot just
be content with arbitrary choices made a fallible human. Your initial decisions are almost
always suboptimal, even if you have a good intuition. You could refine them by tweaking
your choices by hand and retraining your model repeatedly—in fact, that’s what machine
learning engineers and researchers spend most of their time on. But it shouldn’t be your
job as a human to fiddle with hyperparameters all day—that is better left to a machine.

Thus, you need to explore the space of possible decisions automatically,
systematically, in a principled way. You need to search through architecture space, and

model = Sequential()
model.add(SeparableConv2D(32, activation='relu', input_shape=(height, width, channels)))
model.add(SeparableConv2D(64, activation='relu'))
model.add(MaxPooling2D(2))

model.add(SeparableConv2D(64, activation='relu'))
model.add(SeparableConv2D(128, activation='relu'))
model.add(MaxPooling2D(2))

model.add(SeparableConv2D(64, activation='relu'))
model.add(SeparableConv2D(128, activation='relu'))
model.add(GlobalAveragePooling2D())

model.add(Dense(32, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))

model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

7.3.2 Hyperparameter optimization
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find the best performing ones empirically. That’s what the field of automatic
hyperparameter optimization is about—it’s an entire field of research, and an important
one.

The process of optimizing hyperparameters typically looks like this:

Pick a set of hyperparameters (automatically).
Build the corresponding model.
Fit it to your training data, and measure the final performance on the validation data.
Pick the next set of hyperparameters to try (automatically).
Repeat. …
Eventually measure performance on your test data.

The key to this process is the algorithm that uses this history of validation
performance given various sets of hyperparameters to pick the next set of
hyperparameters to evaluate. Many different techniques are possible: bayesian
optimization, genetic algorithms, simple random search…

Training the weights of a model is relatively easy: you compute a loss function on a
mini-batch of data, then use the backpropagation algorithm to move the weights in the
right direction. Updating hyperparameters, on the other hand, is extremely challenging.
Indeed, consider that:

Computing the feedback signal (does this set of hyperparameter lead to a
high-performing model on this task?) can be extremely expensive: it requires creating
and training a new model from scratch on your dataset.
The hyperparameter space is typically made of discrete decisions, and is thus not
continuous, not differentiable. Hence, one typically cannot do gradient descent in
hyperparameter space. Instead, one has to rely on gradient-free optimization techniques,
which naturally are far less efficient than gradient descent.

Because these challenges are hard and the field is still young, we currently only have
access to very limited tools to optimize our models. Often, it turns out that random search
(picking the hyperparameters to evaluate at random, repeatedly) is the best solution,
despite being the most naive one. However, one tool that I have found reliably better than
random search is , a Python library for hyperparameter optimization whichHyperopt
internally uses trees of Parzen estimators to predict sets of hyperparameters that are likely
to work well. Another library called Hyperas integrates Hyperopt for use with Keras
models. Do check it out.

One very important issue to keep in mind when doing automatic hyperparameter
optimization at scale, is that of validation set overfitting. Since you are updating your
hyperparameters based on a signal that is computed using your validation data, you are
effectively training them on the validation data, and thus they will quickly overfit to the
validation data. Always keep this in mind.

Overall—hyperparameter optimization is a powerful technique that is an absolute
requirement to get to state-of-the-art models on any task, or to win machine learning
competitions. Think about it: once upon a time, people would handcraft the features that
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went into shallow machine learning models. That was very much suboptimal. Now deep
learning automates the task of hierarchical feature engineering—features are now learned
using a feedback signal, not hand-tuned, and that’s the way it should be. In the very same
way, we should not handcraft our model architectures, we should optimize them in a
principled way. As I write these lines, the field of automatic hyperparameter optimization
is still very young and immature, as deep learning was some years ago, but I would
expect it to boom in the next few years.

One last powerful technique for obtain the best possible results on a task is model
. Ensembling consists in pooling together the predictions of a set of differentensembling

models, in order produce better predictions. If you look at machine learning competitions
out there, in particular on Kaggle, in all of them the winners are using very large
ensembles of models, which inevitable beat any single model, no matter how good.

Ensembling relies on the assumption that different good models trained independently
are likely to be good for : each model is looking at slightly differentdifferent reasons
aspects of the data to make its predictions, getting hold of part of the "truth", but not all
of it. You may be familiar with the parable of the blind men and the elephant: an ancient
story of a group of blind men who come across an elephant for the first time, and try to
understand what the elephant is by touching it. Each man touches a different part of the
elephant’s body—just one part, such as the trunk, or a leg. Then the men describe to each
other what an elephant is: "it’s like a snake", "like a pillar or a tree"… These blind men
are essentially machine learning models trying to understand the manifold of the training
data, each from its own perspective, using its own assumptions (provided by the unique
architecture of the model and the unique random weight initialization). Each of them gets
part of the truth of the data, but not the whole truth. By pooling their perspectives
together, one can get a far more accurate description of the data. The elephant is a
combination of parts: not any single blind man gets it quite right, but interviewed
together, they can tell a fairly accurate story.

Let’s use classification as an example. The easiest way to pool together the
predictions of a set of classifiers (to "ensemble the classifiers") is to average their
predictions at inference time:

Listing 7.33 Naive model ensembling: averaging model predictions

This will only work if the classifiers are more or less equally good. If one of their is

7.3.3 Model ensembling

# Use 4 different models to compute initial predictions.
preds_a = model_a.predict(x_val)
preds_b = model_b.predict(x_val)
preds_c = model_c.predict(x_val)
preds_d = model_d.predict(x_val)

# This new prediction array should be more accurate
# than any of the initial ones.
final_preds = 0.25 * (preds_a + preds_b + preds_c + preds_d)
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significantly worse than the other, then the final predictions may not be as good as the
best classifier of the group.

A smarter way to ensemble classifiers is to do a weighted average, where the weights
are learned on the validation data—typically the better classifiers will be given a higher
weight, and the worse classifiers will be given a lower weight. To search for a good set of
ensembling weights, one could use random search, or a simple optimization algorithm
such as Nelder-Mead.

Listing 7.34 Model ensembling via a weighted average with optimized weights

There are many possible variants one can imagine: you could do an average of an
exponential of the predictions, for instance. In general, a simple weighted average with
weights optimized on the validation data provides a very strong baseline.

The key to making ensembling work is the  of the set of classifiers. Diversitydiversity
is strength. If all of your blind men had only touched the elephant’s trunk, they would
agree that elephants are like snakes, and would forever stay ignorant of the truth of the
elephant. Diversity is what makes ensembling work. In machine learning terms, if all of
your models are biased in the same way, then your ensemble will retain this same bias. If
your models are , the biases will cancel each other out and thebiased in different ways
ensemble will be more robust and more accurate.

For this reason, you should be ensembling models that are  whileas good as possible
being . This typically means using very different architectures oras different as possible
even different brands of machine learning approaches altogether. One thing that is largely

 worth doing, is ensembling a same network trained several times independently, fromnot
different random initializations. If the only difference between your models is their
random initialization and the order in which they have been exposed to the training data,
then your ensemble will be low-diversity and will only provide a tiny improvement over
any single model.

One thing that I have found to work well in practice—but which does not generalize
to every problem domain—is the use of an ensemble of tree-based methods (such as
random forests or gradient boosted trees) and deep neural networks. In 2014, partnering
with Andrei Kolev, I took the fourth place in the Higgs Boson decay detection challenge
on Kaggle using an ensemble of various tree models and deep neural networks.
Remarkably, one of the models in the ensemble originated from a quite different method
than the others (it was a Regularized Greedy Forest), and had a significantly worse score
than the others. Unsurprisingly, it was assigned a small weight in the ensemble. But to

preds_a = model_a.predict(x_val)
preds_b = model_b.predict(x_val)
preds_c = model_c.predict(x_val)
preds_d = model_d.predict(x_val)

# These weights (0.5, 0.25, 0.1, 0.15) are assumed
# to be learned empirically.
final_preds = 0.5 * preds_a + 0.25 * preds_b + 0.1 * preds_c + 0.15 * preds_d)
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my surprise, it turned out to improve the overall ensemble by a large factor, simply
because it was so different from every other model: it provided information that the other
models did not have access to. That’s precisely the point of ensembling. It’s not so much
about how good your best model is, it is about the diversity of your set of candidate
models.

In recent times, one style of basic ensemble that has been very successful in practice
is the "wide and deep" category of models, blending deep learning with shallow learning,
consisting in jointly training a deep neural net with a large linear model. The joint
training of a family of diverse models is yet another option to achieve model ensembling.

When building high-performing deep convnets, you will need to leverage residual
connections, batch normalization, and depthwise separable convolutions. In the future, it
is likely that depthwise separable convolutions will end up completely replacing regular
convolutions, whether for 1D, 2D or 3D applications, due to their higher representational
efficiency.
Building deep nets requires making many small hyperparameter and architecture choices,
which together define how good your model will end up being. Rather than basing these
choices on intuition or random chance, it is better to systematically search through
hyperparameter space to find optimal choices. At this time, the process is expensive, and
the tools to do it are not very good. But maybe the Hyperopt or Hyperas libraries can help
you. When doing hyperparameter optimization, be mindful of validation set overfitting!
Winning machine learning competitions or otherwise obtaining the best best possible
results on a task can only be done with large ensembles of models. Ensembling via a
well-optimized weighted average is usually good enough. Remember: diversity is
strength; it is largely pointless to ensemble very similar models, the best ensembles are
set of models that are as dissimilar as possible (while having as much predictive power as
possible, naturally).

In this chapter, you have learned:

How to build models as arbitrary graphs of layers.
How to reuse layers ("layer weight sharing").
How to use models as Python functions ("model templating").
How to use Keras callbacks to monitor your models during training and take action based
on model state.
How to use TensorBoard to visualize metrics, activation histograms, and even embedding
spaces.
What Batch Normalization, Depthwise Separable Convolution, and Residual Connections
are.
Why you should use hyperparameter optimization and model ensembling.

With these new tools, you are better equipped to use deep learning in the real world
and start building highly competitive deep learning models.

7.4 Wrapping up: advanced deep learning best practices

7.3.4 Wrapping up
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8
The potential of artificial intelligence to emulate human thought processes goes beyond
passive tasks such as object recognition, or mostly reactive tasks such as driving a car. It
extends well into creative activities. When I first made the claim that in a not-so-distant
future, most of the cultural content that we consume will be created with heavy help from
AIs, I was met with utter disbelief, even from long-time machine learning practitioners.
That was in 2014. Fast forward three years, and the disbelief has receded—at an
incredible speed. In the summer of 2015, you were entertained by Google’s Deep Dream
algorithm turning an image into a psychedelic mess of dog eyes and pareidolic artifacts;
in 2016 you used the Prisma application to turn your photos into paintings of various
styles. In the summer of 2016, a first experimental short movie, , was directedSunspring
using a script written by a LSTM—complete with dialogue lines. Maybe you even
recently listened to music tentatively generated by a neural network.

Granted, the artistic productions we have seen from AI so far are all fairly
low-quality. AI is not anywhere close to rivaling human screenwriters, painters and
composers. But replacing humans was always besides the point: artificial intelligence is
not about replacing our own intelligence with something else, it is about bringing into our
lives and work  intelligence, intelligence of a different kind. In many fields, butmore
especially in creative ones, AI will be used by humans as a tool to augment their own
capabilities: more  intelligence than  intelligence.augmented artificial

A large part of artistic creation consists of simple pattern recognition and technical
skill. And that is precisely the part of the process that many find less attractive, even
skippable. That’s where AI comes in. Our perceptual modalities, our language, our
artworks all have statistical structure. Learning this structure is precisely what deep
learning algorithms excel at. Machine learning models can learn the statistical "latent
space" of images or music or even stories, and they can then "sample" from this space,
creating new artworks with similar characteristics as what the model has seen in its
training data. Naturally, such sampling is hardly an act of artistic creation in itself. It is a
mere mathematical operation: the algorithm has no grounding in human life, human
emotions, our experience of the world; instead it learns from an "experience" that has
little in common with ours. It is only our interpretation, as human spectators, that will

Generative deep learning
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give meaning to what the model generates. But in the hands of a skilled artist,
algorithmic generation can be steered to become meaningful—and beautiful. Latent
space sampling can become a brush that empowers the artist, augments our creative
affordances, expands the space of what we can imagine. What’s more, it can make
artistic creation more accessible by eliminating the need for technical skill and
practice—setting up a new medium of pure expression, factoring art apart from craft.

Iannis Xenakis, a visionary pioneer of electronic and algorithmic music, beautifully
expressed this same idea in the 1960s, in the context of the application of automation
technology to music composition:

"Freed from tedious calculations, the composer is able to devote himself to the
general problems that the new musical form poses and to explore the nooks and crannies
of this form while modifying the values of the input data. For example, he may test all
instrumental combinations from soloists to chamber orchestras, to large orchestras. With
the aid of electronic computers the composer becomes a sort of pilot: he presses the
buttons, introduces coordinates, and supervises the controls of a cosmic vessel sailing in
the space of sound, across sonic constellations and galaxies that he could formerly
glimpse only as a distant dream."

In this chapter, we will explore under various angles the potential of deep learning to
augment artistic creation. We will review sequence data generation (which can be used to
generate text or music), Deep Dreams, and image generation using both Variational
Auto-Encoders and Generative Adversarial Networks. We will get your computer to
dream up content never seen before, and maybe, we will get you to dream too, about the
fantastic possibilities that lie at the intersection of technology and art.

You will find five sections in this chapter:

Text generation with LSTM, where you will use the recurrent networks you discovered in
Chapter 7 to dream up a pastiche of Nietzschean philosophy, character by character.
Deep Dreams, where you will find out what dreams look like when all you know of the
world is the ImageNet dataset.
Neural style transfer, where you will learn to apply the style of a famous painting to your
vacation pictures.
Variational Autoencoders, where you find out about "latent spaces" of images, and how
to use them for creating new images.
Adversarial Networks—deep networks that fight each other in a quest to produce the
most realistic pictures possible.

Let’s get started.

In this section, we present how recurrent neural networks can be used to generate
sequence data. We will use text generation as an example, but the exact same techniques
can be generalized to any kind of sequence data: you could apply it to sequences of
musical notes in order to generate new music, you could apply it to timeseries of brush
stroke data (e.g. recorded while an artist paints on an iPad) to generate paintings
stroke-by-stroke, and so on.

8.1 Text generation with LSTM
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Sequence data generation is no way limited to artistic content generation, either. It
has been successfully applied to speech synthesis, and dialog generation for chatbots. The
"smart reply" feature that Google released in 2016, capable of automatically generating a
selection of quick replies to your emails or text messages, is powered by similar
techniques.

In late 2014, few people had ever heard the abbreviation "LSTM", even in the machine
learning community. Successful applications of sequence data generation with recurrent
networks only started appearing in the mainstream in 2016. But these techniques actually
have a fairly long history, starting with the development of the LSTM algorithm by
Hochreiter in 1997. This new algorithm was used early on to generate text character by
character.

In 2002, Douglas Eck, then at Schmidhuber’s lab in Switzerland, applied LSTM to
music generation for the first time, with promising results. Douglas Eck is now a
researcher at Google Brain, and in 2016 he started a new research group there, called
Magenta, focused on applying modern deep learning techniques to produce engaging
music. Sometimes, good ideas take fifteen years to get started.

In the late 2000s and early 2010, Alex Graves did important pioneering work on
using recurrent networks for sequence data generation. In particular, his 2013 work on
applying Recurrent Mixture Density Networks to generate human-like handwriting using
timeseries of pen positions, is seen by some as a turning point. This specific application
of neural networks at that specific moment in time captured for me the notion of
"machines that dream" and was a significant inspiration around the time I started
developing Keras. Alex Graves left a similar commented-out remark hidden in a 2013
LateX file uploaded to the preprint server : Arxiv.org "generating sequential data is the

. Several years later, we have come to take a lot ofclosest computers get to dreaming"
these developments for granted, but at the time, it was hard to watch Graves'
demonstrations and not walk away awe-inspired by the possibilities.

Since then, recurrent neural networks have been successfully used for music
generation, dialogue generation, image generation, speech synthesis, molecule design,
and were even used to produce a movie script that was then cast with real live actors.

The universal way to generate sequence data in deep learning is to train a network
(usually either a RNN or a convnet) to predict the next token or next few tokens in a
sequence, using the previous tokens as input. For instance, given the input "the cat is on

, the network would be trained to predict the target , the next character. Asthe ma" "t"
usual when working with text data, "tokens" are typically words or characters, and any
such network that can model the probability of the next token given the previous ones is
called a . A language model captures the  of language, i.e. itslanguage model latent space
statistical structure.

8.1.1 A brief history of generative recurrent networks

8.1.2 How can we generate sequence data?
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Once we have such a trained language model, we can  from it, i.e. generatesample
new sequences: we would feed it some initial string of text (called "conditioning data"),
ask it to generate the next character or the next word (we could even generate several
tokens at once), then add the generated output back to the input data, and repeat the
process many times (see Figure 8.1). This loop allows to generate sequences of arbitrary
length that reflect the structure of the data that the model was trained on, i.e. sequences
that look  like human-written sentences. In our case, we will take a LSTM layer,almost
feed it with strings of  characters extracted from a text corpus, and train it to predictN

character . The output of our model will be a softmax over all possible characters: aN+1

probability distribution for the next character. This LSTM would be called a
"character-level neural language model".

Figure 8.1 The process of character-by-character text generation using a language model

When generating text, the way we pick the next character is crucially important. A naive
approach would be "greedy sampling", consisting in always choosing the most likely
next character. However, such an approach would result in very repetitive and predictable
strings that don’t look like coherent language. A more interesting approach would consist
in making slightly more surprising choices, i.e. introducing randomness in the sampling
process, for instance by sampling from the probability distribution for the next character.
This would be called "stochastic sampling" (you recall that "stochasticity" is what we call
"randomness" in this field). In such a setup, if "e" has a probability 0.3 of being the next
character according to the model, we would pick it 30% of the time. Note that greedy
sampling can itself be cast as sampling from a probability distribution: one where a
certain character has probability 1 and all others have probability 0.

Sampling probabilistically from the softmax output of the model is neat, as it allows
even unlikely characters to be sampled some of the time, generating more
interesting-looking sentences and even sometimes showing creativity by coming up with
new, realistic-sounding words that didn’t occur in the training data. But there is one issue
with this strategy: it doesn’t offer a way to  in thecontrol the amount of randomness
sampling process.

Why would we want more or less randomness? Consider an extreme case: pure

8.1.3 The importance of the sampling strategy
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random sampling, i.e. drawing the next character from a uniform probability distribution,
where every character is equally likely. This scheme would have maximum randomness;
in other words, this probability distribution would have maximum "entropy". Naturally, it
would not produce anything interesting. At the other extreme, greedy sampling, which
doesn’t produce anything interesting either, has no randomness whatsoever: the
corresponding probability distribution has minimum entropy. Sampling from the "real"
probability distribution, i.e. the distribution that is output by the model’s softmax
function, constitutes an intermediate point in between these two extremes. However,
there are many other intermediate points of higher or lower entropy that one might want
to explore. Less entropy will give the generated sequences a more predictable structure
(and thus they will potentially be more realistic-looking) while more entropy will result
in more surprising and creative sequences. When sampling from generative models, it is
always good to explore different amounts of randomness in the generation process. Since
the ultimate judge of the interestingness of the generated data is us, humans,
interestingness is highly subjective and there is no telling in advance where the point of
optimal entropy lies.

In order to control the amount of stochasticity in the sampling process, let’s introduce
a parameter called "softmax temperature" that characterizes the entropy of the probability
distribution used for sampling, or in other words, that characterizes how surprising or
predictable our choice of next character will be. Given a temperature value, a new
probability distribution is computed from the original one (the softmax output of the
model) by reweighting it in the following way:

Listing 8.1 Reweighting a probability distribution to a different "temperature"

Higher "temperatures" result in sampling distributions of higher entropy, that will
generate more surprising and unstructured generated data, while a lower temperature will
result in less randomness and much more predictable generated data.

import numpy as np

def reweight_distribution(original_distribution, temperature=0.5):
    """Reweight a probability distribution to increase or decrease entropy.

    # Arguments
        original_distribution: A 1D Numpy array of probability values.
            Must sum to one.
        temperature: Factor quantifying the entropy of the output distribution.

    # Returns
        A re-weighted version of the original distribution.
    """
    distribution = np.log(original_distribution) / temperature
    distribution = np.exp(distribution)
    # The sum of the distribution may no longer be 1!
    # Thus we divide it by its sum to obtain the new distribution.
    return distribution / np.sum(distribution)
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Figure 8.2 Different reweightings of a same probability distribution. Low temperature =
more deterministic, high temperature = more random.

Let’s put these ideas in practice in a Keras implementation. The first thing we need is a
lot of text data that we can use to learn a language model. You could use any sufficiently
large text file or set of text files—Wikipedia, the Lord of the Rings, etc. In this example
we will use some of the writings of Nietzsche, the late-19th century German philosopher
(translated to English). The language model we will learn will thus be specifically a
model of Nietzsche’s writing style and topics of choice, rather than a more generic model
of the English language.

Let’s start by downloading the corpus and converting it to lowercase:

Listing 8.2 Downloading and parsing our initial text file

Next, we will extract partially-overlapping sequences of length , one-hotmaxlen

encode them and pack them in a 3D Numpy array  of shape x (sequences, maxlen,

. Simultaneously, we prepare a array  containing theunique_characters) y

8.1.4 Implementing character-level LSTM text generation

PREPARING THE DATA

import keras
import numpy as np

path = keras.utils.get_file(
    'nietzsche.txt',
    origin='https://s3.amazonaws.com/text-datasets/nietzsche.txt')
text = open(path).read().lower()
print('Corpus length:', len(text))
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corresponding targets: the one-hot encoded characters that come right after each
extracted sequence.

Listing 8.3 Vectorizing sequences of characters

Our network is a single  layer followed by a  classifier and softmax over allLSTM Dense

possible characters. But let us note that recurrent neural networks are not the only way to
do sequence data generation; 1D convnets also have proven extremely successful at it in
recent times.

Listing 8.4 A single-layer LSTM model for next-character prediction

Since our targets are one-hot encoded, we will use  ascategorical_crossentropy

the loss to train the model:

Listing 8.5 The model compilation configuration

# Length of extracted character sequences
maxlen = 60

# We sample a new sequence every `step` characters
step = 3

# This holds our extracted sequences
sentences = []

# This holds the targets (the follow-up characters)
next_chars = []

for i in range(0, len(text) - maxlen, step):
    sentences.append(text[i: i + maxlen])
    next_chars.append(text[i + maxlen])
print('Number of sequences:', len(sentences))

# List of unique characters in the corpus
chars = sorted(list(set(text)))
print('Unique characters:', len(chars))
# Dictionary mapping unique characters to their index in `chars`
char_indices = dict((char, chars.index(char)) for char in chars)

# Next, one-hot encode the characters into binary arrays.
print('Vectorization...')
x = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
    for t, char in enumerate(sentence):
        x[i, t, char_indices[char]] = 1
    y[i, char_indices[next_chars[i]]] = 1

BUILDING THE NETWORK

from keras import layers

model = keras.models.Sequential()
model.add(layers.LSTM(128, input_shape=(maxlen, len(chars))))
model.add(layers.Dense(len(chars), activation='softmax'))

optimizer = keras.optimizers.RMSprop(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)
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Given a trained model and a seed text snippet, we generate new text by repeatedly:

1) Drawing from the model a probability distribution over the next character given the
text available so far
2) Reweighting the distribution to a certain "temperature"
3) Sampling the next character at random according to the reweighted distribution
4) Adding the new character at the end of the available text

This is the code we use to reweight the original probability distribution coming out of
the model, and draw a character index from it (the "sampling function"):

Listing 8.6 Function for sampling the next character given the model’s
predictions

Finally, this is the loop where we repeatedly train and generated text. We start
generating text using a range of different temperatures after every epoch. This allows us
to see how the generated text evolves as the model starts converging, as well as the
impact of temperature in the sampling strategy.

Listing 8.7 The text generation loop

TRAINING THE LANGUAGE MODEL AND SAMPLING FROM IT

def sample(preds, temperature=1.0):
    preds = np.asarray(preds).astype('float64')
    preds = np.log(preds) / temperature
    exp_preds = np.exp(preds)
    preds = exp_preds / np.sum(exp_preds)
    probas = np.random.multinomial(1, preds, 1)
    return np.argmax(probas)

import random
import sys

for epoch in range(1, 60):
    print('epoch', epoch)
    # Fit the model for 1 epoch on the available training data
    model.fit(x, y,
              batch_size=128,
              epochs=1)

    # Select a text seed at random
    start_index = random.randint(0, len(text) - maxlen - 1)
    generated_text = text[start_index: start_index + maxlen]
    print('--- Generating with seed: "' + generated_text + '"')

    for temperature in [0.2, 0.5, 1.0, 1.2]:
        print('------ temperature:', temperature)
        sys.stdout.write(generated_text)

        # We generate 400 characters
        for i in range(400):
            sampled = np.zeros((1, maxlen, len(chars)))
            for t, char in enumerate(generated_text):
                sampled[0, t, char_indices[char]] = 1.

            preds = model.predict(sampled, verbose=0)[0]
            next_index = sample(preds, temperature)
            next_char = chars[next_index]
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Here is what we get at epoch 20, long before the model has fully converged. We used
the random seed text "new faculty, and the jubilation reached its climax when kant".

With temperature=0.2:

With temperature=0.5:

With temperature=1.0:

At epoch 60, the model has mostly converged and the text starts looking significantly
more coherent:

With temperature=0.2:

With temperature=0.5:

With temperature=1.0:

            generated_text += next_char
            generated_text = generated_text[1:]

            sys.stdout.write(next_char)
            sys.stdout.flush()
        print()

new faculty, and the jubilation reached its climax when kant and such a man in the same time the spir
as a man is the sunligh and subject the present to the superiority of the special pain the most man a
special conscience the special and nature and such men the subjection of the special men, the most su
intellect of the subjection of the same things and

new faculty, and the jubilation reached its climax when kant in the eterned and such man as it is als
experience of off the basis the superiory and the special morty of the strength, in the langus, as wh
discless the mankind, with a subject and fact all you have to be the stand and lave no comes a trover
conscience the superiority, and when one must be w

new faculty, and the jubilation reached its climax when kant, as a periliting of manner to all defini
hicable and ont him artiar resull
too such as if ever the proping to makes as cnecience. to been juden, all every could coldiciousnike 
which might thiod was account, indifferent germin, that everythery certain destrution, intellect into
and a lessority o

cheerfulness, friendliness and kindness of a heart are the sense of the spirit is a man with the sens
self-end and self-concerning the subjection of the strengthorixes--the subjection of the subjection o
self-concerning the feelings in the superiority in the subjection of the subjection of the spirit is 
subjection and said to the strength of the sense of the

cheerfulness, friendliness and kindness of a heart are the part of the soul who have been the art of 
will not say, which is it the higher the and with religion of the frences. the life of the spirit amo
strengther of the sense the conscience of men of precisely before enough presumption, and can mankind
subjection of the sense and suffering and the

cheerfulness, friendliness and kindness of a heart are spiritual by the ciuture for the
entalled is, he astraged, or errors to our you idstood--and it needs, to think by spars to whole the 
raals! it was
name, for example but voludd atu-especity"--or rank onee, or even all "solett increessic of the world
implussional tragedy experience, transf, or insiderar,--must hast
if desires of the strubction is be stronges
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As you can see, a low temperature results in extremely repetitive and predictable text,
but where local structure is highly realistic: in particular, all words (a word being a local
pattern of characters) are real English words. With higher temperatures, the generated
text becomes more interesting, surprising, even creative; it may sometimes invent
completely new words that sound somewhat plausible (such as "eterned" or
"troveration"). With a high temperature, the local structure starts breaking down and most
words look like semi-random strings of characters. Without a doubt, here 0.5 is the most
interesting temperature for text generation in this specific setup. Always experiment with
multiple sampling strategies! A clever balance between learned structure and randomness
is what makes generation interesting.

Note that by training a bigger model, longer, on more data, you can achieve generated
samples that will look much more coherent and realistic than ours. But of course, don’t
expect to ever generate any meaningful text, other than by random chance: all we are
doing is sampling data from a statistical model of which characters come after which
characters. Language is a communication channel, and there is a distinction between
what communications are about, and the statistical structure of the messages in which
communications are encoded. To evidence this distinction, here is a thought experiment:
what if human language did a better job at compressing communications, much like our
computers do with most of our digital communications? Then language would be no less
meaningful, yet it would lack any intrinsic statistical structure, thus making it impossible
to learn a language model like we just did.

We can generate discrete sequence data by training a model to predict the next tokens(s)
given previous tokens.
In the case of text, such a model is called a "language model" and could be based on
either words or characters.
Sampling the next token requires balance between adhering to what the model judges
likely, and introducing randomness.
One way to handle this is the notion of . Always experiment withsoftmax temperature
different temperatures to find the "right" one.

"Deep Dream" is an artistic image modification technique that leverages the
representations learned by convolutional neural networks. It was first released by Google
in the summer of 2015, as an implementation written using the Caffe deep learning
library (this was several months before the first public release of TensorFlow). It quickly
became an Internet sensation thanks to the trippy pictures it could generate, full of
algorithmic pareidolia artifacts, bird feathers and dog eyes—a by-product of the fact that
the Deep Dream convnet was trained on ImageNet, where dog breeds and bird species
are vastly over-represented.

8.2 Deep Dream

TAKE AWAYS
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Figure 8.3 Example of a Deep Dream output image

The Deep Dream algorithm is almost identical to the convnet filter visualization
technique that we introduced in Chapter 5, consisting in running a convnet "in reverse",
i.e. doing gradient ascent on the input to the convnet in order to maximize the activation
of a specific filter in an upper layer of the convnet. Deep Dream leverages this same idea,
with a few simple differences:

With Deep Dream, we try to maximize the activation of entire layers rather than that of a
specific filter, thus mixing together visualizations of large numbers of features at once.
We start not from a blank, slightly noisy input, but rather from an existing image—thus
the resulting feature visualizations will latch unto pre-existing visual patterns, distorting
elements of the image in a somewhat artistic fashion.
The input images get processed at different scales (called "octaves"), which improves the
quality of the visualizations.

Let’s make our own Deep Dreams.

We will start from a convnet pre-trained on ImageNet. In Keras, we have many such
convnets available: VGG16, VGG19, Xception, ResNet50… albeit the same process is
doable with any of these, your convnet of choice will naturally affect your visualizations,
since different convnet architectures result in different learned features. The convnet used
in the original Deep Dream release was an Inception model, and in practice Inception is
known to produce very nice-looking Deep Dreams, so we will use the InceptionV3 model
that comes with Keras.

Listing 8.8 Loading the pre-trained InceptionV3 model

8.2.1 Implementing Deep Dream in Keras

from keras.applications import inception_v3
from keras import backend as K

# We will not be training our model,
# so we use this command to disable all training-specific operations
K.set_learning_phase(0)
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Next, we compute the "loss", the quantity that we will seek to maximize during the
gradient ascent process. In Chapter 5, for filter visualization, we were trying to maximize
the value of a specific filter in a specific layer. Here we will simultaneously maximize the
activation of all filters in a number of layers. Specifically, we will maximize a weighted
sum of the L2 norm of the activations of a set of high-level layers. The exact set of layers
we pick (as well as their contribution to the final loss) has a large influence on the visuals
that we will be able to produce, so we want to make these parameters easily configurable.
Lower layers result in geometric patterns, while higher layers result in visuals in which
you can recognize some classes from ImageNet (e.g. birds or dogs). We’ll start from a
somewhat arbitrary configuration involving four layers—but you will definitely want to
explore many different configurations later on:

Listing 8.9 Setting up the Dream configuration

Now let’s define a tensor that contains our loss, i.e. the weighted sum of the L2 norm
of the activations of the layers listed above.

Listing 8.10 Defining the loss to be maximized

Now we can set up the gradient ascent process:

Listing 8.11 The gradient ascent process

# Build the InceptionV3 network.
# The model will be loaded with pre-trained ImageNet weights.
model = inception_v3.InceptionV3(weights='imagenet',
                                 include_top=False)

# Dict mapping layer names to a coefficient
# quantifying how much the layer's activation
# will contribute to the loss we will seek to maximize.
# Note that these are layer names as they appear
# in the built-in InceptionV3 application.
# You can list all layer names using `model.summary()`.
layer_contributions = {
    'mixed2': 0.2,
    'mixed3': 3.,
    'mixed4': 2.,
    'mixed5': 1.5,
}

# Get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers])

# Define the loss.
loss = K.variable(0.)
for layer_name in layer_contributions:
    # Add the L2 norm of the features of a layer to the loss.
    coeff = layer_contributions[layer_name]
    activation = layer_dict[layer_name].output

    # We avoid border artifacts by only involving non-border pixels in the loss.
    scaling = K.prod(K.cast(K.shape(activation), 'float32'))
    loss += coeff * K.sum(K.square(activation[:, 2: -2, 2: -2, :])) / scaling
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Finally, here is the actual Deep Dream algorithm.
First, we define a list of "scales" (also called "octaves") at which we will process the

images. Each successive scale is larger than previous one by a factor 1.4 (i.e. 40%
larger): we start by processing a small image and we increasingly upscale it (Figure 8.4).

Figure 8.4 The Deep Dream process: successive scales of spatial processing (octaves)
and detail reinjection upon upscaling

Then, for each successive scale, from the smallest to the largest, we run gradient
ascent to maximize the loss we have previously defined, at that scale. After each gradient
ascent run, we upscale the resulting image by 40%.

To avoid losing a lot of image detail after each successive upscaling (resulting in
increasingly blurry or pixelated images), we leverage a simple trick: after each upscaling,
we reinject the lost details back into the image, which is possible since we know what the

# This holds our generated image
dream = model.input

# Compute the gradients of the dream with regard to the loss.
grads = K.gradients(loss, dream)[0]

# Normalize gradients.
grads /= K.maximum(K.mean(K.abs(grads)), 1e-7)

# Set up function to retrieve the value
# of the loss and gradients given an input image.
outputs = [loss, grads]
fetch_loss_and_grads = K.function([dream], outputs)

def eval_loss_and_grads(x):
    outs = fetch_loss_and_grads([x])
    loss_value = outs[0]
    grad_values = outs[1]
    return loss_value, grad_values

def gradient_ascent(x, iterations, step, max_loss=None):
    for i in range(iterations):
        loss_value, grad_values = eval_loss_and_grads(x)
        if max_loss is not None and loss_value > max_loss:
            break
        print('...Loss value at', i, ':', loss_value)
        x += step * grad_values
    return x
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original image should look like at the larger scale. Given a small image S and a larger
image size L, we can compute the difference between the original image (assumed larger
than L) resized to size L and the original resized to size S—this difference quantifies the
details lost when going from S to L.

Listing 8.12 Running gradient ascent over different successive scales

Note that the code above leverages the following straightforward auxiliary Numpy
functions, which all do just as their name suggests. They require to have SciPy installed.

Listing 8.13 Auxiliary functions

import numpy as np

# Playing with these hyperparameters will also allow you to achieve new effects

step = 0.01  # Gradient ascent step size
num_octave = 3  # Number of scales at which to run gradient ascent
octave_scale = 1.4  # Size ratio between scales
iterations = 20  # Number of ascent steps per scale

# If our loss gets larger than 10,
# we will interrupt the gradient ascent process, to avoid ugly artifacts
max_loss = 10.

# Fill this to the path to the image you want to use
base_image_path = '...'

# Load the image into a Numpy array
img = preprocess_image(base_image_path)

# We prepare a list of shape tuples
# defining the different scales at which we will run gradient ascent
original_shape = img.shape[1:3]
successive_shapes = [original_shape]
for i in range(1, num_octave):
    shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape])
    successive_shapes.append(shape)

# Reverse list of shapes, so that they are in increasing order
successive_shapes = successive_shapes[::-1]

# Resize the Numpy array of the image to our smallest scale
original_img = np.copy(img)
shrunk_original_img = resize_img(img, successive_shapes[0])

for shape in successive_shapes:
    print('Processing image shape', shape)
    img = resize_img(img, shape)
    img = gradient_ascent(img,
                          iterations=iterations,
                          step=step,
                          max_loss=max_loss)
    upscaled_shrunk_original_img = resize_img(shrunk_original_img, shape)
    same_size_original = resize_img(original_img, shape)
    lost_detail = same_size_original - upscaled_shrunk_original_img

    img += lost_detail
    shrunk_original_img = resize_img(original_img, shape)
    save_img(img, fname='dream_at_scale_' + str(shape) + '.png')

save_img(img, fname='final_dream.png')

import scipy
from keras.preprocessing import image
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Note that because the original InceptionV3 network was trained to recognize concepts
in images of size 299x299, and given that the process involves downscaling the images
by a reasonable factor, our Deep Dream implementation will produce much better results
on images that are somewhere between 300x300 and 400x400. Regardless, it is still
possible to run the same code on images of any size and any ratio.

Starting from this photograph (taken in the small hills between the San Francisco bay
and the Google campus), we obtain the following Deep Dream:

def resize_img(img, size):
    img = np.copy(img)
    factors = (1,
               float(size[0]) / img.shape[1],
               float(size[1]) / img.shape[2],
               1)
    return scipy.ndimage.zoom(img, factors, order=1)

def save_img(img, fname):
    pil_img = deprocess_image(np.copy(img))
    scipy.misc.imsave(fname, pil_img)

def preprocess_image(image_path):
    # Util function to open, resize and format pictures
    # into appropriate tensors.
    img = image.load_img(image_path)
    img = image.img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = inception_v3.preprocess_input(img)
    return img

def deprocess_image(x):
    # Util function to convert a tensor into a valid image.
    if K.image_data_format() == 'channels_first':
        x = x.reshape((3, x.shape[2], x.shape[3]))
        x = x.transpose((1, 2, 0))
    else:
        x = x.reshape((x.shape[1], x.shape[2], 3))
    x /= 2.
    x += 0.5
    x *= 255.
    x = np.clip(x, 0, 255).astype('uint8')
    return x
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Figure 8.5 Running our Deep Dream code on an example image

I strongly suggest that you explore what you can do by adjusting which layers you are
using in your loss. Layers that are lower in the network contain more local, less abstract
representations and will lead to more geometric-looking dream patterns. Layers
higher-up will lead to more recognizable visual patterns based on the most common
objects found in ImageNet, such as dog eyes, bird feathers, and so on. You can use
random generation of the parameters in our  dictionary in orderlayer_contributions

to quickly explore many different layer combinations.
Here is a range of results obtained using different layer configurations, from an image

of a delicious homemade pastry:

Figure 8.6 Trying a range of Deep Dream configurations on an example image

Deep Dream consists in running a network "in reverse" to generate inputs based on the
representations learned by the convnet.
The results produced are fun, and share some similarity with the visual artifacts induced
in humans by the disruption of the visual cortex via psychedelics.
Note that the process is not specific to image models, nor even to convnets. It could be
done for speech, music, and more.

8.2.2 Take aways
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Besides Deep Dream, another major development in deep learning-driven image
modification that happened in the summer of 2015 is neural style transfer, introduced by
Leon Gatys et al. The neural style transfer algorithm has undergone many refinements
and spawned many variations since its original introduction, including a viral smartphone
app, called Prisma. For simplicity, this section focuses on the formulation described in
the original paper.

Neural style transfer consists in applying the "style" of a reference image to a target
image, while conserving the "content" of the target image:

Figure 8.7 A style transfer example

What is meant by "style" is essentially textures, colors, and visual patterns in the
image, at various spatial scales, while the "content" is the higher-level macrostructure of
the image. For instance, blue-and-yellow circular brush strokes are considered to be the
"style" in the above example using Starry Night by Van Gogh, while the buildings in the
Tuebingen photograph are considered to be the "content".

The idea of style transfer, tightly related to that of texture generation, has had a long
history in the image processing community prior to the development of neural style
transfer in 2015. However, as it turned out, the deep learning-based implementations of
style transfer offered results unparalleled by what could be previously achieved with
classical computer vision techniques, and triggered an amazing renaissance in creative
applications of computer vision.

The key notion behind implementing style transfer is same idea that is central to all
deep learning algorithms: we define a loss function to specify what we want to achieve,
and we minimize this loss. We know what we want to achieve: conserve the "content" of
the original image, while adopting the "style" of the reference image. If we were able to
mathematically define content and style, then an appropriate loss function to minimize
would be the following:

Listing 8.14 Schematic formulation of a "style transfer" loss

Where  is a norm function such as the L2 norm,  is a function thatdistance content

8.3 Neural style transfer

loss = distance(style(reference_image) - style(generated_image)) +
       distance(content(original_image) - content(generated_image))
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takes an image and computes a representation of its "content", and  is a functionstyle

that takes an image and computes a representation of its "style".
Minimizing this loss would cause  to be close to style(generated_image)

, while  would be close to style(reference_image) content(generated_image)

, thus achieving style transfer as we defined it.content(generated_image)

A fundamental observation made by Gatys et al is that deep convolutional neural
networks offer precisely a way to mathematically defined the  and style content

functions. Let’s see how.

As you already know, activations from earlier layers in a network contain local
information about the image, while activations from higher layers contain increasingly 

 and  information. Formulated in a different way, the activations of theglobal abstract
different layers of a convnet provide a decomposition of the contents of an image over
different spatial scales. Therefore we expect the "content" of an image, which is more
global and more abstract, to be captured by the representations of a top layer of a
convnet.

A good candidate for a content loss would thus be to consider a pre-trained convnet,
and define as our loss the L2 norm between the activations of a top layer computed over
the target image and the activations of the same layer computed over the generated
image. This would guarantee that, as seen from the top layer of the convnet, the
generated image will "look similar" to the original target image. Assuming that what the
top layers of a convnet see is really the "content" of their input images, then this does
work as a way to preserve image content.

While the content loss only leverages a single higher-up layer, the style loss as defined in
the Gatys et al. paper leverages multiple layers of a convnet: we aim at capturing the
appearance of the style reference image at all spatial scales extracted by the convnet, not
just any single scale.

For the style loss, the Gatys et al. paper leverages the "Gram matrix" of a layer’s
activations, i.e. the inner product between the feature maps of a given layer. This inner
product can be understood as representing a map of the correlations between the features
of a layer. These feature correlations capture the statistics of the patterns of a particular
spatial scale, which empirically corresponds to the appearance of the textures found at
this scale.

Hence the style loss aims at preserving similar internal correlations within the
activations of different layers, across the style reference image and the generated image.
In turn, this guarantees that the textures found at different spatial scales will look similar
across the style reference image and the generated image.

In short, we can use a pre-trained convnet to define a loss that will:

8.3.1 The content loss

8.3.2 The style loss

8.3.3 In short
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Preserve content by maintaining similar high-level layer activations between the target
content image and the generated image. The convnet should "see" both the target image
and the generated image as "containing the same things".
Preserve style by maintaining similar  within activations for both low-levelcorrelations
layers and high-level layers. Indeed, feature correlations capture : the generatedtextures
and the style reference image should share the same textures at different spatial scales.

Now let’s take a look at a Keras implementation of the original 2015 neural style
transfer algorithm. As you will see, it shares a lot of similarities with the Deep Dream
implementation we developed in the previous section.

Neural style transfer can be implemented using any pre-trained convnet. Here we will use
the VGG19 network, used by Gatys et al in their paper. VGG19 is a simple variant of the
VGG16 network we introduced in Chapter 5, with three more convolutional layers.

This is our general process:

Set up a network that will compute VGG19 layer activations for the style reference
image, the target image, and the generated image at the same time.
Use the layer activations computed over these three images to define the loss function
described above, which we will minimize in order to achieve style transfer.
Set up a gradient descent process to minimize this loss function.

Let’s start by defining the paths to the two images we consider: the style reference
image and the target image. To make sure that all images processed share similar sizes
(widely different sizes would make style transfer more difficult), we will later resize
them all to a shared height of 400px.

Listing 8.15 Defining some initial variables

We will need some auxiliary functions for loading, pre-processing and
post-processing the images that will go in and out of the VGG19 convnet:

Listing 8.16 Auxiliary functions

8.3.4 Neural style transfer in Keras

from keras.preprocessing.image import load_img, img_to_array

# This is the path to the image you want to transform.
target_image_path = 'img/portrait.jpg'
# This is the path to the style image.
style_reference_image_path = 'img/transfer_style_reference.jpg'

# Dimensions of the generated picture.
width, height = load_img(target_image_path).size
img_height = 400
img_width = int(width * img_height / height)

import numpy as np
from keras.applications import vgg19

def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_height, img_width))
    img = img_to_array(img)
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Let’s set up the VGG19 network. It takes as input a batch of three images: the style
reference image, the target image, and a placeholder that will contain the generated
image. A placeholder is simply a symbolic tensor, the values of which are provided
externally via Numpy arrays. The style reference and target image are static, and thus
defined using , while the values contained in the placeholder of theK.constant

generated image will change over time.

Listing 8.17 Loading the pre-trained VGG19 network and applying to our three
images

Let’s define the content loss, meant to make sure that the top layer of the VGG19
convnet will have a similar view of the target image and the generated image:

Listing 8.18 The content loss, operating on the features of the target image and
the generated "combination" image

Now, here’s the style loss. It leverages an auxiliary function to compute the Gram
matrix of an input matrix, i.e. a map of the correlations found in the original feature
matrix.

    img = np.expand_dims(img, axis=0)
    img = vgg19.preprocess_input(img)
    return img

def deprocess_image(x):
    # Remove zero-center by mean pixel
    x[:, :, 0] += 103.939
    x[:, :, 1] += 116.779
    x[:, :, 2] += 123.68
    # 'BGR'->'RGB'
    x = x[:, :, ::-1]
    x = np.clip(x, 0, 255).astype('uint8')
    return x

from keras import backend as K

target_image = K.constant(preprocess_image(target_image_path))
style_reference_image = K.constant(preprocess_image(style_reference_image_path))

# This placeholder will contain our generated image
combination_image = K.placeholder((1, img_height, img_width, 3))

# We combine the 3 images into a single batch
input_tensor = K.concatenate([target_image,
                              style_reference_image,
                              combination_image], axis=0)

# We build the VGG19 network with our batch of 3 images as input.
# The model will be loaded with pre-trained ImageNet weights.
model = vgg19.VGG19(input_tensor=input_tensor,
                    weights='imagenet',
                    include_top=False)
print('Model loaded.')

def content_loss(base, combination):
    return K.sum(K.square(combination - base))
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Listing 8.19 The style loss, operating on the features of the style reference image
and the generated "combination" image

To these two loss components, we add a third one, the "total variation loss". It is
meant to encourage spatial continuity in the generated image, thus avoiding overly
pixelated results. You could interpret it as a regularization loss.

Listing 8.20 The total variation loss, operating on the pixels of the generated
"combination" image

The loss that we minimize is a weighted average of these three losses. To compute the
content loss, we only leverage one top layer, the  layer, while for the styleblock5_conv2

loss we use a list of layers than spans both low-level and high-level layers. We add the
total variation loss at the end.

Depending on the style reference image and content image you are using, you will
likely want to tune the  coefficient, the contribution of the content losscontent_weight

to the total loss. A higher  means that the target content will be morecontent_weight

recognizable in the generated image.

Listing 8.21 Defining the final loss that we will minimize

def gram_matrix(x):
    features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
    gram = K.dot(features, K.transpose(features))
    return gram

def style_loss(style, combination):
    S = gram_matrix(style)
    C = gram_matrix(combination)
    channels = 3
    size = img_height * img_width
    return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2))

def total_variation_loss(x):
    a = K.square(
        x[:, :img_height - 1, :img_width - 1, :] - x[:, 1:, :img_width - 1, :])
    b = K.square(
        x[:, :img_height - 1, :img_width - 1, :] - x[:, :img_height - 1, 1:, :])
    return K.sum(K.pow(a + b, 1.25))

# Dict mapping layer names to activation tensors
outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])
# Name of layer used for content loss
content_layer = 'block5_conv2'
# Name of layers used for style loss
style_layers = ['block1_conv1',
                'block2_conv1',
                'block3_conv1',
                'block4_conv1',
                'block5_conv1']
# Weights in the weighted average of the loss components
total_variation_weight = 1e-4
style_weight = 1.
content_weight = 0.025

# Define the loss by adding all components to a `loss` variable
loss = K.variable(0.)
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Finally, we set up the gradient descent process. In the original Gatys et al. paper,
optimization is performed using the L-BFGS algorithm, so that is also what we will use
here. This is a key difference from the Deep Dream example in the previous section. The
L-BFGS algorithms comes packaged with SciPy. However, there are two slight
limitations with the SciPy implementation:

It requires to be passed the value of the loss function and the value of the gradients as two
separate functions.
It can only be applied to flat vectors, whereas we have a 3D image array.

It would be very inefficient for us to compute the value of the loss function and the
value of gradients independently, since it would lead to a lot of redundant computation
between the two. We would be almost twice slower than we could be by computing them
jointly. To by-pass this, we set up a Python class named  that will computeEvaluator

both loss value and gradients value at once, will return the loss value when called the first
time, and will cache the gradients for the next call.

Listing 8.22 Setting up the gradient descent process

layer_features = outputs_dict[content_layer]
target_image_features = layer_features[0, :, :, :]
combination_features = layer_features[2, :, :, :]
loss += content_weight * content_loss(target_image_features,
                                      combination_features)
for layer_name in style_layers:
    layer_features = outputs_dict[layer_name]
    style_reference_features = layer_features[1, :, :, :]
    combination_features = layer_features[2, :, :, :]
    sl = style_loss(style_reference_features, combination_features)
    loss += (style_weight / len(style_layers)) * sl
loss += total_variation_weight * total_variation_loss(combination_image)

# Get the gradients of the generated image wrt the loss
grads = K.gradients(loss, combination_image)[0]

# Function to fetch the values of the current loss and the current gradients
fetch_loss_and_grads = K.function([combination_image], [loss, grads])

class Evaluator(object):

    def __init__(self):
        self.loss_value = None
        self.grads_values = None

    def loss(self, x):
        assert self.loss_value is None
        x = x.reshape((1, img_height, img_width, 3))
        outs = fetch_loss_and_grads([x])
        loss_value = outs[0]
        grad_values = outs[1].flatten().astype('float64')
        self.loss_value = loss_value
        self.grad_values = grad_values
        return self.loss_value

    def grads(self, x):
        assert self.loss_value is not None
        grad_values = np.copy(self.grad_values)
        self.loss_value = None
        self.grad_values = None
        return grad_values
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Finally, we can run the gradient ascent process using SciPy’s L-BFGS algorithm,
saving the current generated image at each iteration of the algorithm (here, a single
iteration represents 20 steps of gradient ascent):

Listing 8.23 The style transfer loop

Here’s what we get:

evaluator = Evaluator()

from scipy.optimize import fmin_l_bfgs_b
from scipy.misc import imsave
import time

result_prefix = 'my_result'
iterations = 20

# Run scipy-based optimization (L-BFGS) over the pixels of the generated image
# so as to minimize the neural style loss.
# This is our initial state: the target image.
# Note that `scipy.optimize.fmin_l_bfgs_b` can only process flat vectors.
x = preprocess_image(target_image_path)
x = x.flatten()
for i in range(iterations):
    print('Start of iteration', i)
    start_time = time.time()
    x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x,
                                     fprime=evaluator.grads, maxfun=20)
    print('Current loss value:', min_val)
    # Save current generated image
    img = x.copy().reshape((img_height, img_width, 3))
    img = deprocess_image(img)
    fname = result_prefix + '_at_iteration_%d.png' % i
    imsave(fname, img)
    end_time = time.time()
    print('Image saved as', fname)
    print('Iteration %d completed in %ds' % (i, end_time - start_time))
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Figure 8.8 Some example results

Keep in mind that what this technique achieves is merely a form of image
re-texturing, or texture transfer. It will work best with style reference images that are
strongly textured and highly self-similar, and with content targets that don’t require high
levels of details in order to be recognizable. It would typically not be able to achieve
fairly abstract feats such as "transferring the style of one portrait to another". The
algorithm is closer to classical signal processing than to AI, so don’t expect it to work
like magic!

Additionally, do note that running this style transfer algorithm is quite slow.
However, the transformation operated by our setup is simple enough that it can be
learned by a small, fast feedforward convnet as well—as long as you have appropriate
training data available. Fast style transfer can thus be achieved by first spending a lot of
compute cycles to generate input-output training examples for a fixed style reference
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image, using the above method, and then training a simple convnet to learn this
style-specific transformation. Once that is done, stylizing a given image is instantaneous:
it’s a just a forward pass of this small convnet.

Style transfer consists in creating a new image that preserves the "contents" of a target
image while also capturing the "style" of a reference image.
"Content" can be captured by the high-level activations of a convnet.
"Style" can be captured by the internal correlations of the activations of different layers
of a convnet.
Hence deep learning allows style transfer to be formulated as an optimization process
using a loss defined with a pre-trained convnet.
Starting from this basic idea, many variants and refinements are possible!

Sampling from a latent space of images to create entirely new images, or edit existing
ones, is currently the most popular and successful application of creative AI. In this
section and the next one, we review some of the high-level concepts pertaining to image
generation, alongside implementations details relative to the two main techniques in this
domain: Variational Autoencoders (VAEs) and Generative Adversarial Networks
(GANs). The techniques we present here are not specific to images—one could develop
latent spaces of sound, music, or even text, using GANs or VAEs—but in practice the
most interesting results have been obtained with pictures, and that is what we focus on
here.

The key idea of image generation is to develop a low-dimensional  oflatent space
representations (which naturally is a vector space, i.e. a geometric space), where any
point can be mapped to a realistic-looking image. The module capable of realizing this
mapping, taking as input a latent point and outputting an image, i.e. a grid of pixels, is
called a generator (in the case of GANs) or a decoder (in the case of VAEs). Once such a
latent space has been developed, one may sample points from it, either deliberately or at
random, and by mapping them to image space, generate images never seen before.

8.4 Generating images with Variational Autoencoders

8.3.5 Take aways

8.4.1 Sampling from latent spaces of images
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Figure 8.9 Learning a latent vector space of images and using it to sample new images

GANs and VAEs are simply two different strategies for learning such latent spaces of
image representations, with each its own characteristics. VAEs are great for learning
latent spaces that are well-structured, where specific directions encode a meaningful axis
of variation in the data. GANs generate images that can potentially be highly realistic, but
the latent space they come from may not have as much structure and continuity.

Figure 8.10 A continuous space of faces generated by Tom White using VAEs
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We already hinted at the idea of a "concept vector" when we covered word embeddings
in Chapter 6. The idea is still the same: given a latent space of representations, or an
embedding space, certain directions in the space may encode interesting axes of variation
in the original data. In a latent space of images of faces, for instance, there may be a
"smile vector" , such that if latent point  is the embedded representation of a certains z

face, then latent point  is the embedded representation of the same face, smiling.z + s

Once one has identified such a vector, is then becomes possible to edit images by
projecting them into the latent space, moving their representation in a meaningful way,
then decoding them back to image space. There are concept vectors for essentially any
independent dimension of variation in image space—in the case of faces, one may
discover vectors for adding sunglasses to a face, removing glasses, turning a male face
into female face, etc.

Here is an example of a "smile vector", a concept vector discovered by Tom White
from the Victoria University School of Design in New Zealand, using VAEs trained on a
dataset of faces of celebrities (the CelebA dataset):

Figure 8.11 The smile vector

Variational autoencoders, simultaneously discovered by Kingma & Welling in December
2013, and Rezende, Mohamed & Wierstra in January 2014, are a kind of generative
model that is especially appropriate for the task of image editing via concept vectors.
They are a modern take on autoencoders—a type of network that aims to "encode" an
input to a low-dimensional latent space then "decode" it back—that mixes ideas from
deep learning with Bayesian inference.

A classical image autoencoder takes an image, maps it to a latent vector space via an
"encoder" module, then decode it back to an output with the same dimensions as the
original image, via a "decoder" module. It is then trained by using as target data the same

 as the input images, meaning that the autoencoder learns to reconstruct theimages

8.4.2 Concept vectors for image editing

8.4.3 Variational autoencoders
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original inputs. By imposing various constraints on the "code", i.e. the output of the
encoder, one can get the autoencoder to learn more or less interesting latent
representations of the data. Most commonly, one would constraint the code to be very
low-dimensional and sparse (i.e. mostly zeros), in which case the encoder acts as a way
to compress the input data into fewer bits of information.

Figure 8.12 An autoencoder: mapping an input x to a compressed representation, then
decoding it back as x'.

In practice, such classical autoencoders don’t lead to particularly useful or
well-structured latent spaces. They’re not particularly good at compression, either. For
these reasons, they have largely fallen out of fashion over the past years. Variational
autoencoders, however, augment autoencoders with a little bit of statistical magic that
forces them to learn continuous, highly structured latent spaces. They have turned out to
be a very powerful tool for image generation.

A VAE, instead of compressing its input image into a fixed "code" in the latent space,
turns the image into the parameters of a statistical distribution: a mean and a variance.
Essentially, this means that we are assuming that the input image has been generated by a
statistical process, and that the randomness of this process should be taken into
accounting during encoding and decoding. The VAE then uses the mean and variance
parameters to randomly sample one element of the distribution, and decodes that element
back to the original input. The stochasticity of this process improves robustness and
forces the latent space to encode meaningful representations everywhere, i.e. every point
sampled in the latent will be decoded to a valid output.

Figure 8.13 A VAE maps an image to two vectors, z_mean and z_log_sigma, which define
a probability distribution over the latent space, used to sample a latent point to decode.

In technical terms, here is how a variational autoencoder works. First, an encoder
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module turns the input samples  into two parameters in a latent space ofinput_img

representations, which we will note  and . Then, we randomlyz_mean z_log_variance

sample a point  from the latent normal distribution that is assumed to generate the inputz

image, via , where epsilon is az = z_mean + exp(z_log_variance) * epsilon

random tensor of small values. Finally, a decoder module will map this point in the latent
space back to the original input image. Because  is random, the process ensuresepsilon

that every point that is close to the latent location where we encoded  (input_img z-mean

) can be decoded to something similar to , thus forcing the latent space to beinput_img

continuously meaningful. Any two close points in the latent space will decode to highly
similar images. Continuity, combined with the low dimensionality of the latent space,
forces every direction in the latent space to encode a meaningful axis of variation of the
data, making the latent space very structured and thus highly suitable to manipulation via
concept vectors.

The parameters of a VAE are trained via two loss functions: first, a reconstruction
loss that forces the decoded samples to match the initial inputs, and a regularization loss,
which helps in learning well-formed latent spaces and reducing overfitting to the training
data.

Let’s quickly go over a Keras implementation of a VAE. Schematically, it looks like
this:

Listing 8.24 Schematic formulation of a Variational Autoencoder (VAE)

Here is the encoder network we will use: a very simple convnet which maps the input
image  to two vectors,  and .x z_mean z_log_variance

Listing 8.25 The VAE encoder network, mapping images to the parameters of a
probability distribution over the latent space

# Encode the input into a mean and variance parameter
z_mean, z_log_variance = encoder(input_img)

# Draw a latent point using a small random epsilon
z = z_mean + exp(z_log_variance) * epsilon

# Then decode z back to an image
reconstructed_img = decoder(z)

# Instantiate a model
model = Model(input_img, reconstructed_img)

# Then train the model using 2 losses:
# a reconstruction loss and a regularization loss

import keras
from keras import layers
from keras import backend as K
from keras.models import Model
import numpy as np

img_shape = (28, 28, 1)
batch_size = 16
latent_dim = 2  # Dimensionality of the latent space: a plane
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Here is the code for using  and , the parameters of the statisticalz_mean z_log_var

distribution assumed to have produced , to generate a latent space point .input_img z

Here, we wrap some arbitrary code (built on top of Keras backend primitives) into a 
 layer. In Keras, everything needs to be a layer, so code that isn’t part of a built-inLambda

layer should be wrapped in a  (or else, in a custom layer).Lambda

Listing 8.26 The latent space sampling function

This is the decoder implementation: we reshape the vector  to the dimensions of anz

image, then we use a few convolution layers to obtain a final image output that has the
same dimensions as the original .input_img

Listing 8.27 The VAE decoder network, mapping latent space points to images

input_img = keras.Input(shape=img_shape)

x = layers.Conv2D(32, 3,
                  padding='same', activation='relu')(input_img)
x = layers.Conv2D(64, 3,
                  padding='same', activation='relu',
                  strides=(2, 2))(x)
x = layers.Conv2D(64, 3,
                  padding='same', activation='relu')(x)
x = layers.Conv2D(64, 3,
                  padding='same', activation='relu')(x)
shape_before_flattening = K.int_shape(x)

x = layers.Flatten()(x)
x = layers.Dense(32, activation='relu')(x)

z_mean = layers.Dense(latent_dim)(x)
z_log_var = layers.Dense(latent_dim)(x)

def sampling(args):
    z_mean, z_log_var = args
    epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim),
                              mean=0., stddev=1.)
    return z_mean + K.exp(z_log_var) * epsilon

z = layers.Lambda(sampling)([z_mean, z_log_var])

# This is the input where we will feed `z`.
decoder_input = layers.Input(K.int_shape(z)[1:])

# Upsample to the correct number of units
x = layers.Dense(np.prod(shape_before_flattening[1:]),
                 activation='relu')(decoder_input)

# Reshape into an image of the same shape as before our last `Flatten` layer
x = layers.Reshape(shape_before_flattening[1:])(x)

# We then apply then reverse operation to the initial
# stack of convolution layers: a `Conv2DTranspose` layers
# with corresponding parameters.
x = layers.Conv2DTranspose(32, 3,
                           padding='same', activation='relu',
                           strides=(2, 2))(x)
x = layers.Conv2D(1, 3,
                  padding='same', activation='sigmoid')(x)
# We end up with a feature map of the same size as the original input.
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The dual loss of a VAE doesn’t fit the traditional expectation of a sample-wise
function of the form . Thus, we set up the loss by writing aloss(input, target)

custom layer with internally leverages the built-in  layer method to create anadd_loss

arbitrary loss.

Listing 8.28 A custom layer used to compute the VAE loss

Finally, we instantiate and train the model. Since the loss has been taken care of in
our custom layer, we don’t specify an external loss at compile time ( ), whichloss=None

in turns means that we won’t pass target data during training (as you can see we only
pass  to the model in ).x_train fit

Listing 8.29 Training the VAE

# This is our decoder model.
decoder = Model(decoder_input, x)

# We then apply it to `z` to recover the decoded `z`.
z_decoded = decoder(z)

class CustomVariationalLayer(keras.layers.Layer):

    def vae_loss(self, x, z_decoded):
        x = K.flatten(x)
        z_decoded = K.flatten(z_decoded)
        xent_loss = keras.metrics.binary_crossentropy(x, z_decoded)
        kl_loss = -5e-4 * K.mean(
            1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
        return K.mean(xent_loss + kl_loss)

    def call(self, inputs):
        x = inputs[0]
        z_decoded = inputs[1]
        loss = self.vae_loss(x, z_decoded)
        self.add_loss(loss, inputs=inputs)
        # We don't use this output.
        return x

# We call our custom layer on the input and the decoded output,
# to obtain the final model output.
y = CustomVariationalLayer()([input_img, z_decoded])

from keras.datasets import mnist

vae = Model(input_img, y)
vae.compile(optimizer='rmsprop', loss=None)
vae.summary()

# Train the VAE on MNIST digits
(x_train, _), (x_test, y_test) = mnist.load_data()

x_train = x_train.astype('float32') / 255.
x_train = x_train.reshape(x_train.shape + (1,))
x_test = x_test.astype('float32') / 255.
x_test = x_test.reshape(x_test.shape + (1,))

vae.fit(x=x_train, y=None,
        shuffle=True,
        epochs=10,
        batch_size=batch_size,
        validation_data=(x_test, None))
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Once such a model is trained—e.g. on MNIST, in our case—we can use the decoder
network to turn arbitrary latent space vectors into images:

Listing 8.30 Sampling a grid of points from the 2D latent space and decoding
them to images

import matplotlib.pyplot as plt
from scipy.stats import norm

# Display a 2D manifold of the digits
n = 15  # figure with 15x15 digits
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
# Linearly spaced coordinates on the unit square were transformed
# through the inverse CDF (ppf) of the Gaussian
# to produce values of the latent variables z,
# since the prior of the latent space is Gaussian
grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
grid_y = norm.ppf(np.linspace(0.05, 0.95, n))

for i, yi in enumerate(grid_x):
    for j, xi in enumerate(grid_y):
        z_sample = np.array([[xi, yi]])
        z_sample = np.tile(z_sample, batch_size).reshape(batch_size, 2)
        x_decoded = decoder.predict(z_sample, batch_size=batch_size)
        digit = x_decoded[0].reshape(digit_size, digit_size)
        figure[i * digit_size: (i + 1) * digit_size,
               j * digit_size: (j + 1) * digit_size] = digit

plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap='Greys_r')
plt.show()
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Figure 8.14 Grid of digits decoded from the latent space

The grid of sampled digits shows a completely continuous distribution of the different
digit classes, with one digit morphing into another as you follow a path through latent
space. Specific directions in this space have a meaning, e.g. there is a direction for
"four-ness", "one-ness", etc.

In the next section, we cover in detail the other major tool for generating artificial
images: generative adversarial networks (GANs).

Image generation with deep learning is done by learning latent spaces that capture
statistical information about a dataset of images. By sampling points from the latent
space, and "decoding" them, one can generate never-seen-before images. There are two
major tools to do this: VAEs and GANs.

VAEs result in highly structured, continuous latent representations. For this reason, they
work well for doing all sort of image edition in latent space, like face swapping, turning a
frowning face into a smiling face, and so on. They also work nicely for doing latent space
based animations, i.e. animating a walk along a cross section of the latent space, showing
a starting image slowly morphing into different images in a continuous way.
GANs enable the generation of realistic single-frame images, but may not induce latent
spaces with solid structure and high continuity.

8.4.4 Take aways
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Most successful practical applications I have seen with images actually rely on VAEs,
but GANs are extremely popular in the world of academic research—at least circa
2016-2017. You will find out how they work and how to implement one in the next
section.

To play further with image generation, I suggest working with the  dataset,CelebA

"Large-scale Celeb Faces Attributes". It’s a free-to-download image dataset with more
than 200,000 celebrity portraits. It’s great for experimenting with concept vectors in
particular. It beats MNIST for sure.

Generative Adversarial Networks (GANs), introduced in 2014 by Ian Goodfellow, are an
alternative to VAEs for learning latent spaces of images. They enable the generation of
fairly realistic synthetic images by forcing the generated images to be statistically almost
indistinguishable from real ones.

An intuitive way to understand GANs is to imagine a forger trying to create a fake
Picasso painting. At first, the forger is pretty bad at the task. He mixes some of his fakes
with authentic Picassos, and shows them all to an art dealer. The art dealer makes an
authenticity assessment for each painting, and gives the forger feedback about what
makes a Picasso look like a Picasso. The forger goes back to his atelier to prepare some
new fakes. As times goes on, the forger becomes increasingly competent at imitating the
style of Picasso, and the art dealer becomes increasingly expert at spotting fakes. In the
end, we have on our hands some excellent fake Picassos.

That’s what GANs are: a forger network network and an expert network, each being
trained to best the other. As such, a GAN is made of two parts:

A , which takes as input a random vector (a random point in the latentgenerator network
space) and decodes it into a synthetic image.
A  (also called ), which takes as input an image (real ordiscriminator network adversary
synthetic), and must predict whether the image came from the training set or was created
by the generator network.

The generator network is trained to be able to fool the discriminator network, and
thus it evolves towards generating increasingly realistic images as training goes on:
artificial images that look indistinguishable from real ones—to the extent that it is
impossible for the discriminator network to tell the two apart. Meanwhile, the
discriminator is constantly adapting to the gradually improving capabilities of the
generator, which sets a very high bar of realism for the generated images. Once training
is over, the generator is capable of turning any point in its input space into a believable
image. Unlike VAEs, this latent space has less explicit guarantees of meaningful
structure, and in particular, it isn’t continuous.

8.5 Introduction to generative adversarial networks
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Figure 8.15 A generator transforms random latent vectors into images, while a
discriminator seeks to tell apart real images from generated ones. The generator is
trained to fool the discriminator.

Remarkably, a GAN is a system where the optimization minimum isn’t fixed—unlike
in any other training setup you have encountered in this book before. Normally, gradient
descent consists in rolling down some hills in a static loss landscape. However, with a
GAN, every step taken down the hill changes the entire landscape by a bit. It’s a dynamic
system where the optimization process is seeking not a minimum, but rather an
equilibrium between two forces. For this reason, GANs are notoriously very difficult to
train—getting a GAN to work require lots of careful tuning of the model architecture and
training parameters.

Figure 8.16 Latent space dwellers. Images generated by Mike Tyka using a multi-staged
GAN trained on a dataset of faces. Website: www.miketyka.com

In what follows, we explain how to implement a GAN in Keras, in its barest form—since
GANs are quite advanced, diving deeply into the technical details would be out of scope
for us. Our specific implementation will be a deep convolutional GAN, or DCGAN: a
GAN where the generator and discriminator are deep convnets. In particular, it leverages
a  layer for image upsampling in the generator.Conv2DTranspose

8.5.1 A schematic GAN implementation
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We will train our GAN on images from CIFAR10, a dataset of 50,000 32x32 RGB
images belong to 10 classes (5,000 images per class). To make things even easier, we
will only use images belonging to the class "frog".

Schematically, our GAN looks like this:

A  network maps vectors of shape  to images of shape generator (latent_dim,) (32,
.32, 3)

A  network maps images of shape (32, 32, 3) to a binary score estimatingdiscriminator
the probability that the image is real.
A  network chains the generator and the discriminator together: gan gan(x) =

. Thus this  network maps latent space vectors todiscriminator(generator(x)) gan
the discriminator’s assessment of the realism of these latent vectors as decoded by the
generator.
We train the discriminator using examples of real and fake images along with
"real"/"fake" labels, as we would train any regular image classification model.
To train the generator, we use the gradients of the generator’s weights with regard to the
loss of the  model. This means that, at every step, we move the weights of thegan
generator in a direction that will make the discriminator more likely to classify as "real"
the images decoded by the generator. I.e. we train the generator to fool the discriminator.

Training GANs and tuning GAN implementations is notoriously difficult. There are a
number of known "tricks" that one should keep in mind. Like most things in deep
learning, it is more alchemy than science: these tricks are really just heuristics, not
theory-backed guidelines. They are backed by some level of intuitive understanding of
the phenomenon at hand, and they are known to work well empirically, albeit not
necessarily in every context.

Here are a few of the tricks that we leverage in our own implementation of a GAN
generator and discriminator below. It is not an exhaustive list of GAN-related tricks; you
will find many more across the GAN literature.

We use  as the last activation in the generator, instead of , which would betanh sigmoid
more commonly found in other types of models.
We sample points from the latent space using a  (Gaussiannormal distribution
distribution), not a uniform distribution.
Stochasticity is good to induce robustness. Since GAN training results in a dynamic
equilibrium, GANs are likely to get "stuck" in all sorts of ways. Introducing randomness
during training helps prevent this. We introduce randomness in two ways: 1) we use
dropout in the discriminator, 2) we add some random noise to the labels for the
discriminator.
Sparse gradients can hinder GAN training. In deep learning, sparsity is often a desirable
property, but not in GANs. There are two things that can induce gradient sparsity: 1) max
pooling operations, 2) ReLU activations. Instead of max pooling, we recommend using
strided convolutions for downsampling, and we recommend using a  layerLeakyReLU
instead of a ReLU activation. It is similar to ReLU but it relaxes sparsity constraints by
allowing small negative activation values.
In generated images, it is common to see "checkerboard artifacts" caused by unequal
coverage of the pixel space in the generator. To fix this, we use a kernel size that is

8.5.2 A bag of tricks
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divisible by the stride size, whenever we use a strided  or  inConv2DTranpose Conv2D
both the generator and discriminator.

Figure 8.17 "Checkerboard artifacts" caused by mismatching strides and
kernel sizes, resulting in unequal pixel space coverage: one of the many
"gotchas" of GANs.

First, we develop a  model, which turns a vector (from the latentgenerator

space—during training it will sampled at random) into a candidate image. One of the
many issues that commonly arise with GANs is that the generator gets stuck with
generated images that look like noise. A possible solution is to use dropout on both the
discriminator and generator.

Listing 8.31 The GAN generator network

8.5.3 The generator

import keras
from keras import layers
import numpy as np

latent_dim = 32
height = 32
width = 32
channels = 3

generator_input = keras.Input(shape=(latent_dim,))

# First, transform the input into a 16x16 128-channels feature map
x = layers.Dense(128 * 16 * 16)(generator_input)
x = layers.LeakyReLU()(x)
x = layers.Reshape((16, 16, 128))(x)

# Then, add a convolution layer
x = layers.Conv2D(256, 5, padding='same')(x)
x = layers.LeakyReLU()(x)

# Upsample to 32x32
x = layers.Conv2DTranspose(256, 4, strides=2, padding='same')(x)
x = layers.LeakyReLU()(x)

# Few more conv layers
x = layers.Conv2D(256, 5, padding='same')(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(256, 5, padding='same')(x)
x = layers.LeakyReLU()(x)

# Produce a 32x32 1-channel feature map
x = layers.Conv2D(channels, 7, activation='tanh', padding='same')(x)
generator = keras.models.Model(generator_input, x)
generator.summary()
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Then, we develop a  model, that takes as input a candidate image (real ordiscriminator

synthetic) and classifies it into one of two classes, either "generated image" or "real
image that comes from the training set".

Listing 8.32 The GAN discriminator network

Finally, we setup the GAN, which chains the generator and the discriminator. This is the
model that, when trained, will move the generator in a direction that improves its ability
to fool the discriminator. This model turns latent space points into a classification
decision, "fake" or "real", and it is meant to be trained with labels that are always "these
are real images". So training  will updates the weights of  in a way thatgan generator

makes  more likely to predict "real" when looking at fake images. Verydiscriminator

importantly, we set the discriminator to be frozen during training (non-trainable): its
weights will not be updated when training . If the discriminator weights could began

updated during this process, then we would be training the discriminator to always
predict "real", which is not what we want!

Listing 8.33 The adversarial network

8.5.4 The discriminator

discriminator_input = layers.Input(shape=(height, width, channels))
x = layers.Conv2D(128, 3)(discriminator_input)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Flatten()(x)

# One dropout layer - important trick!
x = layers.Dropout(0.4)(x)

# Classification layer
x = layers.Dense(1, activation='sigmoid')(x)

discriminator = keras.models.Model(discriminator_input, x)
discriminator.summary()

# To stabilize training, we use learning rate decay
# and gradient clipping (by value) in the optimizer.
discriminator_optimizer = keras.optimizers.RMSprop(lr=0.0008, clipvalue=1.0, decay=1e-8)
discriminator.compile(optimizer=discriminator_optimizer, loss='binary_crossentropy')

8.5.5 The adversarial network

# Set discriminator weights to non-trainable
# (will only apply to the `gan` model)
discriminator.trainable = False

gan_input = keras.Input(shape=(latent_dim,))
gan_output = discriminator(generator(gan_input))
gan = keras.models.Model(gan_input, gan_output)

gan_optimizer = keras.optimizers.RMSprop(lr=0.0004, clipvalue=1.0, decay=1e-8)
gan.compile(optimizer=gan_optimizer, loss='binary_crossentropy')
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Now we can start training. To recapitulate, this is schematically what the training loop
looks like:

Listing 8.34 Schematic formulation of GAN training

Let’s implement it:

Listing 8.35 Implementing GAN training

8.5.6 How to train your DCGAN

for each epoch:
    * Draw random points in the latent space (random noise).
    * Generate images with `generator` using this random noise.
    * Mix the generated images with real ones.
    * Train `discriminator` using these mixed images, with corresponding targets, either "real" (for 
    * Draw new random points in the latent space.
    * Train `gan` using these random vectors, with targets that all say "these are real images". This

import os
from keras.preprocessing import image

# Load CIFAR10 data
(x_train, y_train), (_, _) = keras.datasets.cifar10.load_data()

# Select frog images (class 6)
x_train = x_train[y_train.flatten() == 6]

# Normalize data
x_train = x_train.reshape(
    (x_train.shape[0],) + (height, width, channels)).astype('float32') / 255.

iterations = 10000
batch_size = 20
save_dir = 'your_dir'

# Start training loop
start = 0
for step in range(iterations):
    # Sample random points in the latent space
    random_latent_vectors = np.random.normal(size=(batch_size, latent_dim))

    # Decode them to fake images
    generated_images = generator.predict(random_latent_vectors)

    # Combine them with real images
    stop = start + batch_size
    real_images = x_train[start: stop]
    combined_images = np.concatenate([generated_images, real_images])

    # Assemble labels discriminating real from fake images
    labels = np.concatenate([np.ones((batch_size, 1)),
                             np.zeros((batch_size, 1))])
    # Add random noise to the labels - important trick!
    labels += 0.05 * np.random.random(labels.shape)

    # Train the discriminator
    d_loss = discriminator.train_on_batch(combined_images, labels)

    # sample random points in the latent space
    random_latent_vectors = np.random.normal(size=(batch_size, latent_dim))

    # Assemble labels that say "all real images"
    misleading_targets = np.zeros((batch_size, 1))
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When training, you may see your adversarial loss start increasing considerably while
your discriminative loss will tend to zero, i.e. your discriminator may end up dominating
your generator. If that’s the case, try reducing the discriminator learning rate and increase
the dropout rate of the discriminator.

Figure 8.18 Play the discriminator: in each row, two images were dreamed up by our GAN,
and one image comes from the training set. Can you tell them apart? (answers - real
images: middle, top, bottom, middle)

    # Train the generator (via the gan model,
    # where the discriminator weights are frozen)
    a_loss = gan.train_on_batch(random_latent_vectors, misleading_targets)

    start += batch_size
    if start > len(x_train) - batch_size:
      start = 0

    # Occasionally save / plot
    if step % 100 == 0:
        # Save model weights
        gan.save_weights('gan.h5')

        # Print metrics
        print('discriminator loss:', d_loss)
        print('adversarial loss:', a_loss)

        # Save one generated image
        img = image.array_to_img(generated_images[0] * 255., scale=False)
        img.save(os.path.join(save_dir, 'generated_frog' + str(step) + '.png'))

        # Save one real image, for comparison
        img = image.array_to_img(real_images[0] * 255., scale=False)
        img.save(os.path.join(save_dir, 'real_frog' + str(step) + '.png'))
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GANs consist in a generator network coupled with a discriminator network. The
discriminator is trained to tell apart the output of the generator and real images from a
training dataset, while the generator is trained to fool the discriminator. Remarkably, the
generator nevers sees images from the training set directly; the information it has about
the data comes from the discriminator.
GANs are difficult to train, because training a GAN is a dynamic process rather than a
simple descent process with a fixed loss landscape. Getting a GAN to train correctly
requires leveraging a number of heuristic tricks, as well as extensive tuning.
GANs can potentially produce highly realistic images. However, unlike VAEs, the latent
space that they learn does not have a neat continuous structure, and thus may not be
suited for certain practical applications, such as image editing via latent space concept
vectors.

This is the end of the chapter on creative applications of deep learning, where deep nets
go beyond simply annotating existing content, and start generating their own. You have
just learned:

How to generate sequence data, one timestep at a time. This is applicable to text
generation, but also to note-by-note music generation, or any other type of timeseries
data.
How Deep Dreams work: by maximizing convnet layer activations through gradient
ascent in input space.
How to perform style transfer, where a content image and a style image get combined to
produce interesting-looking results.
What GANs and VAEs are, how they can be used for dreaming up new images, and how
latent space "concept vectors" could be used for image edition.

These few techniques only cover the very basics of this fast-expanding field. There’s
a lot more to discover out there—generative deep learning would be deserving of an
entire book of its own.

8.6 Wrapping up: generative deep learning

8.5.7 Take-aways
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9
You have almost reached the end of this book. In this last chapter, we focus on
summarizing and reviewing core concepts, while expanding your horizons beyond the
relatively basic notions you have learned so far. Understanding deep learning and AI is a
journey, and finishing this book is merely the first step of it. I want to make sure that you
realize this, and that you are properly equipped for taking the next steps of this journey
on your own.

This chapter is structured in four sections:

A bird’s eye view of what you should take away from this book. This should refresh your
memory on some of the concepts you have previously learned.
An overview of some key limitations of deep learning. To use a tool appropriately, you
should not only understand what it can do, but also be aware of what it won’t do.
Speculative thoughts about the future evolution of the fields of deep learning, machine
learning and AI. This should be especially interesting to you if you would like to get into
fundamental research.
A short list of resources and strategies for learning further about AI and staying up to
date with new advances.

This sections aims at briefly synthesizing the key take-aways from this book. If you ever
need a quick refresher to help you recall what you’ve learned in this book, you can just
read these few pages.

First of all, deep learning is not synonymous with AI, nor even with machine learning. AI
is an ancient and very broad field that can generally be defined as "all attempts to
automate cognitive processes". The automation of thought. This can range from the very
basic, like an Excel spreadsheet, to the very advanced, like a humanoid robot able to walk
and talk.

Machine learning is a specific subfield of AI that aims at automatically developing
programs (called "models") purely from exposure to training data. This process of turning
data into a program is called "learning". Albeit machine learning has been around for a

Conclusions

9.1 Key concepts in review

9.1.1 Different brands of approaches to AI
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long time, it only started taking off in the 1990s.
Deep learning is one of many branches of machine learning, where the models are

long chains of geometric functions, chained one after the other. These operations are
structured into modules called "layers": deep learning models are typically just stacks of
layers, or more generally graphs of layers. These layers are parametrized by "weights",
which are the parameters that are learned during training. The "knowledge" of a model is
stored in its weights, and process of "learning" consists in finding good values for these
weights.

Even though deep learning is just one approach to machine learning among many, it
isn’t on an equal footing with the others. Deep learning is a breakout success. Here’s
why.

In the span of just a few years, deep learning has achieved tremendous breakthroughs
across a wide range of tasks that have been historically perceived as extremely difficult
for computers, especially in machine perception: extracting useful information from
images, videos, sound, and more. Given sufficient training data (in particular, training
data appropriately labeled by humans), it is possible to extract from perceptual data
almost anything that a human could extract. Hence it is sometimes said that deep learning
has "solved perception", albeit that is only true for a fairly narrow definition of
"perception".

Due to its unprecedented technical successes, deep learning has single-handedly
brought about the third and by far the largest "AI summer", a period of intense interest,
investment, and hype, in the field of AI. As this book is being written, we are in the
middle of it. Whether this period will end in the near future, and what happens after it
ends, is a topic of debate. One thing is certain: in stark contrast with previous AI
summers, deep learning has been providing enormous business value to a number of
large technology companies, enabling human-level speech recognition, smart assistants,
human-level image classification, vastly improved machine translation, and more. The
hype may (and likely will) recess, but the sustained economic and technological impact
of deep learning will remain. In that sense, deep learning could be analogous to the
Internet: it may be overly hyped up for a few years, but in the longer term it will still be a
major revolution that will transform our economy and our lives.

I am particularly optimistic about deep learning, because, even if we were to make no
further technological progress in the next decade, simply deploying existing algorithms to
every problem where they are applicable would already be a game-changer for most
industries. Deep learning is nothing short of a revolution. And as it happens, progress is
currently happening at an incredibly fast rate—due to an exponential investment in
resources and headcount. From where I stand, the future looks bright. It does seem,
however, that short-term expectations are somewhat over-optimistic. Deploying deep
learning to the full extent of its potential will take well over a decade.

9.1.2 What makes deep learning special within machine learning
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The most surprising thing about deep learning is how simple it is. Ten years ago, no one
expected that we would achieve such amazing results on machine perception problems by
using simple parametric models trained with gradient descent. Now, it turns out that all
you need is  parametric models trained with gradient descent on sufficiently large

 examples. As Feynman once said about the universe, sufficiently many "It’s not
.complicated, it’s just a lot of it"

In deep learning, everything is a vector, i.e. everything is a  in a point geometric space
. Model inputs (it could be text, images, etc) and targets are first "vectorized", i.e. turned
into some initial input vector space and target vector space. Each layer in a deep learning
model operates one simple geometric transformation on the data that goes through it.
Together, the chain of layers of the model forms one very complex geometric
transformation, broken down into a series of simple ones. This complex transformation
attempts to maps the input space to the target space, one point at a time. This
transformation is parametrized by the weights of the layers, which are iteratively updated
based on how well the model is currently performing. A key characteristic of this
geometric transformation is that it must be , which is required in order fordifferentiable
us to be able to learn its parameters via gradient descent. Intuitively, this means that the
geometric morphing from inputs to outputs must be smooth and continuous—a
significant constraint.

The whole process of applying this complex geometric transformation to the input
data can be visualized in 3D by imagining a person trying to uncrumple a paper ball: the
crumpled paper ball is the manifold of the input data that the model starts with. Each
movement operated by the person on the paper ball is similar to a simple geometric
transformation operated by one layer. The full uncrumpling gesture sequence is the
complex transformation of the entire model. Deep learning models are mathematical
machines for uncrumpling complicated manifolds of high-dimensional data.

That’s the magic of deep learning: turning meaning into vectors, into geometric
spaces, then incrementally learning complex geometric transformations that map one
space to another. All you need are spaces of sufficiently high dimensionality in order to
capture the full scope of the relationships found in the original data.

The whole thing hinges on one single core idea: that meaning is derived from the
 (between words in a language, between pixels in anpairwise relationship between things

image, etc) and that . But dothese relationships can be captured by a distance function
note that whether or not the brain implements meaning via geometric spaces is an entirely
separate question. Vector spaces are very efficient to work with from a computational
standpoint, but different data structures for intelligence can easily be envisioned, in
particular graphs. In fact, "neural networks" initially emerged from the very idea of using
graphs as a way to encode meaning, which is why they are named "neural networks", and
the surrounding field of research used to be called "connectionism". Nowadays the name
"neural network" is still around purely for historical reasons—it is an extremely

9.1.3 How to think about deep learning
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misleading name since they are in fact neither neural nor networks. In particular, they
have hardly anything to do with the brain. A more appropriate name could have been
"layered representations learning" or "hierarchical representations learning". Or maybe
even "deep differentiable models" or "chained geometric transforms", in order to
emphasize the fact that continuous geometric space manipulation is at their core.

The technological revolution that is currently unfolding did not start with any single
breakthrough invention. Rather, like any other revolution, it is the product of a vast
accumulation of enabling factors—slow at first, then all of a sudden. In the case of deep
learning, we can point out the following key factors:

Incremental algorithmic innovations, first spread over two decades (starting with
backpropagation), then happening increasingly faster as more research effort was poured
into deep learning after 2012.
The availability of large amounts of perceptual data, a requirement in order to realize that
"sufficiently large models trained on sufficiently large data are all you need". This is in
turn a by-product of the rise of the consumer Internet and Moore’s law applied to storage
media.
The availability of fast, highly parallel computation hardware at a low price, especially
the GPUs produced by NVIDIA—first gaming GPUs, then chips designed from the
ground up for deep learning, as CEO Jensen Huang took note early on of the deep
learning boom and decided to bet the company’s future on it.
A complex stack of software layers that makes this computational power available to
humans: the CUDA language, frameworks like TensorFlow that do automatic
differentiation, and finally Keras that makes deep learning accessible to most people.

In the future, deep learning will not only be used by specialists—researchers, grad
students, and expensive engineers with an academic profile. Rather, it will be a tool in the
toolbox of every developer, much like web technology today. Everyone needs to build
intelligent apps: much like every business today needs a website, every product will need
to intelligently make sense of user-generated data. Making this future happen requires us
to build tools that make deep learning radically easy to use, that make deep learning
accessible to anyone with basic coding abilities. Keras is the first major step in that
direction.

Having access to an extremely powerful tool for creating models that map any input
space to any target space is great, but the difficult part of the machine learning workflow
is often everything that comes before designing and training such models (and, for
production models, what comes after as well). Understanding the problem domain so as
to be able to determine what to attempt to predict, given what data, and how to measure
success, is a prerequisite for any successful application of machine learning, and it isn’t
something that advanced tools like Keras or TensorFlow will help you with. As a
reminder, here’s a quick summary of the typically machine learning workflow as
described in Chapter 4:

9.1.4 Key enabling technologies

9.1.5 The universal machine learning workflow
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First, define the problem: what data is available, and what are you trying to predict? Will
you need to collect more data, to hire people to manually label a dataset?
Identify a way to reliably measure success on your goal. For simple tasks, this may be
prediction accuracy, but in many cases it will require sophisticated domain-specific
metrics.
Prepare the validation process that you will use to evaluate your models. In particular,
you should define a training set, validation set, and test set. Your validation and test set
labels should not "leak" into your training data: for instance, with temporal prediction,
the validation and test data should be posterior to the training data.
Vectorize your data, by turning it into vectors and preprocessing it in a way that makes it
more easily approachable by a neural network (normalization, etc).
Develop a first model that beats a trivial common-sense baseline—thus demonstrating
that machine learning can work on your problem. This might not always be the case!
Gradually refine your model architecture by tuning hyperparameters and adding
regularization. Make changes based on your performance on the validation data only, not
the test data nor the training data. Remember that you should manage to get your model
to overfit (thus identifying a model capacity level that is above that you need), and only
then start adding regularization or start downsizing your model.
Mind "validation set overfitting" when turning hyperparameters, i.e. the fact that your
hyperparameters might end up being over-specialized to your validation set. Avoiding
this is precisely the purpose of having a separate test set!

The three families of network architectures that you should be familiar with are
densely-connected networks, convolutional networks, and recurrent networks. Each type
of network is meant for a specific input modality: a network architecture (dense,
convolutional, recurrent) encodes  about the structure of the data, a assumptions

 within which the search for a good model will proceed. Whether or nothypothesis space
a given architecture will work on a given problem depends entirely on the match between
the structure of the data and the assumptions of the network architecture.

These different network types can be easily combined to achieve larger multi-modal
networks, much like one would combine together Lego bricks. In a way, deep learning
layers are Lego for information processing. Here is a quick overview of the mapping
between input modalities and appropriate network architecture:

Vector data: Densely-connected network (  layers).Dense

Image data: 2D convnets.
Sound data (e.g. waveform): Either 1D convnets (preferred) or RNNs.
Text data: Either 1D convnets (preferred) or RNN.
Timeseries data: Either RNNs (preferred) or 1D convnets.
Other types of sequence data: Either RNNs or 1D convnets. Prefer RNNs if data ordering
is strongly meaningful (e.g. for timeseries, but not for text).
Video data: Either 3D convnets (if you need to capture motion effects) or a combination
of a frame-level convnet for feature extraction followed by either a RNN or a 1D convnet
to process the resulting sequences.
Volumetric data: 3D convnets.

Now, let’s quickly review the specificities of each network architecture.

9.1.6 Key network architectures
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Densely-connected networks are just a stack of  layers, meant to process vectorDense

data (i.e. batches of vectors). They assume no specific structure in the input features: they
are called "densely-connected" because the units of a  layer are "connected" toDense

every other unit; the layer will attempt to map relationships between any two input
features, which is unlike a 2D convolution layer, for instance, which only looks at local
relationships.

Densely-connected networks are most commonly used for categorical data (e.g.
where the input features are lists of attributes), for instance the Boston Housing dataset
we covered in Chapter 3. They are also used as the final classification or regression stage
of most networks. For instance, the convnets we covered in Chapter 5 typically ended
with one or two  layers, and so did our recurrent networks from Chapter 6.Dense

Remember: to perform , end your stack of layers with a binary classification Dense

layer with a single unit and a  activation, and use  assigmoid binary_crossentropy

loss. Your targets should be either 0 or 1.

To perform  (where each sample has exactlysingle-label categorical classification
one class, no more), end your stack of layers with a  layer with a number of unitsDense

equal to the number of classes, and a  activation. If your targets are one-hotsoftmax

encoded, use  as loss; if they are integers, use categorical_crossentropy

.sparse_categorical_crossentropy

To perform  (where each sample can havemulti-label categorical classification
several classes), end your stack of layers with a  layer with a number of units equalDense

to the number of classes and a  activation, and use  assigmoid binary_crossentropy

loss. Your targets should be one-hot encoded.

DENSELY-CONNECTED NETWORKS

model = Sequential()
model.add(Dense(32, activation='relu', input_shape=(num_input_features,)))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy')

model = Sequential()
model.add(Dense(32, activation='relu', input_shape=(num_input_features,)))
model.add(Dense(32, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))

model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

model = Sequential()
model.add(Dense(32, activation='relu', input_shape=(num_input_features,)))
model.add(Dense(32, activation='relu'))
model.add(Dense(num_classes, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy')
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To perform  towards a vector of continuous values, end your stack of layersregression
with a  layer with a number of units equal to the number of values you are trying toDense

predict (often a single one, like the price of a house), and no activation. There are several
losses that can be used for regression, most commonly  (MSE) andmean_squared_error

 (MAE).mean_absolute_error

Convolution layers look at spatially local patterns, by applying a same geometric
transformation to different spatial locations ("patches") in an input tensor. This results in
representations that are , making convolution layers highlytranslation-invariant
data-efficient and modular. This idea is applicable to spaces of any dimensionality: 1D
(sequences), 2D (images), 3D (volumes), etc. You can use the  layer to processConv1D

sequences (especially text; it doesn’t work as well on timeseries that often do not follow
the translation invariance assumption), the  layer to process images, and the Conv2D

 layers to process volumes.Conv3D

Convnets, or convolutional networks, consist of stacks of convolution and
max-pooling layers. The pooling layers allow to spatially downsample the data, which is
required to keep feature maps to a reasonable size as the number of features grows, and
to allow subsequent convolution layers to "see" a greater spatial extent of the inputs.
Convnets are often ended with either a  operation or a global pooling layer,Flatten

turning spatial feature maps into vectors, followed by  layers to achieveDense

classification or regression.
Note that it is highly likely that regular convolutions will soon be mostly (or

completely) replaced by an equivalent but faster and even representationally efficient
alternative, the depthwise separable convolution (  layer). This is trueSeparableConv2D

for 3D, 2D or 1D inputs. When building a new network from scratch, using depthwise
separable convolutions is definitely the way to go. The  layer can beSeparableConv2D

used as a drop-in replacement for , resulting in a smaller and faster network thatConv2D

will also perform better on its task.
Here is what a typical image classification network would look like (categorical

classification, in this case):

model = Sequential()
model.add(Dense(32, activation='relu', input_shape=(num_input_features,)))
model.add(Dense(32, activation='relu'))
model.add(Dense(num_values))

model.compile(optimizer='rmsprop', loss='mse')

CONVNETS

model = Sequential()
model.add(SeparableConv2D(32, activation='relu',
                          input_shape=(height, width, channels)))
model.add(SeparableConv2D(64, activation='relu'))
model.add(MaxPooling2D(2))

model.add(SeparableConv2D(64, activation='relu'))
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Recurrent neural networks (RNNs) work by processing sequences of inputs one timestep
at a time, and maintaining a "state" throughout (a state is typically just a vector, or set of
vectors, i.e. a point in a geometric space of states). They should be used preferentially
over 1D convnets in the case of sequences where patterns of interest are not invariant by
temporal translation (for instance, timeseries data where the recent past if more important
than the distant past).

There are three RNN layers available in Keras: ,  and . For mostSimpleRNN GRU LSTM

practical purposes, you should be using either  or .  is the more powerful ofGRU LSTM LSTM

the two, but also the most expensive; you can see  as a simpler and cheaperGRU

alternative to it.
In order to stack multiple RNN layers on top of each other, each layer prior to the last

one should return the full sequence of its outputs (to each input timestep will correspond
an output timestep); if you are not stacking any further RNN layers, then it is common to
only return the last output, which contains information about the entire sequence.

model.add(SeparableConv2D(128, activation='relu'))
model.add(MaxPooling2D(2))

model.add(SeparableConv2D(64, activation='relu'))
model.add(SeparableConv2D(128, activation='relu'))
model.add(GlobalAveragePooling2D())

model.add(Dense(32, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))

model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

RNNS

# Single RNN layer for binary classification
# of vector sequences
model = Sequential()
model.add(LSTM(32, input_shape=(num_timesteps, num_features)))
model.add(Dense(num_classes, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy')

# Stacked RNN for binary classification
# of vector sequences
model = Sequential()
model.add(LSTM(32, return_sequences=True,
               input_shape=(num_timesteps, num_features)))
model.add(LSTM(32, return_sequences=True))
model.add(LSTM(32))
model.add(Dense(num_classes, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy')
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What will you build with deep learning? Remember, building deep learning models is
like playing with Lego bricks: layers can be plugged together to map essentially anything
to anything, given that you have appropriate training data available and that the mapping
is achievable via a continuous geometric transformation of reasonable complexity. The
space of possibilities is infinite. Here are a few examples to inspire you to think beyond
the basic classification or regression tasks that have been traditionally the bread and
butter of machine learning.

We sort our suggested applications by input and output modalities. Do note that quite
a few of them are stretching the limits of what is possible—while a model could be
trained on these tasks in every case, in some cases such a model would probably not
generalize very far from its training data. In the next couple sections, we address how
these limitations could be lifted in the future.

Predictive healthcare: mapping patient medical records to predictions of patient outcome.
Behavioral targeting: mapping a set of website attributes with data on how long a user
will spend on the website.
Product quality control: apping a set of attributes relative to an instance of a
manufactured product with the probability that the product will fail by next year.

Doctor assistant: mapping slides of medical images with a prediction about the presence
of a tumor.
Self-driving: mapping car dashcam video frames to steering wheel angle commands.
Board game AI: mapping Go or Chess boards to to next player move.
Diet helper: mapping pictures of a dish with its calorie count.
Age prediction: mapping selfies to the age of the person.

Weather prediction: mapping timeseries of weather data in a grid of locations of weather
data the following week at a specific location.
Brain-computer interfaces: mapping timeseries of magnetoencephalogram (MEG) data to
computer commands.
Behavioral targeting: mapping timeseries of user interactions on a website with the
probability that a user will buy something.

Smart reply: mapping emails to possible one-line replies.
Question answering: mapping general knowledge questions to answers.
Summarization: mapping long articles to short summary of the article.

9.1.7 The space of possibilities

MAPPING VECTOR DATA TO VECTOR DATA

9.1.8 Mapping image data to vector data

9.1.9 Mapping timeseries data to vector data

MAPPING TEXT TO TEXT
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Captioning: mapping images to short captions describing the contents of the image.

Conditioned image generation: mapping short text descriptions to images matching the
description.
Logo generation/selection: mapping the name and description of a company to the
company’s logo.

Super-resolution: mapping downsized images to higher-resolution versions of the same
images.
Visual depth sensing: mapping images of indoor environments to maps of depth
predictions.

Visual QA: mapping images and natural language questions about the contents of the
images, to natural language answers.

Video QA: mapping short videos and natural language questions about the contents of the
video, to natural language answers.

Almost anything is possible—but not quite . Let’s see in the next section whatanything
you  do with deep learning.can’t

The space of applications that can be implemented with deep learning is nearly infinite.
And yet, many more applications are completely out of reach for current deep learning
techniques—even given vast amounts of human-annotated data. Say, for instance, that
you could assemble a dataset of hundreds of thousands—even millions—of English
language descriptions of the features of a software product, as written by a product
manager, as well as the corresponding source code developed by a team of engineers to
meet these requirements. Even with this data, you could  train a deep learning modelnot
to simply read a product description and generate the appropriate codebase. That’s just
one example among many. In general, anything that requires reasoning—like
programming, or applying the scientific method—long-term planning, and
algorithmic-like data manipulation, is out of reach for deep learning models, no matter
how much data you throw at them. Even learning a sorting algorithm with a deep neural
network is tremendously difficult.

This is because a deep learning model is "just" a chain of simple, continuous

9.2 The limitations of deep learning

MAPPING IMAGES TO TEXT

MAPPING TEXT TO IMAGES

MAPPING IMAGES TO IMAGES

MAPPING IMAGES AND TEXT TO TEXT

MAPPING VIDEO AND TEXT TO TEXT
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 mapping one vector space into another. All it can do is mapgeometric transformations
one data manifold X into another manifold Y, assuming the existence of a learnable
continuous transform from X to Y. So even though a deep learning model can be
interpreted as a kind of program, inversely most programs cannot be expressed as deep

—for most tasks, either there exists no corresponding deep neurallearning models
network that solves the task, or even if there exists one, it may not be , i.e. thelearnable
corresponding geometric transform may be far too complex, or there may not be
appropriate data available to learn it.

Scaling up current deep learning techniques by stacking more layers and using more
training data can only superficially palliate some of these issues. It will not solve the
more fundamental problem that deep learning models are very limited in what they can
represent, and that most of the programs that one may wish to learn cannot be expressed
as a continuous geometric morphing of a data manifold.

One very real risk with contemporary AI is that of misinterpreting what deep learning
models do, and overestimating their abilities. A fundamental feature of the human mind
is our "theory of mind", our tendency to project intentions, beliefs and knowledge on the
things around us. Drawing a smiley face on a rock suddenly makes it "happy"—in our
minds. Applied to deep learning, this means that when we are able to somewhat
successfully train a model to generate captions to describe pictures, for instance, we are
led to believe that the model "understands" the contents of the pictures, as well as the
captions it generates. We then proceed to be very surprised when any slight departure
from the sort of images present in the training data causes the model to start generating
completely absurd captions.

Figure 9.1 Failure of a deep learning-based image captioning system.

In particular, this is highlighted by "adversarial examples", which are input samples
to a deep learning network that are designed to trick the model into misclassifying them.

9.2.1 The risk of anthropomorphizing machine learning models
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You are already aware that it is possible to do gradient ascent in input space to generate
inputs that maximize the activation of some convnet filter, for instance—this was the
basis of the filter visualization technique we introduced in Chapter 5, as well as the Deep
Dream algorithm from Chapter 8. Similarly, through gradient ascent, one can slightly
modify an image in order to maximize the class prediction for a given class. By taking a
picture of a panda and adding to it a "gibbon" gradient, we can get a neural network to
classify this panda as a gibbon. This evidences both the brittleness of these models, and
the deep difference between the input-to-output mapping that they operate and our own
human perception.

Figure 9.2 An adversarial example: imperceptible changes in an image can upend a
model’s classification of the image

In short, deep learning models do not have any understanding of their input, at least
not in any human sense. Our own understanding of images, sounds, and language, is
grounded in our sensorimotor experience as humans. Machine learning models have no
access to such experiences and thus cannot "understand" their inputs in any
human-relatable way. By annotating large numbers of training examples to feed into our
models, we get them to learn a geometric transform that maps data to human concepts on
this specific set of examples, but this mapping is just a simplistic sketch of the original
model in our minds, the one developed from our experience as embodied agents—it is
like a dim image in a mirror.
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Figure 9.3 Current machine learning models: like a dim image in a mirror

As a machine learning practitioner, always be mindful of this, and never fall into the
trap of believing that neural networks understand the task they perform—they don’t, at
least not in a way that would make sense to us. They were trained on a different, far
narrower task than the one we wanted to teach them: that of merely mapping training
inputs to training targets, point by point. Show them anything that deviates from their
training data, and they will break in the most absurd ways.

There just seems to be fundamental differences between the straightforward geometric
morphing from input to output that deep learning models do, and the way that humans
think and learn. It isn’t just the fact that humans learn by themselves from embodied
experience instead of being presented with explicit training examples. Aside from the
different learning processes, there is a fundamental difference in the nature of the
underlying representations.

Humans are capable of far more than mapping immediate stimuli to immediate
responses, like a deep net, or maybe an insect, would do. They maintain complex, 

 of their current situation, of themselves, of other people, and can useabstract models
these models to anticipate different possible futures and perform long-term planning.
They are capable of merging together known concepts to represent something they have
never experienced before—like picturing a horse wearing jeans, for instance, or
imagining what they would do if they won the lottery. This ability to handle
hypotheticals, to expand our mental model space far beyond what we can experience
directly, in a word, to perform  and , is arguably the definingabstraction reasoning
characteristic of human cognition. I call it "extreme generalization": an ability to adapt to
novel, never experienced before situations, using very little data or even no new data at
all.

This stands in sharp contrast with what deep nets do, which I would call "local
generalization": the mapping from inputs to outputs performed by deep nets quickly stops
making sense if new inputs differ even slightly from what they saw at training time.
Consider, for instance, the problem of learning the appropriate launch parameters to get a
rocket to land on the moon. If you were to use a deep net for this task, whether training
using supervised learning or reinforcement learning, you would need to feed it with

9.2.2 Local generalization versus extreme generalization
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thousands or even millions of launch trials, i.e. you would need to expose it to a dense
 of the input space, in order to learn a reliable mapping from input space tosampling

output space. By contrast, humans can use their power of abstraction to come up with
physical models—rocket science—and derive an  solution that will get the rocket onexact
the moon in just one or few trials. Similarly, if you developed a deep net controlling a
human body, and wanted it to learn to safely navigate a city without getting hit by cars,
the net would have to die many thousands of times in various situations until it could
infer that cars and dangerous, and develop appropriate avoidance behaviors. Dropped
into a new city, the net would have to relearn most of what it knows. On the other hand,
humans are able to learn safe behaviors without having to die even once—again, thanks
to their power of abstract modeling of hypothetical situations.

Figure 9.4 Local generalization vs. extreme generalization

In short, despite our progress on machine perception, we are still very far from
human-level AI: our models can only perform , adapting to newlocal generalization
situations that must stay very close from past data, while human cognition is capable of 

, quickly adapting to radically novel situations, or planning veryextreme generalization
for long-term future situations.

Here’s what you should remember: the only real success of deep learning so far has been
the ability to map space X to space Y using a continuous geometric transform, given
large amounts of human-annotated data. Doing this well is a game-changer for essentially
every industry, but it is still a very long way from human-level AI.

To lift some of these limitations and start competing with human brains, we need to

9.2.3 Take-aways
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move away from straightforward input-to-output mappings, and on to  and reasoning
. A likely appropriate substrate for abstract modeling of various situations andabstraction

concepts is that of computer programs. We have said before that machine learning
models could be defined as "learnable programs"; currently we can only learn programs
that belong to a very narrow and specific subset of all possible programs. But what if we
could learn  program, in a modular and reusable way? Let’s see in the next sectionany
what the road ahead may look like.

This is a more speculative section aimed at opening up horizons to people who want to
get into a research program or start doing independent research. Given what we know of
how deep nets work, of their limitations, and of the current state of the research
landscape, can we predict where things are headed in the medium term? Here are some
purely personal thoughts. Note that I don’t have a crystal ball, so a lot of what I anticipate
might fail to become reality. I am sharing these predictions not because I expect them to
be proven completely right in the future, but because they are interesting and actionable
in the present.

At a high-level, the main directions in which I see promise are:

Models closer to general-purpose computer programs, built on top of far richer primitives
than our current differentiable layers—this is how we will get to  and reasoning

, the fundamental weakness of current models.abstraction
New forms of learning that make the above possible—allowing models to move away
from just differentiable transforms.
Models that require less involvement from human engineers—it shouldn’t be your job to
tune knobs endlessly.
Greater, systematic reuse of previously learned features and architectures; meta-learning
systems based on reusable and modular program subroutines.

Additionally, do note that these considerations are not specific to the sort of
supervised learning that has been the bread and butter of deep learning so far—rather,
they are applicable to any form of machine learning, including unsupervised,
self-supervised, and reinforcement learning. It is not fundamentally important where your
labels come from or what your training loop looks like; these different branches of
machine learning are just different facets of a same construct.

Let’s dive in.

9.3 The future of deep learning
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As we noted in the previous section, a necessary transformational development that we
can expect in the field of machine learning is a move away from models that perform
purely  and can only achieve , towards modelspattern recognition local generalization
capable of  and , that can achieve . Currentabstraction reasoning extreme generalization
AI programs that are capable of basic forms of reasoning are all hard-coded by human
programmers: for instance, software that relies on search algorithms, graph manipulation,
formal logic. In DeepMind’s AlphaGo, for example, most of the "intelligence" on display
is designed and hard-coded by expert programmers (e.g. Monte-Carlo tree search);
learning from data only happens in specialized submodules (value networks and policy
networks). But in the future, such AI systems may well be fully learned, with no human
involvement.

What could be the path to make this happen? Consider a well-known type of network:
RNNs. Importantly, RNNs have slightly less limitations than feedforward networks. That
is because RNNs are a bit more than a mere geometric transformation: they are geometric
transformations . The temporal  loop is itselfrepeatedly applied inside a  loopfor for

hard-coded by human developers: it is a built-in assumption of the network. Naturally,
RNNs are still extremely limited in what they can represent, primarily because each step
they perform is still just a differentiable geometric transformation, and the way they carry
information from step to step is via points in a continuous geometric space (state
vectors). Now, imagine neural networks that would be "augmented" in a similar way with
programming primitives such as  loops—but not just a single hard-coded  loopfor for

with a hard-coded geometric memory, rather, a large set of programming primitives that
the model would be free to manipulate to expand its processing function, such as if
branches,  statements, variable creation, disk storage for long-term memory,while

sorting operators, advanced datastructures like lists, graphs, and hashtables, and many
more. The space of programs that such a network could represent would be far broader
than what can be represented with current deep learning models, and some of these
programs could achieve superior generalization power.

In a word, we will move away from having on one hand "hard-coded algorithmic
intelligence" (handcrafted software) and on the other hand "learned geometric
intelligence" (deep learning). We will have instead a blend of formal algorithmic
modules that provide  capabilities, and geometric modules thatreasoning and abstraction
provide  capabilities. The whole system wouldinformal intuition and pattern recognition
be learned with little or no human involvement.

A related subfield of AI that I think may be about to take off in a big way is that of 
, in particular neural program synthesis. Program synthesis consists inprogram synthesis

automatically generating simple programs, by using a search algorithm (possibly genetic
search, as in genetic programming) to explore a large space of possible programs. The
search stops when a program is found that matches the required specifications, often
provided as a set of input-output pairs. As you can see, is it highly reminiscent of

9.3.1 Models as programs
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machine learning: given "training data" provided as input-output pairs, we find a
"program" that matches inputs to outputs and can generalize to new inputs. The
difference is that instead of learning parameter values in a hard-coded program (a neural
network), we generate  via a discrete search process.source code

I would definitely expect this subfield to see a wave of renewed interest in the next
few years. In particular, I would expect the emergence of a crossover subfield in-between
deep learning and program synthesis, where we would not quite be generating programs
in a general-purpose language, but rather, where we would be generating neural networks
(geometric data processing flows)  with a rich set of algorithmic primitives,augmented
such as  loops—and many others. This should be far more tractable and useful thanfor

directly generating source code, and it would dramatically expand the scope of problems
that can be solved with machine learning—the space of programs that we can generate
automatically given appropriate training data. A blend of symbolic AI and geometric AI.
Contemporary RNNs can be seen as a prehistoric ancestor to such hybrid
algorithmic-geometric models.

Figure 9.5 A learned program relying on both geometric (pattern recognition, intuition)
and algorithmic (reasoning, search, memory) primitives.

If machine learning models become more like programs, then they will mostly no longer
be differentiable—certainly, these programs will still leverage continuous geometric
layers as subroutines, which will be differentiable, but the model as a whole would not
be. As a result, using backpropagation to adjust weight values in a fixed, hard-coded
network, cannot be the method of choice for training models in the future—at least, it
cannot be the whole story. We need to figure out to train non-differentiable systems
efficiently. Current approaches include genetic algorithms, "evolution strategies", certain
reinforcement learning methods, and ADMM (alternating direction method of
multipliers). Naturally, gradient descent is not going anywhere—gradient information
will always be useful for optimizing differentiable parametric functions. But our models
will certainly become increasingly more ambitious than mere differentiable parametric
functions, and thus their automatic development (the "learning" in "machine learning")
will require more than backpropagation.

Besides, backpropagation is end-to-end, which is a great thing for learning good

9.3.2 Beyond backpropagation and differentiable layers
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chained transformations, but is rather computationally inefficient since it doesn’t fully
leverage the modularity of deep networks. To make something more efficient, there is
one universal recipe: introduce modularity and hierarchy. So we can make backprop
itself more efficient by introducing decoupled training modules with some
synchronization mechanism between them, organized in a hierarchical fashion. This
strategy is somewhat reflected in DeepMind’s recent work on "synthetic gradients". I
would expect more more work along these lines in the near future.

One can imagine a future where models that would be globally non-differentiable (but
would feature differentiable parts) would be trained—grown—using an efficient search
process that would not leverage gradients, while the differentiable parts would be trained
even faster by taking advantage of gradients using some more efficient version of
backpropagation.

In the future, model architectures will be learned, rather than handcrafted by
engineer-artisans. Learning architectures automatically goes hand in hand with the use of
richer sets of primitives and program-like machine learning models.

Currently, most of the job of a deep learning engineer consists in munging data with
Python scripts, then lengthily tuning the architecture and hyperparameters of a deep
network to get a working model—or even, to get to a state-of-the-art model, if the
engineer is so ambitious. Needless to say, that is not an optimal setup. But AI can help
there too. Unfortunately, the data munging part is tough to automate, since it often
requires domain knowledge as well as a clear high-level understanding of what the
engineer wants to achieve. Hyperparameter tuning, however, is a simple search
procedure, and we already know what the engineer wants to achieve in this case: it is
defined by the loss function of the network being tuned. It is already common practice to
set up basic "AutoML" systems that will take care of most of the model knob tuning. I
even set up my own years ago to win Kaggle competitions.

At the most basic level, such a system would simply tune the number of layers in a
stack, their order, and the number of units or filters in each layer. This is commonly done
with libraries such as Hyperopt, which we discussed in Chapter 7. But we can also be far
more ambitious, and attempt to learn an appropriate architecture from scratch, with as
few constraints as possible. This is possible via reinforcement learning, for instance, or
genetic algorithms.

Another important AutoML direction is to learn model architecture jointly with
model weights. Because training a new model from scratch every time we try a slightly
different architecture is tremendously inefficient, a truly powerful AutoML system would
manage to evolve architectures at the same time as the features of the model are being
tuned via backprop on the training data. Such approaches are already starting to emerge
as I am writing these lines.

When this starts happening, the jobs of machine learning engineers will not
disappear—rather, engineers will move higher up the value creation chain. They will start

9.3.3 Automated machine learning
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putting a lot more effort into crafting complex loss functions that truly reflect business
goals, and understanding deeply how their models impact the digital ecosystems in which
they are deployed (e.g. the users that consume the model’s predictions and generate the
model’s training data) —problems that currently only the largest company can afford to
consider.

If models get more complex and are built on top of richer algorithmic primitives, then
this increased complexity will require higher reuse between tasks, rather than training a
new model from scratch every time we have a new task or a new dataset. Indeed, a lot
datasets would not contain enough information to develop a new complex model from
scratch, and it will become necessary to leverage information coming from previously
encountered datasets. Much like you don’t learn English from scratch every time you
open a new book—that would be impossible. Besides, training models from scratch on
every new task is very inefficient due to the large overlap between the current tasks and
previously encountered tasks.

Additionally, a remarkable observation that has been made repeatedly in recent years
is that training a  model to do several loosely connected tasks at the same timesame
results in a model that is . For instance, training a same neural machinebetter at each task
translation model to cover both English-to-German translation and French-to-Italian
translation will result in a model that is better at each language pair. Training an image
classification model jointly with an image segmentation model, sharing the same
convolutional base, results in a model that is better at both tasks. And so on. This is fairly
intuitive: there is always  information overlap between these seeminglysome
disconnected tasks, and the joint model has thus access to a greater amount of
information about each individual task than a model trained on that specific task only.

What we currently do along the lines of model reuse across tasks is to leverage
pre-trained weights for models that perform common functions, like visual feature
extraction. You saw this in action in Chapter 5. In the future, I would expect a
generalized version of this to be commonplace: we would not only leverage previously
learned features (submodel weights), but also model architectures and training
procedures. As models become more like programs, we would start reusing program

, like the functions and classes found in human programming languages.subroutines
Think of the process of software development today: once an engineer solves a

specific problem (HTTP queries in Python, for instance), they will package it as an
abstract and reusable library. Engineers that face a similar problem in the future can
simply search for existing libraries, download one and use it in their own project. In a
similar way, in the future, meta-learning systems will be able to assemble new programs
by sifting through a global library of high-level reusable blocks. When the system would
find itself developing similar program subroutines for several different tasks, if would
come up with an "abstract", reusable version of the subroutine and would store it in the
global library. Such a process would implement the capability for , aabstraction

9.3.4 Lifelong learning and modular subroutine reuse
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necessary component for achieving "extreme generalization": a subroutine that is found
to be useful across different tasks and domains can be said to "abstract" some aspect of
problem-solving. This definition of "abstraction" is similar to the notion of abstraction in
software engineering. These subroutines could be either geometric (deep learning
modules with pre-trained representations) or algorithmic (closer to the libraries that
contemporary software engineers manipulate).

Figure 9.6 A meta-learner capable of quickly developing task-specific models using
reusable primitives (both algorithmic and geometric), thus achieving "extreme
generalization".

In short, here is my long-term vision for machine learning:

Models will be more like programs, and will have capabilities that go far beyond the
continuous geometric transformations of the input data that we currently work with.
These programs will arguably be much closer to the abstract mental models that humans
maintain about their surroundings and themselves, and they will be capable of stronger
generalization due to their rich algorithmic nature.
In particular, models will blend  providing formal reasoning, search,algorithmic modules
and abstraction capabilities, with  providing informal intuition andgeometric modules
pattern recognition capabilities. AlphaGo (a system that required a lot of manual software
engineering and human-made design decisions) provides an early example of what such a
blend between symbolic and geometric AI could look like.
They will be  automatically rather than hard-coded by human engineers, usinggrown
modular parts stored in a global library of reusable subroutines—a library evolved by
learning high-performing models on thousands of previous tasks and datasets. As
frequent problem-solving patterns are identified by the meta-learning system, they would
be turned into a reusable subroutine—much like functions and classes in software
engineering—and added to the global library. This achieves the capability for abstraction
.
This global library and associated model-growing system will be able to achieve some
form of human-like "extreme generalization": given a new task, a new situation, the

9.3.5 In summary: the long-term vision
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system would be able to assemble a new working model appropriate for the task using
very little data, thanks to 1) rich program-like primitives that generalize well and 2)
extensive experience with similar tasks. In the same way that humans can learn to play a
complex new video game using very little play time because they have experience with
many previous games, and because the models derived from this previous experience are
abstract and program-like, rather than a basic mapping between stimuli and action.
As such, this perpetually learning model-growing system could be interpreted as an
AGI—an Artificial General Intelligence. But don’t expect any singularitarian robot
apocalypse to ensue: that’s a pure fantasy, coming from a long series of profound
misunderstandings of both intelligence and technology. This critique, however, does not
belong in this book.

As final parting words, I would like to give you some pointers on how to keep learning
and updating your knowledge and skills after you’ve turned the last page. The field of
modern deep learning, as we know it today, is only a few years old—despite a long, slow
prehistory stretching back decades. With an exponential increase in financial resources
and research headcount since 2013, the field as a whole has been moving at a frenetic
pace. You cannot hope that what you’ve learned in this book will forever stay relevant, or
that it will be all that will need for the rest of your career.

Thankfully, there are plenty of free online resources that you can leverage to stay up
to date and expand your horizons. Here are a few.

One very effective way to acquire real-world experience is to try your hand at machine
learning competitions on . The only real way to learn is through practice andkaggle.com

actual coding—that’s the philosophy of this book, and Kaggle competitions are the
natural continuation of this. On Kaggle, you will find an array of constantly renewed data
science competitions, a lot of them involving deep learning, prepare by companies
interested in obtaining novel solutions to some of their most challenging machine
learning problems. There are fairly large money prizes offered to top entrants.

Most competitions are won using either the XGBoost library (for shallow machine
learning) or Keras (for deep learning). So you will fit right in! By participating in a few
competitions, maybe as part of a team, you will become more familiar with the practical
side of some of the advanced best practices we have described in this book, especially
hyperparameter tuning, avoiding validation set overfitting, and model ensembling.

9.4 Staying up to date in a fast-moving field

9.4.1 Practice on real-world problems using Kaggle
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Deep learning research, in contrast with some other scientific fields, takes places
completely in the open. Papers are made publicly and freely accessible as soon as they
are finalized, and a lot of related software gets open-sourced.  (pronouncedarxiv.org

"archive"—that  stands for a greek ) is an open-access preprint server for Physics,x chi

Mathematics, and Computer Science research papers. It has become the de-facto way to
stay up-to-date on the bleeding edge of machine learning and deep learning. The large
majority of deep learning researchers will upload any paper they write to Arxiv shortly
after completion. This allows them to "plant a flag" and claim a specific finding without
waiting for a conference acceptance (which takes half a year), which is necessary given
the very fast pace of research and the intense competition in the field. It also allows the
field to move extremely fast: all new findings are immediately available for all to see and
to build upon.

An important downside is that the sheer quantity of new papers getting posted every
day on Arxiv makes it impossible to even skim through them all, and the fact that they
are not peer-reviewed makes it difficult to identify those that are both important and
high-quality. It is difficult, and getting increasingly more difficult, to find the signal in
the noise. Currently, there’s isn’t a good solution to this problem. But some tools can
help: an auxiliary website called  can serve a recommendation enginearxiv-sanity.com

for new papers and can help you keep track of new developments within a specific
narrow vertical of deep learning. Additionally, you can use Google Scholar to keep track
of the publications of your favorite authors.

With about 150,000 users as of June 2017, and fast growing, Keras has a large ecosystem
of tutorials, guides and related open-source projects.

Your main reference for working with Keras itself is the online documentation at 
.keras.io

The Keras source code can be found at .github.com/fchollet/keras

You can ask for help and join deep learning discussions on the Keras Slack channel, 
.kerasteam.slack.com

The Keras blog, , offers Keras tutorials and other deep learning-relatedblog.keras.io
articles.

Also, you can follow me on Twitter: .@fchollet

9.4.2 Read about the latest developments on Arxiv

9.4.3 Explore the Keras ecosystem
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That’s the end of Deep Learning with Python! I hope you have learned a thing or two
about machine learning, deep learning, Keras, and maybe even cognition in general.
Learning is a lifelong journey, especially in the field of AI, where we have far more
unknowns on our hands than certitudes. So please go on learning, questioning, and
researching. Never stop. Because for all the progress made so far, it seems like most of
the fundamental questions in AI remain unanswered. Many have not even been properly
asked yet.

9.5 Final words

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and 
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders. 

https://forums.manning.com/forums/deep-learning-with-python

313

https://forums.manning.com/forums/deep-learning-with-python

	Deep Learning with Python MEAP V06
	Copyright
	Welcome
	Brief contents
	Chapter 1: What is Deep Learning?
	1.1 Artificial intelligence, machine learning and deep learning
	1.1.1 Artificial intelligence
	1.1.2 Machine Learning
	1.1.3 Learning representations from data
	1.1.4 The "deep" in deep learning
	1.1.5 Understanding how deep learning works in three figures
	1.1.6 What deep learning has achieved so far
	1.1.7 Don’t believe the short-term hype
	1.1.8 The promise of AI

	1.2 Before deep learning: a brief history of machine learning
	1.2.1 Probabilistic modeling
	1.2.2 Early neural networks
	1.2.3 Kernel methods
	1.2.4 Decision trees, Random Forests and Gradient Boosting Machines
	1.2.5 Back to neural networks
	1.2.6 What makes deep learning different
	1.2.7 The modern machine learning landscape

	1.3 Why deep learning, why now?
	1.3.1 Hardware
	1.3.2 Data
	1.3.3 Algorithms
	1.3.4 A new wave of investment
	1.3.5 The democratization of deep learning
	1.3.6 Will it last?


	Chapter 2: Before we start: the mathematical blocks of neural networks
	2.1 A first look at a neural network
	2.2 Data representations for neural networks
	2.2.1 Scalars (0D tensors)
	2.2.2 Vectors (1D tensors)
	2.2.3 Matrices (2D tensors)
	2.2.4 3D tensors and higher-dimensional tensors
	2.2.5 Key attributes
	2.2.6 Manipulating tensors in Numpy
	2.2.7 The notion of data batch
	2.2.8 Real-world examples of data tensors
	2.2.9 Vector data
	2.2.10 Timeseries data or sequence data
	2.2.11 Image data
	2.2.12 Video data

	2.3 The gears of neural networks: tensor operations
	2.3.1 Element-wise operations
	2.3.2 Broadcasting
	2.3.3 Tensor dot
	2.3.4 Tensor reshaping
	2.3.5 Geometric interpretation of tensor operations
	2.3.6 A geometric interpretation of deep learning

	2.4 The engine of neural networks: gradient-based optimization
	2.4.1 What’s a derivative?
	2.4.2 Derivative of a tensor operation: the gradient
	2.4.3 Stochastic gradient descent
	2.4.4 Chaining derivatives: the backpropagation algorithm
	2.4.5 In summary: training neural networks using gradient descent

	2.5 Looking back on our first example

	Chapter 3: Getting started with neural networks
	3.1 Anatomy of a neural network
	3.1.1 Layers: the Lego bricks of deep learning
	3.1.2 Models: networks of layers
	3.1.3 Loss functions and optimizers: keys to configuring the learning process

	3.2 Introduction to Keras
	3.2.1 Keras, TensorFlow, Theano, and CNTK
	3.2.2 Developing with Keras: a quick overview

	3.3 Setting up a deep learning workstation
	3.3.1 Preliminary considerations
	3.3.2 Jupyter notebooks: the prefered way to run deep learning experiments
	3.3.3 Getting Keras running: two options
	3.3.4 Running deep learning jobs in the cloud: pros and cons
	3.3.5 What is the best GPU for deep learning?

	3.4 Classifying movie reviews: a binary classification example
	3.4.1 The IMDB dataset
	3.4.2 Preparing the data
	3.4.3 Building our network
	3.4.4 Validating our approach
	3.4.5 Using a trained network to generate predictions on new data
	3.4.6 Further experiments
	3.4.7 Wrapping up

	3.5 Classifying newswires: a multi-class classification example
	3.5.1 The Reuters dataset
	3.5.2 Preparing the data
	3.5.3 Building our network
	3.5.4 Validating our approach
	3.5.5 Generating predictions on new data
	3.5.6 A different way to handle the labels and the loss
	3.5.7 On the importance of having sufficiently large intermediate layers
	3.5.8 Further experiments
	3.5.9 Wrapping up

	3.6 Predicting house prices: a regression example
	3.6.1 The Boston Housing Price dataset
	3.6.2 Preparing the data
	3.6.3 Building our network
	3.6.4 Validating our approach using K-fold validation
	3.6.5 Wrapping up


	Chapter 4: Fundamentals of machine learning
	4.1 Four different brands of machine learning
	4.1.1 Supervised learning.
	4.1.2 Unsupervised learning.
	4.1.3 Self-supervised learning.
	4.1.4 Reinforcement learning.
	4.1.5 Classification and regression glossary

	4.2 Evaluating machine learning models
	4.2.1 Training, validation, and test sets
	4.2.2 Simple hold-out validation
	4.2.3 K-fold validation
	4.2.4 Iterated K-fold validation with shuffling
	4.2.5 Keep in mind…

	4.3 Data preprocessing, feature engineering and feature learning
	4.3.1 Data preprocessing for neural networks
	4.3.2 Feature engineering

	4.4 Overfitting and underfitting
	4.4.1 Fighting overfitting

	4.5 The universal workflow of machine learning
	4.5.1 Define the problem and assemble a dataset
	4.5.2 Pick a measure of success
	4.5.3 Decide on an evaluation protocol
	4.5.4 Prepare your data
	4.5.5 Develop a model that does better than a baseline
	4.5.6 Scale up: develop a model that overfits
	4.5.7 Regularize your model and tune your hyperparameters


	Chapter 5: Deep learning for computer vision
	5.1 Introduction to convnets
	5.1.1 The convolution operation
	5.1.2 The max pooling operation

	5.2 Training a convnet from scratch on a small dataset
	5.2.1 The relevance of deep learning for small-data problems
	5.2.2 Downloading the data
	5.2.3 Building our network
	5.2.4 Data preprocessing
	5.2.5 Using data augmentation

	5.3 Using a pre-trained convnet
	5.3.1 Feature extraction
	5.3.2 Fine-tuning
	5.3.3 Take-aways: using convnets with small datasets

	5.4 Visualizing what convnets learn
	5.4.1 Visualizing intermediate activations
	5.4.2 Visualizing convnet filters
	5.4.3 Visualizing heatmaps of class activation

	5.5 Wrapping up: deep learning for computer vision

	Chapter 6: Deep learning for text and sequences
	6.1 Working with text data
	6.1.1 One-hot encoding of words or characters
	6.1.2 Using word embeddings
	6.1.3 Putting it all together: from raw text to word embeddings
	6.1.4 Wrapping up

	6.2 Understanding recurrent neural networks
	6.2.1 A first recurrent layer in Keras
	6.2.2 Understanding the LSTM and GRU layers
	6.2.3 A concrete LSTM example in Keras
	6.2.4 Wrapping up

	6.3 Advanced usage of recurrent neural networks
	6.3.1 A temperature forecasting problem
	6.3.2 Preparing the data
	6.3.3 A common sense, non-machine learning baseline
	6.3.4 A basic machine learning approach
	6.3.5 A first recurrent baseline
	6.3.6 Using recurrent dropout to fight overfitting
	6.3.7 Stacking recurrent layers
	6.3.8 Using bidirectional RNNs
	6.3.9 Going even further
	6.3.10 Wrapping up

	6.4 Sequence processing with convnets
	6.4.1 1D Convnets as an alternative to RNNs for sequence processing
	6.4.2 Understanding 1D convolution for sequence data
	6.4.3 1D Pooling for sequence data
	6.4.4 Implementing a 1D convnet
	6.4.5 Combining CNNs and RNNs to process long sequences
	6.4.6 Wrapping up

	6.5 Wrapping up: deep learning for text and sequences

	Chapter 7: Advanced deep learning best practices
	7.1 Going beyond the Sequential model: the Keras functional API
	7.1.1 Introduction to the functional API
	7.1.2 Multi-input models
	7.1.3 Multi-output models
	7.1.4 Directed acyclic graphs of layers
	7.1.5 Layer weight sharing
	7.1.6 Models as layers
	7.1.7 Wrapping up

	7.2 Inspecting and monitoring deep learning models: using Keras callbacks and TensorBoard
	7.2.1 Using callbacks to act on a model during training
	7.2.2 Introduction to TensorBoard: the TensorFlow visualization framework
	7.2.3 Wrapping up

	7.3 Getting the most out of your models
	7.3.1 Advanced architecture patterns
	7.3.2 Hyperparameter optimization
	7.3.3 Model ensembling
	7.3.4 Wrapping up

	7.4 Wrapping up: advanced deep learning best practices

	Chapter 8: Generative deep learning
	8.1 Text generation with LSTM
	8.1.1 A brief history of generative recurrent networks
	8.1.2 How can we generate sequence data?
	8.1.3 The importance of the sampling strategy
	8.1.4 Implementing character-level LSTM text generation

	8.2 Deep Dream
	8.2.1 Implementing Deep Dream in Keras
	8.2.2 Take aways

	8.3 Neural style transfer
	8.3.1 The content loss
	8.3.2 The style loss
	8.3.3 In short
	8.3.4 Neural style transfer in Keras
	8.3.5 Take aways

	8.4 Generating images with Variational Autoencoders
	8.4.1 Sampling from latent spaces of images
	8.4.2 Concept vectors for image editing
	8.4.3 Variational autoencoders
	8.4.4 Take aways

	8.5 Introduction to generative adversarial networks
	8.5.1 A schematic GAN implementation
	8.5.2 A bag of tricks
	8.5.3 The generator
	8.5.4 The discriminator
	8.5.5 The adversarial network
	8.5.6 How to train your DCGAN
	8.5.7 Take-aways

	8.6 Wrapping up: generative deep learning

	Chapter 9: Conclusions
	9.1 Key concepts in review
	9.1.1 Different brands of approaches to AI
	9.1.2 What makes deep learning special within machine learning
	9.1.3 How to think about deep learning
	9.1.4 Key enabling technologies
	9.1.5 The universal machine learning workflow
	9.1.6 Key network architectures
	9.1.7 The space of possibilities
	9.1.8 Mapping image data to vector data
	9.1.9 Mapping timeseries data to vector data

	9.2 The limitations of deep learning
	9.2.1 The risk of anthropomorphizing machine learning models
	9.2.2 Local generalization versus extreme generalization
	9.2.3 Take-aways

	9.3 The future of deep learning
	9.3.1 Models as programs
	9.3.2 Beyond backpropagation and differentiable layers
	9.3.3 Automated machine learning
	9.3.4 Lifelong learning and modular subroutine reuse
	9.3.5 In summary: the long-term vision

	9.4 Staying up to date in a fast-moving field
	9.4.1 Practice on real-world problems using Kaggle
	9.4.2 Read about the latest developments on Arxiv
	9.4.3 Explore the Keras ecosystem

	9.5 Final words




