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Abstract
The design of loss functions for deep learning methods is attracting

growing attention because empirically found loss functions have achieved
better results than commonly used loss functions that were analytically de-
rived from mathematical theory. This work describes the importance of loss
functions and related methods for deep reinforcement learning and deep met-
ric learning. A novel MDQN loss function outperformed DDQN loss function
in PLE computer game environments, and a novel Exponential Triplet loss
function outperformed the Triplet loss function in the face re-identification
task with VGGFace2 dataset reaching 85.7% accuracy using zero-shot set-
ting. This work also presents a novel UNet-RNN-Skip model to improve
the performance of the value function for path planning tasks. It has the
same policy outcome as the Value Iteration algorithm for 99.8% of the cases
and can be trained on 32x32 maps, but then applied to larger maps like
256x256. Novel approaches have been usefully applied in multiple commer-
cial applications for voice and face re-identification, audio signal denoising,
and chromatography.
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ABBREVIATIONS
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ML — Machine Learning
PLE — PyGame Learning Environment
PPO — Proximal Policy Optimization
RL — Reinforcement Learning
RNN — Recurrent Neural Network
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SLR — Systematic Literature Review
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1 INTRODUCTION

1.1 Importance of the subject
In the past decade, Deep Machine Learning has taken over classical

machine learning methods for approximating complex functions using high-
dimensional datasets [115], [48], [118],[126]. Deep Machine Learning models
are being used more frequently even to extract functions that describe pat-
terns in the datasets or processes they are observing in an unsupervised
or semi-supervised manner [69], [83], [19], [22]. These kinds of models are
trained using loss functions to extract deep representations that provide in-
sight into the underlying manifold of features, patterns, and logic. Nowadays,
loss functions and model architecture itself have become research subjects
instead of feature engineering and rule-based pattern recognition of data in-
puts [57]. Deep Machine Learning models achieve the highest accuracy on
image classification tasks [107], [45], natural language modeling tasks [10],
[95], automated speech recognition tasks [78] [85], time-series tasks [9], [72]
and other tasks where inputs or outputs have high dimensionality. Deep
Machine Learning models also achieve the state-of-the-art performance in
Reinforcement Learning tasks in computer game environments and robotics,
where only a human operator previously was capable of producing inputs [35],
[103], [21], [76]. Deep Machine Learning methods also provide comparable
transparency of reasoning to classical statistical methods [63], [93].

The goal of the Thesis is to develop novel loss functions and models
based on empirical research. These loss functions and models should achieve
the higher performance on selected datasets than existing loss functions and
models.

Historically, most loss functions are derived from statistics, probability,
and information theory, but recently, empirically discovered loss functions in
some tasks have shown superior results [61], [89].

To achieve the goal, the following topics have been explored:

1. The construction of novel loss functions for Deep Reinforcement Learn-
ing and Deep Metric Learning. Loss functions in reinforcement Learn-
ing have been evaluated on computer game environments to achieve
higher score. Similarly, loss functions in Deep Metric Learning have
been evaluated on face re-identification task and voice re-identification
task.
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2. The construction of model architecture and training procedure for ap-
proximating the Value Function and improving the performance of the
Value Iteration algorithm.

3. Experimental evaluation of novel methods using synthetic, academic,
and private datasets and environments to probe their usability in prac-
tical applications.

The novel loss functions developed in the Thesis for Deep Metric Learn-
ing tasks have achieved 85.7% accuracy in the face reidentification task,
whereas the standard loss function achieved 78.6% accuracy. The accuracy
has been achieved in a zero-shot learning setting [23], [116]. The zero-shot
learning for the face reidentification task ensures that the face of a person
has not been seen during the training process, but it is only matched to the
most similar face between enrollment and reidentification samples afterwards
during the inference phase. The same loss function in the zero-shot setting
has been used for voice reidentification tasks and achieved an accuracy of
88.4% on private datasets. Similarly, the novel loss functions developed in
the Thesis for the field of Deep Reinforcement learning achieved higher scores
in PyGame Learning Environment. These novel loss functions have also been
successfully applied in a private research of solvent gradient optimization for
compound separation in analytical chemistry. Finally, novel Deep Learning
models have been developed in the Thesis to improve the performance of the
Value Function in pathfinding tasks for mobile robots. The novel model is
capable of approximating the Value Function and can be executed in parallel.
It produces a value map by an order faster than the standard Value Iteration
algorithm.
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1.2 Objectives and thesis
The Thesis improves the deep machine learning training process per-

formance and results in practical applications in the tasks of DML and RL
by introducing novel loss functions and model architectures. Novel loss func-
tions of this research should converge faster during the training, achieve bet-
ter results, and should be usable in different tasks starting from classification
for face reidentification, analytical chemistry, and reinforcement learning for
controlling agents in complex environments.

Convergence in the context of Deep Learning is achieved when Equation
(1) is true and when the relative difference between average L loss function
output regarding inputs x and ground truth y in a current epoch and pre-
vious epoch is smaller than δ. Depending on the cleanness of the data and
the type of task, δ could be between 0.1—0.001. Outputs of a loss function
regarding the dataset or environment must decrease and converge. Usually
loss functions have a global minimum of a value of zero, except for reinforce-
ment learning where it might not be possible to estimate the ground truth
that would give the highest reward.

| L(fθ(x), y)i
L(fθ(x), y)i−1

| < δ (1)

The objectives of the Thesis are as follows:

1. Perform a review of existing loss functions for functions similar to Deep
Q-Learning [68] and Triplet Loss [23].

2. Develop novel loss functions similar to Deep Q-Learning and Triplet
Loss using zero-shot learning.

3. Develop a novel model to learn approximate the Value function in Value
Iteration algorithm [88].

4. Evaluate results of a novel Deep Q-Learning loss functions in game
environments and in applications of analytical chemistry.

5. Evaluate results of a novel Triplet Loss functions in the face reidentifi-
cation task.

6. Evaluate results of a novel model of approximation of Value Function
and compare it to the full Value Iteration algorithm.
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7. Publish findings in scientific publications and include in this Thesis.

The list of theses are as follows:

1. Novel MDQN loss function in the tasks of Deep Q-Learning outper-
forms DQN loss functions.

2. Novel Exponential Triplet Loss function in the tasks of Deep Metric
Learning to outperforms Triplet Loss function.

3. Novel UNet-RNN-Skip model improves the performance of Value Func-
tion in the context of Value Iteration algorithm.

4. Novel MDQN and Triplet Loss functions can be used in practical appli-
cations for face re-identification, voice re-identification, noise removal
for speech and chromatography in analytical chemistry.
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1.3 Methodology
Objectives of the Thesis are accomplished by analytical and experimen-

tal research that has been published in the scientific research papers listed
in Subsection ??.

In the Thesis, experimental and data analysis research methods have
been used.

Qualitative and quantitative research methods have been used to review
the scientific literature, existing and novel methods.

Within this research, the primary research subject has been novel loss
functions and methods to improve performance and results for DML (Deep
Metric Learning) and RL (Reinforcement Learning).

The process of the novel loss function design is shown in Fig. 1.

Figure 1: Simplified activity diagram of the process of novel loss function
design in the context of Deep Learning.

The process starts by choosing a problem space (A) suitable for the
Deep Learning. In this research, the problem spaces include: DML based
embedding for face and voice reidentification tasks; Deep RL for Q-Value
based policy learning in environments of computer games; analytical chem-
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istry for finding solvent gradients that separate the peaks of compounds using
Deep RL.

Next, it is necessary to look for suitable datasets or testing environ-
ments (B). In this research, face reidentification and image classification
datasets have been used as well as computer game environments for test-
ing agents in the context of RL.

Then the existing loss functions (C) have been analyzed from the sci-
entific literature and the latest publications. These functions then have been
implemented in Deep Learning frameworks like PyTorch [79] and their char-
acteristics w.r.t. (with regard to) Input parameters have been studied.

Then the existing loss functions have been tested on the chosen dataset
or environment by searching for the best hyper-parameter combinations (D).
Hyper-parameters are parameters of a loss function or model that are not
learnable during the training process, but are predefined in the beginning of
the process. Each training run is executed until it reaches the convergence of
the error w.r.t. train and loss functions. The convergence in Deep Learning
training is achieved when the output of the loss function w.r.t. train dataset
in between training epochs does not change significantly (for example, under
0.1%) and at the same time the output of the loss function w.r.t. validation
dataset does not increase. If the train and test functions diverge in further
epochs, then it might indicate overfitting. Epoch in Deep Learning is a
complete iteration of the whole training dataset and parameter fitting of a
model w.r.t. loss function. Grid-search of hyper-parameters must be done for
every loss function because the same hyper-parameters often are not optimal
for every specific loss function and the comparison would be biased without
such a search process.

Next, a creative process of design of a novel loss function occurs that
takes into account the mathematical theory and design of previous loss func-
tions. It involves analyzing the shapes and desirable properties of a loss
function w.r.t. input parameters and the gradient of the error. This process
could be done also by automatic function construction algorithms and opti-
mization methods such as Bayesian Optimization, Monte-Carlo Optimization
methods, or Genetic Algorithms. However, in practice, such loss function de-
sign often is impractical, because the grid search of hyper-parameters for each
loss function alone takes a long time, but for automatic development of loss
functions hyper-parameters in the process itself also will need a grid search
as well. Hyper-parameter searches were done on HPC (High-Performance
Cluster), it took weeks or even months depending on the dataset to search
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hyper-parameter combinations for a single change in a loss function, training
algorithm, and in a model architecture.

Then, as described, a full hyper-parameter search (F) is done on a novel
loss function in the same manner as for the existing loss functions.

If a novel loss function yielded better results than the existing loss
function, then the results were published in the scientific literature (G), but
if a novel loss function was inferior, then it was necessary to return to the
design phase of the loss function (E).

For the research of each of the novel loss functions, the following method-
ology has been applied:

1. Review of similar loss functions, models and training procedures.

2. Implementation and testing of multiple candidates of novel loss func-
tions, models and training procedures.

3. Testing novel and existing loss functions on benchmark data-sets or
environments in case of reinforcement learning. For each of data-sets
or environments grid-search of hyper-parameters has been done for a
fair comparison.

4. Ablation studies by comparing individual parts of loss functions and
training procedures.

For Deep Q-Learning loss functions, a survey of most of the state-of-the-
art methods at the time of publication has been done [109]. Deep Q-Learning
loss functions have been tested in at least 4 PyGame Learning Environment
games [104] and have been tested in the field of chromatography of analytical
chemistry [24].

Later, a novel Exponential Triplet Loss function [110] has been devel-
oped and tested on different datasets for zero-shot reidentification tasks like
VGGFace2 [13], EMNIST [15] and CIFAR10 [47]. Data-sets have been re-
ordered so that the class samples included in the test dataset would not be
included also in the training data-set to ensure zero-shot compatible models
[71].
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Finally, VI (Value Iteration) function has been modelled with UNet-
RNN-Skip and compared with different variants of UNet [87] models to im-
prove the speed of VI algorithm using deep learning methods. A novel syn-
thetic dataset generator has been created to validate VI and can be used also
to validate other policy models.

Implementations are made publicly available as open-source reposito-
ries.

They have been developed using PyTorch framework [79]. PyTorch has
been chosen for its capabilities of creating a dynamic function graph and easy
debugging and overriding of function gradients.

For each set of methods and loss functions, a full grid search of hyper-
parameters has been executed using RTU HPC (High Performance Cluster)
that provides access to Nvidia GPUs V100 and K40.
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1.4 Scientific Novelty and Contributions of the Author
The Thesis includes descriptions of: a novel loss function MDQN for

Deep Reinforcement learning in Subsection 3.3, a novel loss function, Expo-
nential Triplet loss for Deep Metric learning in Subsection 4.3, a novel em-
bedding space normalization functions Unit-Range and Unit-Bounce a novel
model UNet-RNN-Skip for improving the performance of the Value function
for policy selection task for 2D representations of environments in Subsec-
tion 2.4, a novel synthetic dataset generator OccupancyMapGenerator for
2D mapping tasks.

The author is listed as the main author of all publications included in
the appendix, except a publication in High Performance Liquid Chromatog-
raphy where the author was the main author regarding Deep Learning ap-
proaches using Deep Reinforcement learning but the co-authors did research
in the chemistry field.

The research work included in the Thesis has been published in the
proceedings of 3 scientific conferences and in 1 scientific monograph. The
works have won multiple awards:

1. Best research paper in ICCDA 2020, USA

2. 3rd best doctorate research in all sciences, ResearchSlam 2018, Latvia
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1.5 Summary of the Doctoral Thesis
The Summary of the Doctoral Thesis comprises of 73 pages. It is

divided into eight main sections. The full thesis is written in the form of a
collection of publications with extended explanations as due to the limitations
of conference papers, it was not possible to include the whole background of
the research in the publications themselves.

The structure of the summary of the doctoral thesis:

Section 1 Introduction of the Thesis describes the research background, research
motivation, and research objectives.

Section 2 Describes the problem of the Value Iteration Algorithm, gives an intro-
duction to the theoretical background of ConvNet, UNet, and RNN,
and describes the novel UNet-RNN-Skip model. UNet-RNN-Skip has
been trained to mimic the Value function and reduce the number of
iterations required to converge the optimal policy. Novel model is used
to learn another existing non-paralellizable function and make it par-
allelizable and thus improve its convergence speed.

Section 3 Describes Q-Value function-based Deep Reinforcement Learning meth-
ods, test environments and approaches for validating results, and a
novel MDQN loss function that has been tested and analyzed within
PyGame Learning environment and in liquid chromatography method
optimization tasks.

Section 4 Describes Deep Metric Learning to use zero-shot embedding models
that have been trained using triplet loss and a novel Exponential Triplet
loss function. It has been tested on multiple datasets in the context of
the sample reidentification task.

Section 5 Presents the experimental results of a novel model and loss function
described in the previous sections as well as practical applications where
these models and loss functions have already been applied successfully.

Section 6 Describes future research topics discovered by studying novel models
and loss functions described in the Thesis.

Section 7 Summarizes the main contributions of this study.
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The link between objectives, topics, and publications has been illus-
trated in Fig. 2.

Figure 2: Interconnection of published papers, Thesis objectives, and re-
search topics.

15



The list of publications included in the full doctoral thesis document
and the main contributions:

1. Value Iteration Solver Networks, International Conference on
Intelligent Autonomous Systems, 2020, IEEE, Evalds Urtans,
Valters Vecins. Introduced a novel model UNet-RNN-Skip for im-
proving the performance of the Value Iteration Algorithm and a novel
synthetic dataset generator OccupancyMapGenerator for evaluation of
path planning models.

2. Software-Assisted Method Development in High Performance
Liquid Chromatography; ISBN: 978-1-78634-545-5, Sep. 2018,
Sergey V. Galushko, Irina Shishkina, Evalds Urtans, Oksana
Rotkaja. Introduced a novel Deep Reinforcement Learning based
method for sequentially developing solvent gradients in HPLC.

3. Survey of Deep Q-Network variants in PyGame Learning En-
vironment, International Conference on Deep Learning tech-
nologies, 2018, ACM, Evalds Urtans, Agris Nikitenko Intro-
duced a novel Deep Reinforcement Learning based method and a novel
MDQN loss function.

4. Exponential Triplet Loss, International Conference on Com-
pute and Data Analysis, 2020, IEEE/ACM, Evalds Urtans,
Valters Vecins, Agris Nikitenko Introduced a novel Deep Metric
Learning based loss function Exponential Triplet Loss.

5. asya: Mindful verbal communication using deep learning, Cor-
nell University, Computing Research Repository, 2020, Evalds
Urtans, Austris Tabaks Introduced a novel system based on Expo-
nential Triplet Loss for voice reidentification.
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2 IMPROVING THE PERFORMANCE OF
FUNCTIONS USING DEEP LEARNING
MODELS
This section of the summary of the doctoral Thesis introduces a novel

deep learning-based approach to optimize the performance of well-studied
functions. As a practical application, the Value Iteration algorithm has been
used. It finds the shortest path from any position in the map to the target
position in the map. Its performance degrades exponentially with the larger
input size of the map as it cannot be executed in parallel, but novel iterative
deep learning-based models can produce comparable results using parallelized
architectures and achieve higher performance on larger maps.

The problem domain of Value Function and Value Iteration algorithm
learning has been described in Subsection 2.1, then the existing Deep Learn-
ing based methods that can be used to model Value Function are shown in
Subsection 2.2 and in Subsection 2.3. Finally, a novel method to model Value
Function has been presented in Subsection 2.4. The results of these methods
have been shown in Subsection 5.1.

2.1 Value Iteration Algorithm
Value Iteration Algorithm (VI) is used in classical reinforcement learn-

ing tasks to find an optimal policy for any problem within a fully observable
environment. It can take into account the state transition model when the
transition is uncertain [88]. VI is often used for finding the optimal path
in maps with discrete states. A path finding task formalizes and discretizes
a natural terrain and obstacles of the environment. Often this information
is gathered using sensors that are attached to the mobile robot. These sen-
sors might include LIDAR (Light Detection and Ranging), ultrasonic sensors
for distance measurement, or IMU (Internal Measurement Units), etc. Dis-
cretization of a map is usually done by generating an occupancy grid.

VI is an iterative algorithm that repeatedly applies the same Value
function of Equation (3) over all positions of a map to find the cumulative
value of each cell position, as shown in Fig. 3.

Then the gradient between the values of these positions gives the policy
of the optimal path. The policy of the optimal path enables an agent to find
its way from any state in a discretized map to a positive terminal state. For
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each state s, there is a grid of positions and for each state there are a number
of actions a that can be taken, like moving up, down, left, right, or staying at
a position. Depending on the environment, there could be more or different
actions. The action a is chosen to maximize the cumulative reward with a
given action Ra, then it is multiplied by transition model’s probability Pa

and added to adjacent state values V (s′) multiplied by discount factor γ, like
shown in Equation (3).

Value function is called iteratively over the whole map until the values
converge between iterations. The number of iterations needed to converge
the value function grows exponentially with the size of the map.

| V (s)i

V (s)i−1

| < δ (2)

Convergence in the context of VI is achieved when the relative difference
between average values of states in a current iteration and previous iteration
is smaller than δ, as shown in Equation (2). Depending on the cleanness of
the data, the tolerance of the error and the type of task, δ could be between
0.1 — 0.001.

Vi+1(s) := max
a
{
∑
s′

Pa(s, s
′)(Ra(s, s

′) + γVi(s
′))} (3)
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Figure 3: Visualization of the Value Iteration algorithm’s consecutive itera-
tions. Iterations depicted from the top left corner to the top right corner, then
from the bottom left corner to the bottom right corner. After convergence
has been achieved, it is possible to derive the optimal policy from every state
to reach the terminal state with the highest cumulative reward. Green colour
represents the highest cell values (closest to the positive terminal state) and
red colour represents the lowest cell values.

The rationale behind modelling a value function using deep learning
models is to increase its performance by parallelizing a task and reducing
the sequential time complexity, as shown in Table 1 There are other popular
algorithms that use heuristics to reduce the time complexity, such as Dijkstra
or A* [88], but they also reduce the precision of the result.

Table 1:

Comparison of proposed Value Iteration Solver Network (VSIN) with other
methods.

Method Complexity Quality
VI (Value function) O(m · n2) Optimal
Dijkstra O(n2) Good
A* O(h · n) Medium
VISN (Proposed method) O(h · n) Good
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2.2 ConvNet and UNet Models
To increase the performance of VI algorithm, the function can be mod-

elled using a ConvNet model [56], [48], [97], [102], [31], [38] that has been
trained to predict the output of V (s) function. The whole model can be a
Value function approximation. The ConvNet model works like filters for the
whole occupancy grid map at once and predicts the output of VI without do-
ing an iterative process. ConvNet also can be parallelized on modern GPUs
and using deep learning frameworks, whereas VI is not a fully parallizable
algorithm. The ConvNet models used in this research for the encoder part
of VI are ResNet [31] and DenseNet [38] that are shown in Fig. 4. The
encoder of the model learns to compress and encode high-dimensional inputs
to low-dimensional latent vector that later can be used in deeper parts of the
model.

In this research, a decoder model with transposed convolution functions
has been used [74]. The decoder model decompresses low-dimensional latent
vectors to high-dimensional outputs that are applied as filters to the inputs.
Architectures could be using simple arithmetical addition, multiplication, or
substitution. Auto-Encoder model architecture that contains the decoder is
shown in Fig. 5.
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Figure 4: Comparison between ResNet on the left and DenseNet on the right
encoder models. Plus sign denotes the arithmetic addition operation.
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Figure 5: Example of Auto-Encoder model architecture. In the middle of the
function graph, an optional affine transformation (FC) could be added if the
models have fixed sized inputs and outputs.

The behaviour of the VI algorithm is similar to the multi-pass filter-
ing task, as the structure of input data is not changed, but only fine details
are modified by each pass. For filtering, style transfer tasks and even seg-
mentation tasks, a good candidate is a UNet model [87], as it contains skip
connections that maintain the details of the original input at different scales
and depths of the model. Within this research, UNet models have been
trained to obtain VI outputs in multiple iterations or also in a single step.
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Figure 6: Example of UNet model architecture. Using skip connections,
features are added from the encoder part of the function graph to the decoder
part.

The original UNet model, as depicted in Fig. 6 contains the graph of
functions, as shown in equation Equation (4). In the equations, the input
x is passed through a number of functions, where Conv function is a linear
2D convolutional function with kernel size 3x3, stride 1 and padding 1 that
will produce the same size output map. Whereas DeConv are transposed
2D convolutional functions with kernel size 4x4, stride 2 and padding 1 that
will produce twice as large output maps. Similarly, also MaxPool functions
are producing output maps twice as small as the input maps by choosing
the maximum value of the reduced region. Skip connections are shown in
Equation (10) and Equation (13) uses a concatenation operation, but for
segmentation tasks it is often also used as an addition operation, as in ResNet
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[102]. Final output y that is limited by a sigmoid function σ that is then
scaled to the range of values for every cell in the map.

o1 = ReLU(Conv(x)) (4)
o2 = MaxPool(o1) (5)

o3 = ReLU(Conv(o2)) (6)
o4 = MaxPool(o3) (7)

o5 = ReLU(Conv(o4)) (8)
o6 = DeConv(o5) (9)

o7 = (o6, o3) (10)
o8 = Dropout(ReLU(Conv(o7))) (11)

o9 = DeConv(o8) (12)
o10 = (o9, o1) (13)

o11 = ReLU(Conv(o10)) (14)
y = σ(o11) (15)

2.3 RNN Models
Often, RNN (Recurrent Neural Network) models are used to model it-

erative processes and time-series type of data. In the case of VI algorithm,
these models have been applied to reduce the complexity of a problem pre-
dicting all V (s) at once by using a single iteration ConvNet model that has
no knowledge of the history of previous timesteps. With RNN based model,
the values are predicted in consecutive iterative steps, similarly how it is done
by using VI algorithm, but unlike VI algorithm, the number of steps needed
to converge the values is much smaller.

In this research, established RNN models like LSTM (Long-Short Term
Memory) [36] and GRU (Gated Recurrent Unit) have been applied [28]. To
improve the performance and speed of convergence, specific initialization
strategies of parameters for these models were used. For example, initializing
the bias vectors of the parameters of the forget gate function for LSTM
model as scalar values of 1 to remember more information at the beginning
of training. Similarly, initialize the biases of GRU model of the reset gate as
a scalar value of minus 1 to achieve the same goal [41], [54], [25], [106].
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Figure 7: Function graph of LSTM model.

Function graph of LSTM model’s equations is given in Equation (17)
and visualized in Fig. 7. Trainable weights and biases are denoted with W ,
U and b, sigmoid function is σ based gates are ft forget gate, it input gate
and ot output gate. Internal state is ct and hidden state ht vectors in the
beginning of each sequence are set to zero and they progressively with each
sequence step are updated to a new value. At every time step, outputs of the
cell are the current ht value. According to the latest research, bf should be
initialized as bf = 1 [106], RNN Dropout or ZoneOut regularization should
be added [49], [94], h0 and c0 should be changed to learnable parameter just
for the first timestep [75].
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ht =

layers∑
k=i

hk
t (16)

Layer Normalization should be added for all linear transformations
within LSTM cell [3] and, finally, multiple LSTM cells should be stacked
upon each other and should sum together like in Equation (16) and as it
has been done in ResNet for equal error propagation through all layers [102],
[38], [106].

ft = σg(Wfxt + Ufht−1 + bf ) (17)
it = σg(Wixt + Uiht−1 + bi) (18)
ot = σg(Woxt + Uoht−1 + bo) (19)
c̃t = σh(Wcxt + Ucht−1 + bc) (20)
ct = ft ⊙ ct−1 + it ⊙ c̃t (21)
ht = ot ⊙ σh(ct) (22)

GRU, as shown in Equation (23) and Fig. 8, is a simplified version
of LSTM with less learnable parameters. It contains only zt update gate
and rt reset gate, and it uses not only sigmoid but also tanh ϕ functions
as in traditional vanilla RNNs. To get the highest performance, the same
improvements as listed above for LSTM applies also to GRU, except br should
be initialized to br = −1 [106].

zt = σg(Wzxt + Uzht−1 + bz) (23)
rt = σg(Wrxt + Urht−1 + br) (24)
ĥt = ϕh(Whxt + Uh(rt ⊙ ht−1) + bh) (25)
ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt (26)
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Figure 8: Function graph of GRU.

2.4 UNet-RNN-Skip Model
As a part of the Thesis, a novel UNet and RNN based model has been

introduced. The novel UNet-RNN-Skip model contains multiple parts of the
state-of-the-art models put together with a purpose to improve the speed
of convergence of the VI algorithm results. It contains UNet, LSTM, and
similar skip connections to ResNet, but for time series and segmentation
tasks.

UNet-RNN-Skip model is designed to approximate the value function
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of VI algorithm in parallel on all cells in the occupancy grid, whereas VI
algorithm needs to calculate the values only in sequential steps. It is also
designed to approximate the value of a state in a single iteration, whereas
VI algorithm would need multiple iterations to do the same task.

Another advantage of UNet-RNN-Skip model is that it can be trained
on smaller maps with dimensions of 32x32 but then used in inference on
much larger maps with dimensions of 256x256 without the need to retrain the
model, as it has learned the Value function itself and not only patterns of the
map. All maps have been generated using a novel OccupancyMapGenerator
algorithm that was also a part of this research and is described in Subsection
5.1. Experimental results of properties of the model are also listed in the
same subsection.

The key of UNet-RNN-Skip model is to use LSTM at the bottom of
"the U shape" of a function graph and at the same time use UNet skip
connections similar to those used in ResNet [31], UNet++ [136] and UNet
3+ [39]. Unlike a simple UNet depicted in Fig. 6 that uses concatenation,
the new architecture uses arithmetic addition operations for skip connections.
The ResNet [31] function blocks depicted in Fig. 9 have been configured in
two different ways. First, there is an Identity ResBlock shown in the equation
following Equation (27)

yc×w×h = ReLU(Conv3x3(xc×w×h)) (27)
y′c×w×h = BatchNorm(yc×w×h) (28)

zc×w×h = ReLU(Conv3x3(y′c×w×h)) (29)
z′c×w×h = zc×w×h + xc×w×h (30)
uc×w×h = ReLU(z′c×w×h) (31)

u′
c×w×h = BatchNorm(uc×w×h) (32)
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Second, there is a BottleNeck which is shown in Equation (33). The
purpose of BottleNeck is to reduce the feature map size, but at the same
time to increase the number of channels. ResBlock used here is similar to
the preactivated ResBlock [32] by placing Batch Normalization before linear
functions. The same functions have also been used for transposed convolu-
tional layers where they are increasing the size of the output map and channel
count.

yn·c×w
n
× h

n
= ReLU(Conv3x3(xc×w×h)) (33)

y′
n·c×w

n
× h

n

= BatchNorm(yn·c×w
n
× h

n
) (34)

zn·c×w
n
× h

n
= ReLU(Conv3x3(y′

n·c×w
n
× h

n

)) (35)

x′
n·c×w

n
× h

n

= Conv1x1(xc×w×h) (36)

z′
n·c×w

n
× h

n

= zn·c×w
n
× h

n
+ x′

n·c×w
n
× h

n

(37)

un·c×w
n
× h

n
= ReLU(z′

n·c×w
n
× h

n

) (38)

u′
n·c×w

n
× h

n

= BatchNorm(un·c×w
n
× h

n
) (39)
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Figure 9: UNet-RNN-Skip model. Colours denote different blocks of func-
tions used by the model.
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3 FUNCTION SHAPING IN DEEP REIN-
FORCEMENT LEARNING
This section of the summary of the doctoral thesis introduces a novel

loss function and training procedure for Deep Q-Learning. The novel MDQN
loss function uses the capabilities of dynamic function graphs by changing
the shape of the loss function while the training is in the process. To study
the properties of Deep Learning methods using Q-Value function, a survey
of the methods has been done. Novel procedures also provide visualizations
of policies and values of the states to change black box models into white
box models.

The problem domain of Deep Learning-based reinforcement learning
has been described in Subsection 4.1, then the existing DQN loss function
has been described in Subsection 3.2 and finally, a novel loss function has
been described in Section ??. The results of these methods have been shown
in Section ??.

3.1 Q-Value and Policy Gradient Functions for Rein-
forcement Learning

Reinforcement learning algorithms have been well developed even be-
fore the advent of Deep Learning, but with new methods their capacity has
greatly increased [68]. Similarly, like the previously discussed VI algorithm,
these algorithms are used to estimate the best policy π at a given state st.

Three major sets of methods exist in classical reinforcement learning:

1. Q-Value based methods

2. Policy gradient methods

3. Actor-Critic methods (combination of Q-Value and Policy gradient
methods).

All of these sets of methods mostly are grounded in loss function shap-
ing, as it is one of the most important parts of the algorithm to make it
work.

Policy gradient methods rely on the policy gradient theorem, Equation
(40) where the gradient of error for the policy function π is the estimation
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of probability of trajectory of previous states τ at state st and action at
multiplied by cumulative reward R Equation (41).

This gradient function is unstable and too hard to converge, but more
recent advances that came with Deep Learning like TRPO [92], PPO [91],
MERLIN [125] and IMPALA [21] have improved it by a large margin.

∇πθ(at|st) = ∇logπθ(at|st)R(τ) (40)

Cumulative reward R Equation (41) is the total reward of the trajectory
of states, multiplied at each time step t by discount factor γ. A small discount
value γ prioritizes short-term rewards, but a larger value prioritizes rewards
and positive events that happen at later stages of an episode. Discount factor
usually is a hyper-parameter set at a value in the range 0.9 0.99, but for
environments where the reward comes later in an episode, it might have a
lower value.

R =
n∑

t=0

γtrt (41)

The second set of methods is grounded in the Bellman equation Equa-
tion (42) that estimates the R value using a model of the Q-Value function
for a given state st when action at has been taken. By examining and select-
ing an action at that is giving the highest Q-Value, it is possible to determine
the policy, π.

Qπ(st, at) = rt +max
a′

Qπ(st+1, a
′) (42)

Third set of methods are Actor-Critic methods that are grounded in
a combination of two previous methods. Many successful variants of these
methods have been developed like DDPG (Deep Deterministic Policy Gra-
dient) [60], A3C (Asynchronous Advantage Actor-Critic) [67], GPU A3C [4]
and ACER (Actor-Critic with Experience Replay) [124].

Although it might seem reasonable that the best results should be
achieved using a later set of methods, the-state-of-the-art results have been
achieved mostly with the first two methods used alone.

3.2 Deep Q-Network model and Loss Function
One of the most successful models for Deep Reinforcement learning has

been DQN (Deep Q-Network). Since the initial success of DQN [68], there
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has been a significant development of Q-Value function-based approaches [2].
Initial DQN was tested on Atari games that have only very high-dimensional
state representations — either RAM memory dump or raw pixels of each
frame of a game state, as shown in Fig. 10. Another common environment
for evaluating RL (Reinforcement Learning) models is the OpenAI Gym [6].
However, in contrast to Atari games, these environments often contain only
simple tasks and have only low-dimensional state representations. For exam-
ple, MoonLander environment in the state representation includes the posi-
tion, speed, and angle relative to the target location on the moon’s surface.
In this research, PLE (PyGame Learning Environment) has been used for
validating models [104]. It contains high and low dimensional state represen-
tations for each environment, and it is even possible to modify the behaviour
of the environment while the model is trained to better study the properties
of the model.

Some small, but significant additions over the last years have been made
to DQN to substantially improve its performance. One of the most important
improvements is the Prioritized Experience Replay [90] that enables sampling
the most valuable samples with the highest TD (Temporal Difference) loss to
be selected more often for training. Another improvement is Dueling DQN
[123] that tries to enforce the model to learn instant and delayed rewards,
primarily using the specific architecture of the model. The next improvement
is DDQN (Double DQN) [29], [30] that allows for more stable convergence
of DQN based loss function Equation (43) by introducing new DDQN loss
function Equation (44) In DDQN model, weights Qtarget are copied and frozen
from QΘ every predefined time interval during the process.

Ldqn =

{
(rt + γmaxa′ QΘ(st+1, a

′)−QΘ(st, at))
2 if t < tlast

(rt −QΘ(st, at))
2 if t = tlast

(43)

Lddqn =

{
(rt + γmaxa′ Qtarget(st+1, a

′)−QΘ(st, at))
2 if t < tlast

(rt −QΘ(st, at))
2 if t = tlast

(44)
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Figure 10: Atari games were used for DQN based model evaluation [68].

Finally, Rainbow-DQN has shown that when all small additions are put
together, the model outperforms all of these additions alone [35], as shown
in Fig. 11. In the chart comparison of different loss functions has been
shown and methods regarding the millions of frames it took to train them
and normalized the score across all Atari games. Rainbow-DQN is based on
DDQN loss function with the additions mentioned above.
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Figure 11: Rainbow-DQN comparison to its parts using normalized Atari’s
score [35].

3.3 Multi Deep Q-Network Model and Loss Function
The Thesis introduces a novel MDQN (Multi Deep Q-Network) loss

function, which is a dynamic loss function that changes its behaviour while
the model is training. Similarly to DDQN, it contains target models that are
updated with predefined time frame intervals, but unlike DDQN, there can
be more than one additional version of DQN model. Two or three additional
versions of DQN model can be changed intermittently to dampen the effects
of short-term events on the Q-function and stabilize the learning process. The
behaviour of MDQN loss function is listed in the pseudocode in Algorithm
1.

Depending on MDQN variant, multiple weights of DQN models Q1, Q2, ..., Qn

are initialized in the beginning. For example, MDQN-3 contains three par-
allel Q models. Then initial Qa and Qb are randomly sampled from a set of
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DQN models. Frame counters ca, cb, ..., cn are set to zero. Hyper-parameters
thresholda, thresholdb, ..., thresholdn are found using grid search, but they
also could be learnable parameters that would be used only for a training
procedure. MDQN also uses state transition sets at, st, st+1, Rt that are simi-
lar to those seen in a replay buffer to train Q-Value functions using the actual
ground truth values of the cumulative reward. Not only transition tuples are
easily matched in replay memory when using low-dimensional environments
in PLE (PyGame Learning Environment) [104], but also can be found in
high-dimensional (pixel space) environments via Deep Metric Learning and
embedding vector similarities that are described in the next chapter of the
Thesis.

36



Algorithm 1: MDQN loss function
1: procedure Train
2: Q1, Q2, ..., Qn

3: thresholda, thresholdb, ..., thresholdn
4: ca, cb, ..., cn = 0
5: Qa = Sample(Q1, Q2, ..., Qn)
6: Qb = Sample(Q1, Q2, ..., Qn)
7: while Training = True do
8: for do{at, st, st+1} sample from ReplayBuffer
9: ∀n, cn = cn + 1

10: if ∀n, cn > thresholdn then
11: Qb = Qa

12: Qa = Qn

13: cn = 0

14: if {at, st, st+1} similar exist in ReplayBuffer then
15: Qa(at, st)←

∑t+1
t=0 γ

tRt

16: else
17: if st ̸= terminal state then
18: Qa(at, st)← Rt + γmaxa Qb(a, st+1)
19: else
20: Qa(at, st)← Rt

21: while st ̸= terminal state do
22: at ← maxaaverage({Qa(a, st), Qb(a, st)})
23: ...
24: store {at, st, st+1, rt} in ReplayBuffer
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4 FUNCTION SHAPING IN DEEP MET-
RIC LEARNING

This section of the summary of the doctoral thesis introduces a
novel Exponential Triplet loss function and novel training procedures for
deep metric learning. It also introduces novel embedding space normalization
functions that provide cosine distance properties to Euclidean distances.

The problem domain of re-identification task is described in Subsec-
tion 4.1, the existing Deep Learning loss function to solve the re-identification
task is presented in Subsection 4.2 and finally, a novel loss function is ex-
plained in Subsection 4.3. The results of these methods are shown in Sub-
section 5.3.

4.1 Zero-Shot Learning and Re-identification Task
Zero-Shot learning is a subset of machine learning methods that are

based on a model that can be applied for the categorization of novel classes
in the inference phase, as shown in Fig. 12. These novel classes have never
been seen in a model during the training phase [66], [23], [44], [62]. Usually,
both datasets in the training and inference phase are from the same domain,
for example, dataset of photos of faces, voice recording dataset, photos of
cars dataset, etc.

Figure 12: Zero-shot learning visualization using EMNIST dataset with a
split of disjoint training and testing datasets.
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The advantage of such models is that it is not necessary to retrain
them for new classes, and the characteristics of the model can be fine-tuned
after the training phase. This can be achieved by changing the thresholds
and parameters of clustering algorithms, as well as a latent vector space
normalization in the inference phase. Another advantage is that for novel
classes, very few data points are needed instead of thousands of data points
normally needed in classification models that do not use zero-shot learning
methods [116]. Zero-shot learning has high sample efficiency that can have
comparable accuracy to full training of a dataset with even just 2 samples
[116]. Sometimes in the scientific literature, zero-shot learning is also called
one-shot learning, although technically one-shot learning means that during
the training process the model is allowed to see at most one sample from
each class. There also exists a few-shot learning where multiple data samples
of new classes are given during the training process of the model. These
classes can be given alone or along with other classes that contain many
more samples. Usually these methods are used with transfer learning to
adapt the model for novel classes, but in zero-shot learning the model has
never seen any of the target classes during the training. After training, the
model is an encoder that is able to compress high-dimensional information,
like photos down to low-dimensional latent vectors that maintain semantic
information. The distance between such vectors ensures clustering of the
novel and existing classes, thus these models are often labeled as Deep Metric
Learning (DML) or Distance Metric Learning. These models are widely
used for the re-identification task for face verification and other biometric
verification systems [23], as shown in Fig. 13. In such systems, each person
is enrolled with one or multiple samples of their face’s photo that becomes
a novel class of dataset. Later, the system can re-identify this person using
any other photo never seen in the enrollment or training process.
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Figure 13: Difference between the speaker verification task and speaker
re-identification task (implemented in "asya" commercial system). Re-
identification task is a zero-shot learning, because model f has not seen
audio samples x4, x5, x6 during the training.

4.2 Triplet Loss Function
For the model to learn deep representations or embedding of input

data in a zero-shot case, usually either Contrastive Loss [8] or Triplet Loss [23]
based functions are used. The goal of the Triplet Loss function Equation (45)
is to increase the distance of sample vectors from different classes ∥ya− yn∥22
and to decrease the distance of the same class sample vectors ∥ya − yp∥22, as
shown in Fig. 14. At the same time, the function is built to not collapse the
same class vectors into a single modality, but to have the margin distance
α between them. Often for distance metrics, cosine or Euclidean distance is
used.

Lstd = |∥ya − yp∥22 − ∥ya − yn∥22 + α|+ (45)
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Figure 14: Triplet loss-based training Equation (45) using cosine distances
of embedding anchor ya vector, same class as anchor yp vector, different class
yn vector. When a negative pair is pushed to a maximum distance, yn will
start to become closer again to ya.

Cosine distance is preferred because it has a cyclic nature. With
the cosine distance, when the sample distance is larger than the maximum
distance of 2, it will return to 0. Triplet loss-based functions normally require
to have very selective sample mining algorithms and filtering constraints on
what samples can be allowed to pass to the loss function. For example,
usually during training, the worst pairs of samples are found for the loss
functions. Worst positive, the same class pairs are those with the longest
distance in between them and the worst negative, different class pairs are
those with the shortest distance in between them. These kinds of pairs
regarding the anchor point ya give the largest error gradient and help to
converge the loss function faster.

Model fθ(x) is an encoder that reduces dimensionality from high
dimensional input image x to low dimensional embedding y. Embedding
should be chosen with 32 dimensions or larger, as explained in Appendix D
and [110]. Parameters θ are the same for every sample x, as shown in Fig.
15.
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Figure 15: Example of a triplet loss applied for a face re-identification task.
Encoder fθ(xi) shares the weights. Dimensionality of yi is much smaller than
xi.

4.3 Exponential Triplet Loss Function
In the Thesis, a novel Exponential Triplet Loss function Lexp has

been introduced that has a specifically designed shape of error space, as seen
in Fig. 16, which leads to better convergence than a Triplet Loss Lstd function
described in the previous section.

Exponential Triplet Loss Lexp has asymmetric shape that keeps neg-
ative pairs not closer within a half of maximum distance max(femb(x)) of
embedding space, normally, max(femb(x)) = 2.0 when it is in a spherical
space.

cn is the minimal class cluster size similar to margin α in Lstd. This
distance cn is calculated by dividing the maximum distance max(femb(x)) by
the number of classes K in the training dataset, as shown in Equation (46).

cn =
max(femb(x))

K
(46)

embp =
∥ya − yp∥22

max(femb(x))
embn =

∥ya − yn∥22
max(femb(x))

(47)
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Lexp = −log(1.0−
|embp − cn|+

1− cn
+ ϵ)− log(1.0− |0.5− embn|+

0.5
+ ϵ) (48)

Figure 16: Comparison between Lstd and Lexp functions. Positive pair dis-
tance ∥ya − yp∥22 (pos) and negative pair distance ∥ya − yn∥22 (neg).

To further improve the performance of Lexp, multiple other loss
functions from recent research have been combined into the composite loss
function Lcomp, Equation (52). Additions include L2-constrained Softmax
with cross-entropy Lclass [84] and center loss Lcenter [128], Equation (50) and
Equation (51) Within Lclass Equation (49) input in Softmax function f(x) is
L2 normalized and scaled by s. Within Lcenter during training, class instances
are accumulated and then cyi the centere of the cluster is calculated.

Lclass = −
M∑
i=1

yilog
eW

T
i s|f(xi)|22+bi∑C

j=1 e
WT

j s|f(xi)|22+bj
(49)

Lcenter′ =
M∑
i=1

||xi − cyi ||22 (50)

Lcenter =
M∑
i=1

|||xi − cyi ||22 −
cn
2
|+ (51)

Lcomp = Lexp + CcenterLcenter + CclassLclass (52)
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Figure 17: Illustration of Unit-Bounce embedding normalization function
within L2 spherical space.

Another contribution to DML is a function to normalize an embed-
ding space called Unit-Bounce, as shown in Equation (53) and Equation (54).
It has similar properties to the cosine distance in the Euclidean space. As
shown in Fig. 17, when the embedding vector reaches the edge of a sphere, it
bounces back towards the centere of the embedding space, and when the em-
bedding reaches the opposite side of the sphere with a radius of cs it bounces
back towards the centere again. This ensures that the whole 3D latent space
is effectively used instead of just the surface of the sphere as it is in the case
of L2 normalization.

f ′
emb(x) =

{
fbounce(x), if |x|2 ≥ 1

x, otherwise
(53)

fbounce(x) =

|x|2 −
⌊
|x|2
cs

⌋
− cs

x
|x|2 , if ⌊ |x|

cs
⌋ mod 2 = 0

cs
x

|x|2 − |x|
2 − ⌊ |x|

2

cs
⌋, otherwise

(54)
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5 EXPERIMENTAL RESULTS AND AP-
PLICATIONS

This section of the summary of the doctoral thesis lists the main
experimental results of the novel loss functions and methods described in
Section 2, Section 3 and Section 4. Novel methods have been tested in mul-
tiple domains starting from the task of VI algorithm, Deep Reinforcement
learning in various computer game environments, Deep Metric learning for
face re-identification tasks, and ending with practical applications in analyt-
ical chemistry and humans voice processing. The full results of the studies
described in this section are listed in scientific publications.

5.1 Results of UNet-RNN-Skip Model
UNet-RNN-Skip model has been tested in the problem set of VI

algorithm to optimize the speed of convergence of the Value function. VIN
(Value Iteration Network) is a model based on UNet-RNN-Skip that is usable
for different map sizes without the need to retrain the VIN for each of the
map sizes, as shown in Fig. 18. VIN iteration count to achieve convergence
grows linearly with a map size, whereas VI algorithm’s execution speed to
achieve convergence grows exponentially when increasing a map size. The
metric success rate has been used to determine stability of the model on the
test dataset. The success rate is a percentage that describes the number of
cells on the map that contain a path to the positive terminal state via the
gradient of the values of adjacent cells. For VI, the metric of success rate will
always be 1.0 after the convergence. The research also established that for
the task of VI algorithm, UNet models outperform convolutional AE models,
as shown in Table 2

Table 2:
Comparison of ConvNet based and UNet based models for VI problem.

Model Loss Success rate Epoch (min)
Conv-AE-RNN 8.58E-06 0.598 10.862
UNet-RNN-Skip 3.04E-06 0.998 15.833
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Table 3:
Comparison of VIN and VI methods for speed (sec.) to convergence.

Model / Map Size 32 64 128 256
VI 2.95 24.873 195.902 1473.108
VIN 0.031 0.071 0.236 0.833

Figure 18: Comparison of convergence speed VI versus VIN based on UNet-
RNN-Skip.

With the novel UNet-RNN-Skip model, this research work intro-
duced also the synthetic dataset generator OccupancyMapGenerator for oc-
cupancy grid with obstacles and mazes, as shown in Fig. 19.
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Figure 19: Examples of synthetic maps generated by OccupancyMapGener-
ator and cell values to reach the positive terminal state (Green - the highest
value, Red - the lowest value).

The generator is capable of generating any predefined size 2D occu-
pancy grid map using command line arguments. It produces maps in PNG
image format and executes VI algorithm on the maps and stores the optimal
state values. The generator uses predefined constants of coverage percentages
of obstacles. Obstacles consist of a randomly generated maze, rectangles, and
circles. Dijkstra path-finding algorithm [18] is used to check the reachability
of each cell to ensure that all walkable cells are interconnected with each
other. For maze generation, a Recursive Backtracking algorithm has been
used. The algorithm of OccupancyMapGenerator is listed in Algorithm 2.
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Algorithm 2: OccupancyMapGenerator map generation algorithm
1: procedure GenerateMap
2: size
3: types_obstacles = {maze, circles, rectangles}
4: maxcoverage

5: iterations_obstacles
6: ϵV I

7: M
size×size

← generateZeros(size)

8: if maze ∈ types_obstacles then
9: M ← generateMaze(M)

10: if circles ∈ types_obstacles or rectangles ∈ types_obstacles then
11: for iterations_obstacles do
12: coverage = walkable

size2

13: if coverage < maxcoverage then
14: M ← generateObstacles(M, types_obstacles)
15: else
16: break
17: goalx,y ← RandomWalkablePosition(M)
18: for posx,y in M do
19: if posx,y ∈ walkable then
20: reachable← dijkstra(M, goalx,y, posx,y)
21: if ¬reachable then
22: M ← fillHole(M, posx,y)

23: Mvi ← valueIteration(M, ϵV I)
24: store(Mvi,M)
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5.2 Results of Multi Deep Q-Network Loss Function
MDQN loss function [109] has been tested in multiple computer game envi-
ronments in PLE (PyGame Learning Environment) [104].
It has been tested on games like Flappy Bird, Pong, 3D Raycast Maze, and
VizDoom, as shown in Fig. 20. These games provide high-dimensional states
such as the raw pixel matrix, and some of them, like Pong, also provide low-
dimensional state that is especially useful for quickly validating novel loss
functions before applying them to a high-dimensional input.
As seen in Table 4, MDQN loss function achieved higher performance than
DDQN loss function that at the time of publication was state-of-the-art ap-
proach for Deep Q-Learning based reinforcement learning [29].
Grid search of hyper-parameters and 20 repetitions of training procedures
were done for all combinations of environments and loss functions to ensure
a fair comparison between methods.

Figure 20: Example of PLE games. Top row from left: "Pixel Helicopter",
"Monster Kong". On the right: "Flappy Bird". In the bottom row: 2 variants
of VizDoom mini-games that have also been trained within this research
(video of an agent that is trained using MDQN loss function: https://www.
youtube.com/watch?v=oqN6rtnv1EI)
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MDQN loss function outperformed DDQN loss function in PLE environments
and was more robust when experiments were repeated multiple times, as
shown in Table 4.
Along with MDQN loss function, a new method for visualizing Q-function
values of each state has been developed. A new Q-Value Map is obtained
by manipulating objects within a computer game environment to produce an
accurate understanding of an agent’s policy at every time step and every stage
of learning. As these games have open-source code in PLE, for example, it is
possible to manipulate the location of the player and then calculate Q-value
for every pixel or set of states in the frame, as shown in Fig. 21.

Table 4:
Results of the average score for 20 experiments using different loss functions

in PLE.
Loss Function Environment Avg. Score
MDQN Flappy Bird 17.2
DDQN Flappy Bird 16.9
MDQN Pong 1.7
DDQN Pong 1.3
MDQN 3D Raycast Maze 3.9
DDQN 3D Raycast Maze 3.7
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Figure 21: Q-Value Map of FlappyBird environment, where each pixel rep-
resents a Q-Value if the player (bird) would be located in this position. Red
colour denotes low Q-Value and green colour denotes high Q-Value. On
the left there are Q-Value maps before training, in the middle during the
training, and on the right after the training.

51



Even for 3D environments such as 3D raycast maze, it is possible to eval-
uate each state in the map by rotating the camera around the Z axis and
averaging Q-Value from rendered pixels in 360 degrees. Then the average
values can be plotted on top-down view, as shown in Fig. 22. As shown in
Table 5, MDQN function achieved the highest average score over 20 training
repetitions and the least variance of the score compared to DDQN and DQN
functions. MDQN-2 and MDQN-3 denote 2 and 3 sets of copies of MDQN
models used in MDQN function.

Table 5:
Results for 20 training repetitions using different loss functions in 3D

raycast maze environment.
Loss Func. Learning Rate Avg. Score Var. Score
MDQN-2 1.00E-05 3.904359232 0.728045918
DQN 1.00E-05 3.88654262 2.124993494
MDQN-2 1.00E-06 3.7166532 0.154117942
DDQN 1.00E-06 3.713829593 1.524318234
DDQN 1.00E-05 3.638360789 1.662039807
DDQN 0.0001 3.267777864 2.889255991
MDQN-3 1.00E-05 3.056116361 2.339890159
DQN 1.00E-06 3.026868771 2.028895348
MDQN-3 1.00E-06 2.770128326 0.714132328
MDQN-2 0.0001 2.545370799 4.120312752
DQN 0.0001 2.24425396 2.153779645
MDQN-3 0.0001 2.174641347 3.541216037
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Figure 22: In the top row of frames: 3D raycast maze environment. In the
bottom row: Q-Value Map of the environment from top-down view of the
3D raycast maze before, during, and after training.

Finally, along with the novel the MDQN loss function, an extensive survey
of Deep Q-Learning based methods has been done. In the result, it has been
found that Deep Q-Learning based methods are very sensitive to the random
seed and intrinsic randomness of the environment on which they are tested.
As shown in Fig. 23, a sufficient number of repetitions are needed to find
a sample with the highest score using the same set of hyper-parameters. It
has been found that 20 repeated full training procedures are necessary to
establish an accurate baseline of the performance of these methods.
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Figure 23: Variance of the score of the same hyper-parameters with different
number of re-training procedures of Deep Q-Network in Flappy Bird envi-
ronment.

Figure 24: Deep learning-based agent executes consecutive HPLC runs to
find the best solvent gradient for peak separation of compounds.

MDQN loss function and other Deep Learning methods have been tested
also in a commercial project in SIA ChromSword. As shown in Fig. 24, in
3 consecutive runs, it is possible to find HPLC solvent gradient for the best
peak separation of unknown compounds. These models are used in analytical
chemistry and drug development applications.
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5.3 Results of Exponential Triplet Loss Function
Results of Exponential Triplet loss Lexp for the class re-identification task are
shown in Table 6 All results were achieved with a grid search of all hyper-
parameters. This is the reason that even the standard Triplet Loss Lstd in
many datasets achieved comparable results. All results have been classified
using zero-shot models and the re-identification task, with the closest em-
bedding of a sample to the same class center of mass. None of the classes
and samples used for validation have been seen during the training time. In
addition, the composite loss function has been used for both Lstd and Lexp

by adding Center Loss Lcen and L2-Softmax Classification Loss Lcls. Clas-
sification Loss was calculated only for the training dataset, because the test
dataset contained different number and types of classes. In this research,
a dataset for re-identification task was chosen as VGGFace2 [13] with 9000
classes, but the models also have been tested on classical image datasets like
MNIST [55], Fassion-MNIST [130], EMNIST (Extended-MNIST) [15] and
CIFAR10 [47]. For classical image data-sets, train and test sub-sets were
re-divided by classes, so that the test set would not contain classes included
in the train data-set. For all the datasets, 20% of classes with their samples
were set aside for testing and 80% of different classes were left for training.

Table 6:
Comparison of zero-shot accuracy on test dataset for different loss functions

(Triplet Loss Lstd, Exponential Triplet Loss Lexp, Center Loss Lcen,
Classification Loss Lcls

Loss / Acc. MNIST FMNIST EMINST CIFAR10 Simpsons VGGFace2
Lstd 99.6 91.4 82.0 56.2 91.0 77.4
Lstd + Lcls 99.6 92.1 85.0 79.8 91.2 76.3
Lstd + Lcen 97.5 71.5 61.7 52.1 90.9 76.4
Lstd + Lcen + Lcls 97.7 82.0 70.9 62.8 91.2 78.6
Lexp 99.6 92.7 82.7 85.7 91.5 85.0
Lexp + Lcls 99.6 93.1 85.2 87.2 90.9 84.1
Lexp + Lcen 99.6 93.1 85.7 85.3 92.1 84.0
Lexp + Lcen + Lcls 99.6 93.1 86.0 87.3 91.7 85.7
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Additionally, The Simpsons dataset provided by Kaggle was also analyzed
for the re-identification task. The results for zero-shot learning depicted in
Fig. 25 showed good separation in 3D between visually different characters.
As seen in the example below, the model achieved clustering of class and
visual features only by applying linear PCA.

Figure 25: Visualization of PCA of the Simpsons test dataset that Exponen-
tial Triplet loss-based model has not used for training.
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5.4 Practical Applications
Novel loss functions and models described in the Thesis can be applied
to many applications, some of these applications have already been imple-
mented, others have not yet been tested. Practical applications for each of
the novel loss functions and models are listed further.
Practical applications of UNet-RNN-Skip:

1. Optimization of VI algorithm for faster convergence of policy in path
planning task. This application has been tested within the Thesis. This
model can achieve multiple orders of magnitude faster convergence than
VI algorithm and is more scalable than VI algorithm on larger maps,
even though it has been trained only on smaller maps.

2. Optimization of VI algorithm for RL tasks. Policy can be calculated
also for other tasks such as sequential planning, where instead of con-
verging policy to the shortest path in the map states can represent
observations and gradient of value in the graph of actions can repre-
sent decisions.

3. Style transfer tasks for video data [40], [120]. The novel model pre-
sented in the Thesis can be used to colorize black and white movies,
add noise to make it look authentic, convert movies to look like car-
toons.

4. Style transfer tasks for audio data [16], [1]. The novel model presented
in the Thesis can be used to clone voices or generate artificial voices
using recorded source voice as an input. Model can be used with 1D au-
dio signal or 2D spectrographs that later are converted back to audible
signal using Griffin-Lim algorithm.

5. Video denoising tasks [20], [105]. The novel model can be used to
remove noise and film degradation artifacts, as well as to improve com-
pression of video by reducing complexity in regions that human ob-
server would not pay attention to.

6. Audio denoising tasks [58], [131]. This task has been successfully ap-
plied in commercial solutions in SIA Asya. The models are used in real-
time to remove background noises in natural environments and leaving
just signal of voice. Because of this model commercial implementation
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of asya.ai mobile application is able to provide conversational analysis
in noisy environments such as coffee shops or offices.

Practical applications of MDQN Loss function:

1. Training Q-Value function based policy for a wide variety of RL tasks
like simulations [42], self-driving [134], virtual assistants [50] and robot
control [77]. In the Thesis a novel MDQN loss function has been tested
using PLE computer games. MDQN loss function is especially efficient
when used with low dimensional state inputs or using Deep Metric
Learning and low dimensional state embeddings.

2. Real-time optimization of solvent gradients for HPLC in analytical
chemistry [26]. It has been successfully tested in commercial solutions
in SIA ChromSword. The model is capable of finding the gradient
of solvents for compound separation in 2 hours, while before manual
sequences of experiments it could take multiple days.

Practical applications of Exponential Triplet Loss function:

1. Pre-training of encoder using deep metric learning of embeddings for a
wide variety of tasks like RL, RNN, classification and regression [129].
Pre-training encoder using Exponential Triplet Loss can speed up the
training process of the main task. The precondition for this method
is that a dataset used for training must be labelled or similarity mea-
sure between samples must be included. But this measure also can be
approximated using unsupervised learning methods, like VAE (Varia-
tional Auto Encoders) [19].

2. Re-identification task for images or biometric data [23], [5]. The novel
loss function has been tested within the Thesis in the context of face
and image re-identification. It has also been successfully applied in
commercial solution in SIA Asya for voice re-identification task. Asya
mobile application executes the re-identification of multiple speakers
using voice biometric data for natural conversations in real-time. It
could also be applied for e-commerce solutions for re-identification of
different products by their visual similarity.
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6 FUTURE RESEARCH
Future research of the novel loss functions, their attributes, and shape can
be based on the findings presented in the Thesis.
Research in Deep Q-Learning and Reinforcement Learning is very tied to
loss function as it is the main and unchaining factor in an unpredictable
environment. One extension to the loss function of Deep Q-Learning would
be to add a loss that would emulate curiosity and exploration of environment.
Loss function that emulates curiosity should not be based on rewards of
the environment itself, but instead unexpected and novel state information
should generate an intrinsic reward. At the same time, random events that
are not linked to the actions of an agent should not be included in this
intrinsic reward. Some work has been done in this direction, but it has not
been fully solved [12], [11].
Another direction would be to add to the model multiple read and write
heads to train the model to use auxiliary memory tables in the context of
Deep Reinforcement Learning. Memory tables should contain embeddings
of states, previous states, and rewards. These models would learn to store
and use the facts observed in the environment and use them to maximize
reward even though these facts have never been observed during the training
process, similarly to how zero-shot learning works. The model would learn
the algorithm that can solve the environment, not the patterns of an envi-
ronment. To train such models, a composite loss function that includes the
regularization of heads could be added. Recent work has been done also in
this direction, but it has not yet been solved for complex environments [125],
[81], [51].
The loss functions needed to map the similarity of embeddings of read and
write heads for auxiliary memory tables and curiosity models are similar to
those used in Deep Metric Learning like Triplet Loss or Contrastive Loss.
Deep Metric Learning in the context of Zero-Shot, One-Shot k-Shot learning
also has not yet been solved.
Extension of the research presented in the Thesis might be adding KL
(Kullback—Leibler) divergence or other probability density similarity func-
tions and adding prior distributions. Usually KL is used together with a
Gaussian distribution with learnable mean and standard deviation, but the
loss function could enable the model to learn also other distributions. In
addition, it might be useful to add the reconstruction loss generated from
VAE and the adversarial loss generated from GAN.
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Recently, novel loss functions like Margin Loss in CapsNet (Capsule Net-
works) [89] and Focal Loss [61] have been used also for classification prob-
lems instead of the commonly used cross-entropy loss function that comes
from established information theory. Both of these functions have different
properties of shape of the function that leads to better convergence. There
could be even better versions of loss functions for classification task and other
common machine learning tasks, and the shape of the function might be an
important factor.

7 CONCLUSIONS
The thesis has proposed and evaluated novel loss functions, model archi-
tectures, and training algorithms. It has presented research findings of the
importance of the shape of functions for deep learning methods.
Contributions of this work include UNet-RNN-Skip model, OccupancyMap-
Generator algorithm, MDQN Loss function, Q-Value maps, Exponential
Triplet Loss function, Unit-Range latent space normalization function, Unit-
Bounce latent space normalization function and other methods that have
been published in the scientific literature produced by the author and at-
tached to the Thesis.
The experimental results show that the proposed methods achieve better
results than the established deep learning methods.
For the face re-identification task and for the deep metric learning task on
VGGFace2 dataset, Exponential Triplet Loss function reached state-of-the-
art results of 85.7% accuracy using zero-shot setting. The exponential Triplet
Loss function also converges faster than the conventional Triplet Loss func-
tion with common composite loss function addition. Unit-Range normaliza-
tion function and Unit-Bounce normalization function achieve better utiliza-
tion of the embedding space than L2 normalization function and have similar
properties to the cosine distance in Euclidean space.
For the reinforcement learning task in computer game environments, MDQN
loss function achieves higher scores than DDQN and DQN loss functions.
It also provides functionality to construct a Q-Value map that exposes the
model policy as a white box to understand the better decision-making process
using a visual representation of each state. The results also showed the need
for repeated experiments with the same set of hyper-parameters of MDQN
and other loss functions at least 20 times to reduce the effect of random weight
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initialization in highly random environments like PLE. MDQN loss function
research also included a survey of state-of-the-art methods at the time of
publishing and analysis of scientific literature regarding Deep Q-Learning.
For Value function modelling, UNet-RNN-Skip execution speed is on the
order of magnitude greater than the classical Value function used in VI.
It also can have the same policy outcome for 99.8% of the cases and can
be trained on 32x32 maps, but then applied to larger maps like 256x256.
OccupancyMapGenerator can be applied successfully to generate synthetic
datasets of occupancy maps. These datasets can be used for tasks related to
VI algorithm, as well as for other tasks such as SLAM.
All the theses listed in Subsection ?? have been confirmed.
Novel MDQN and Exponential Triplet Loss functions have been success-
fully applied in commercial products for analytical chemistry task at SIA
ChromSword and for voice and face re-identification task at SIA Asya. UNet-
RNN-Skip also has been successfully applied in a commercial product for
noise reduction of audio signal at SIA Asya.
The contributions of this research can be used in different applications that
have been described in Subsection 5.4 Applications include zero-shot tasks
not only for biometric re-identification, but also for finding similar prod-
ucts using photos. Applications also include path planning, analytical chem-
istry, automatic speech recognition, reinforcement learning, and robot con-
trol. The work emphasizes the efficiency of unconventional loss functions
and approaches in Deep Learning that have been developed and shaped us-
ing empirical methods.
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