List of publications included in the Thesis and the main contributions:

- Appendix A Value Iteration Solver Networks, International Conference on Intelligent Autonomous Systems, 2020, IEEE, Evalds Urtans, Valters Vecins. Introduced a novel model UNet-RNN-Skip for improving the performance of the Value Iteration Algorithm and a novel synthetic dataset generator OccupancyMapGenerator for evaluation of path planning models.
- Appendix B Software-Assisted Method Development in High Performance Liquid Chromatography; ISBN: 978-1-78634-545-5, Sep. 2018, Sergey V. Galushko, Irina Shishkina, Evalds Urtans, Oksana Rotkaja. Introduced a novel Deep Reinforcement Learning based method for sequentially developing solvent gradients in HPLC.
- Appendix C Survey of Deep Q-Network variants in PyGame Learning Environment, International Conference on Deep Learning technologies, 2018, ACM, Evalds Urtans, Agris Nikitenko Introduced a novel Deep Reinforcement Learning based method and a novel MDQN loss function.
- Appendix D Exponential Triplet Loss, International Conference on Compute and Data Analysis, 2020, IEEE/ACM, Evalds Urtans, Valters Vecins, Agris Nikitenko Introduced a novel Deep Metric Learning based loss function Exponential Triplet Loss.
- Appendix E asya: Mindful verbal communication using deep learning, Cornell University, Computing Research Repository, 2020, Evalds Urtans, Austris Tabaks Introduced a novel system based on Exponential Triplet Loss for voice reidentification.

2 LITERATURE REVIEW

This section aims to provide a background of existing research in the loss functions of the Deep Metric Learning. It explains the importance of the research and activity in the development of novel loss functions. Similar survey of methods and loss functions has been done also for Deep Reinforcement Learning [109]. Results of the findings for Deep Reinforcement Learning have been included in Appendix C.

2.1 Methodolgy of Literature Review

The methodology of SLR (Systematic Literature Review) presented in this document is based on a systematic mapping study [80] [43]. The results of SLR contain the map of clusters based on the origins of loss functions and methods, as well as a qualitative review based on research questions. The results also include a list of limitations identified for loss functions and methods used in the reviewed papers.

The method for selecting and evaluating papers contains the steps listed in Fig. 3. Initially the most well-known publications [7], [23] in the field of deep metric learning (DML) have been selected. Additionally, the following keywords were used for the initial search of papers: triplet loss, contrastive loss, ranking loss, deep metric learning, representation learning, oneshot learning, zero-shot learning, product re-identification task, signature re-identification, face re-identification task. Then the publications have been thoroughly analyzed and documented to check if publications match the field of DML loss function research. Then matching to Quality Assessment criteria has been evaluated. If at least single assessment criterion has been met, a publication was added to the main list. In addition, if answers to research questions have been found in selected publications, then those were documented. The references and citations of this publication have been found. For each of the relevant publications, their citation count has been found and divided by years passed since publishing. Those with the highest value of influence were analyzed first.

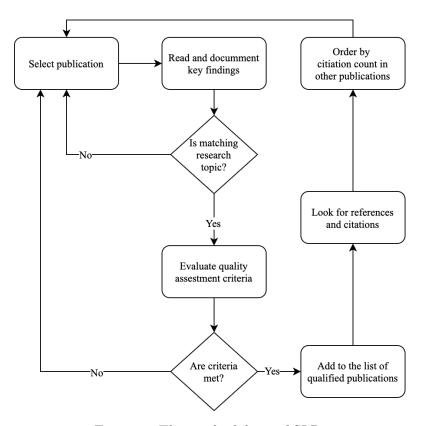


Figure 3: The methodology of SLR.

To find a valid direction of further research, few research questions (RQ) were selected. The research questions addressed by this study are:

- RQ1: What kinds of functions have been studied similar to Triplet Loss functions?
- RQ2: Do the novel loss functions achieve significantly better results than previous functions?
- RQ3: Do the novel loss functions have theoretical grounding, or are they purely empirical?
- RQ4: What are the limitations of novel loss functions?

2.2 Results of the Literature Review on Deep Metric Learning

The results of SLR regarding DML are mapped in multiple tables depending on the relevant properties extracted from papers. Information about authors, affiliation, country of origin, and conferences regarding DML have been listed in Table 1.

Publications have been ordered by the year of publishing, and the numbering of publications has been maintained also in the following tables.

 $\label{eq:Table 1:} \mbox{ Table 1:}$ Authors and conferences on studies regarding DML.

No	Title	Authors	Affiliation	Country	Year	Conference / Journal
1	Signature Verification Us- ing A "Siamese" Time De- lay Neural Network [7]	J. Bromley, J. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Sckinger, R. Shah	AT&T Bell laboratories	USA	1993	INT J PATTERN RECOGN
2	Neighbourhood Components Analysis [27]	J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov	AT&T Bell laboratories	Canada	2004	NIPS
3	Learning a Similarity Metric Discriminatively, with Application to Face Verification [14]	S. Chopra, R. Hadsell, Y. LeCun	NYU	USA	2005	CVPR
4	Distance metric learning for large margin near- est neighbor classification [127]	K. Q. Weinberger, L. Saul	Yahoo!, University of Cal- ifornia	USA	2005	NIPS
5	Large scale metric learning from equivalence constraints [46]	M. KŽstinger, M. Hirzer, P. Wohlhart, P. Roth, H. Bischof	Graz University of Technology	Austria	2012	CVPR
6	Quadruplet-Wise Image Similarity Learning [52]	M. Law, N. Thome, M. Cord	Sorbonne University	France	2013	ICCV
7	Reidentification by Relative Distance Comparison [135]	W. Zheng, S. Gong, T. Xiang	College of Electronic and Information, South China University of Technology	China	2013	TPAMI
8	Deep Metric Learning for Practical Person Re-Identification [132]	D. Yi, Z. Lei, S. Li	IEEE	China	2014	ArXiv
9	FaceNet: A unified embedding for face recognition and clustering [23]	F. Schroff, D. Kalenichenko, J. Philbin	Google	USA	2015	CVPR
10	Improved Deep Metric Learning with Multi-class N-pair Loss Objective [98]	K. Sohn	NEC	USA	2016	NIPS
11	A Discriminative Feature Learning Approach for Deep Face Recognition [128]	Y. Wen, K. Zhang, Z. Li, Y. Qiao	SIAT	China	2016	ECCV

12	Deep Metric Learning via	H. O. Song,	Stanford Univer-	USA	2016	CVPR
12	Lifted Structured Feature	Y. Xiang,	sity,	USA	2010	CVFR
	Embedding [100]	S. Jegelka,	MIT			
	Embedding [100]	S. Savarese	NII I			
13	Deep	J. Hershey,	Mitsubishi,	USA	2016	ICASSP
-	clustering: Discriminative	Z. Chen,	Columbia Univer-			
	embeddings for segmenta-	J. Le Roux,	sity			
	tion and	S. Watanabe				
	separation [34]					
14	Learning Deep Embed-	E. Ustinova,	Skoltech	Russia	2016	NIPS
	dings with Histogram	V. Lempitsky				
	Loss [113]					
15	Local Similarity-Aware	C. Huang,	The Chinese Uni-	China	2016	NIPS
	Deep Feature Embedding	C. C. Loy,	versity of Hong			
	[37]	X. Tang	Kong,			
			SenseTime Group Limited			
16	Metric Learning with	O. Rippel,	Facebook	USA	2016	ICLR
10	Adaptive Density Dis-	M. Paluri,	racebook	USA	2016	ICLK
	crimination [86]	P. DollĞr,				
	crimination [60]	L. D. Bourdev				
17	L2-constrained Softmax	R. Ranjan,	UMIACS	USA	2017	ArXiv
l	Loss for Discriminative	C. D. Castillo,			1	
	Face Verification [84]	R. Chellappa				
18	In Defense of the Triplet	A. Hermans,	RWTH	Germany	2017	ArXiv
	Loss for Person Re-	L. Beyer,				
1	Identification [33]	B. Leibe				
19	Deep Metric Learning	J. Wang,	Baidu	China	2017	ICCV
	with Angular Loss [117]	F. Zhou,				
		S. Wen,				
		X. Liu,				
		Y. Lin				
20	No Fuss Distance Met-	Y. Movshovitz-	Google	USA	2017	ICCV
	ric Learning Using Proxies	Attias,				
	[70]	A. Toshev,				
		T. Leung, S. Ioffe,				
		S. Singh				
21	Sampling Matters in Deep	R. Manmatha,	UT Austin.	USA	2017	ICCV
21	Embedding Learning [64]	C. Y. Wu,	Amazon	UDA	2017	100 V
	Embedding Ecarning [04]	A. Smola,	Timazon			
		P. KrŁhenb§hl				
22	Deep Metric Learning via	H. O. Song,	Google	USA	2017	CVPR
	Facility Location [99]	S. Jegelka,				
		V. Rathod,				
		K. Murphy				
23	Deep spectral clustering	M. Law,	University of	Canada	2017	ICML
	learning [53]	R. Urtasun,	Toronto			
		R. Zemel				
24	Hard-Aware Deeply Cas-	Y. Yuan,	MOE,	China	2017	ICCV
1	caded Embedding [133]	K. Yang,	Peking Univer-			
		C. Zhang	sity,			
			DeepMotion,			
			Microsoft Re- search			
25	PPFNet: Global Context	H. Deng,	TMU,	Germany,	2018	CVPR
∠3	Aware Local Features	H. Deng, T. Birdal,	NUDT	China	2018	CVFR
	for Robust 3D Point	S. Ilic				
	Matching [17]					
26	Ranked List Loss for Deep	X. Wang,	Anyvision,	UK	2019	CVPR
	Metric Learning [121]	Y. Hua,	QueenÕs Univer-			
1		E. Kodirov,	sity Belfast			
		G. Hu,	_			
		R. Garnier,				
		N. Robertson				
27	Multi-Similarity Loss with	X. Wang,	Malong Technolo-	China	2019	CVPR
1	General Pair Weighting	Xintong Han,	gies			
	for Deep Metric Learning	W. Huang,				
	[119]	D. Dong,				
0.0	A C: 1 727	M. Scott	mi cii: **:	CI :	0010	P.C.C.
28	A Simple and Effective Framework for Pairwise	Q. Qi, Y. Yan,	The Chinese Uni-	China	2019	ECCV
1	Deep Metric Learning [82]		versity of Hong Kong			
1	Deep Metric Learning [82]	Z. Wu, X. Wang,	Trong			
	1	A. wang,	I	I	1	1
		T. Yang				

29	Deep Metric Learning	B. X. Nguyen,	AIOZ	Singapore	2020	ArXiv
	Meets Deep Clustering:	B. D. Nguyen,				
	An Novel Unsupervised	G. Carneiro,				
	Approach for Feature	E. Tjiputra,				
	Embedding [73]	Q. D. Tran,				
		T. T. Do				
30	Exponential triplet loss	E. Urtans,	RTU	Latvia	2020	ICCDA
	[110]	A. Nikitenko,				
		V. Vecins				

In, Table 3 information about novel loss functions and their properties regarding DML have been listed. Embedding space refers to normalization or measurement methods between two or more vectors in a latent space. Each of the embedding vectors has been produced by a deep learning based model for the data point. Then two or more embedding vectors have been processed using the loss function and a deep learning based model weights are calculated using the back-propagation algorithm. In addition, for many of these papers sample mining methods are used to select the best training samples to improve the results and speed of the training.

 $\label{eq:Table 3:} Table \ 3:$ Novel loss functions of studies regarding DML.

No	Title	Year	Embedding space	Sample Mining	Loss function	
1	Signature Verification Us- ing A "Siamese" Time De- lay Neural Network [7]	1993	Euclidean	None	Contrastive loss	
2	Neighbourhood Compo- nents Analysis [27]	2004	Euclidean, Maha- lanobis	None	NCA Loss	
3	Learning a Similarity Metric Discriminatively, with Application to Face Verification [14]	2005	L1, Euclidean	None	Contrastive Loss	
4	Distance metric learning for large margin near- est neighbor classification [127]	2005	Euclidean, Maha- lanobis	None	Triplet Hinge Loss	
5	Large scale metric learn- ing from equivalence con- straints [46]	2012	Mahalanobis	None	KISS-BCE Loss	
6	Quadruplet-Wise Image Similarity Learning [52]	2013	Qwise	None	Quadruplet Hinge Loss	
7	Reidentification by Relative Distance Comparison [135]	2013	RDC	None	RDC Loss	
8	Deep Metric Learning for Practical Person Re-Identification [132]	2014	Cosine distance	Hard	Binomial De- viance Loss	
9	FaceNet: A unified embedding for face recognition and clustering [23]	2015	L2, Euclidean	Hard, Semi-Hard	Triplet Loss, Harmonic Triplet Loss	
10	Improved Deep Metric Learning with Multi-class N-pair Loss Objective [98]	2016	L2, Cosine distance	N Hard Mining	multi-class N-pair loss	
11	A Discriminative Feature Learning Approach for Deep Face Recognition [128]	2016	Cosine distance	None	Center loss	

12	Deep Metric Learning via	2016	L2, Euclidean	Mining positives	Lifted Structured
	Lifted Structured Feature				Loss,
13	Embedding [100] Deep	2016	L2. Euclidean	None	Lifted Struct Pairwise metric
13	clustering: Discriminative	2016	L2, Euchdean	None	Loss metric
	embeddings for segmenta-				1033
	tion and				
	separation [34]				
14	Learning Deep Embed- dings with Histogram	2016	Cosine distance	None	Histogram Loss
	Loss [113]				
15	Local Similarity-Aware	2016	PDDM	Hard mining	PDDM - Double
	Deep Feature Embedding				Header Hinge
4.0	[37]	2012		1	Loss
16	Metric Learning with Adaptive Density Dis-	2016	Euclidean	Neighbourhood Sam- pling	Magnet Loss
	crimination [86]			pinig	
17	L2-constrained Softmax	2017	Cosine distance	None	L2 constrained
	Loss for Discriminative				Softmax Loss
1.0	Face Verification [84]	0017	10 5 1:1	N	D 4 1 All (D : 1 4
18	In Defense of the Triplet Loss for Person Re-	2017	L2, Euclidean	None	Batch All Triplet Loss
	Identification [33]				LOSS
19	Deep Metric Learning	2017	Angle	None	Angular loss
	with Angular Loss [117]				
20	No Fuss Distance Met-	2017	L2, Euclidean	None	Proxy Ranking
	ric Learning Using Proxies [70]				Loss, Proxy NCA Loss
21	Sampling Matters in Deep	2017	L2, Euclidean	Distance weighted	Triplet Loss,
	Embedding Learning [64]		<u> </u>	sampling	Contrasitve Loss
22	Deep Metric Learning via	2017	L2, Euclidean	None	Struct Clust,
23	Facility Location [99] Deep spectral clustering	2017	L2, Euclidean	None	Clustering Loss Spectral Cluster-
23	learning [53]	2017	L2, Euchdean	None	ing Loss
24	Hard-Aware Deeply Cas-	2017	Euclidean	Model-based	Any / Con-
	caded Embedding [133]				trastive loss
25	PPFNet: Global Context	2018	L2, Euclidean	None	N-Tuple loss
	Aware Local Features for Robust 3D Point				
	Matching [17]				
26	Ranked List Loss for Deep	2019	Euclidean	Hard	Ranked List Loss
	Metric Learning [121]				
27	Multi-Similarity Loss with	2019	Cosine distance	Hard	Multi-Similarity
	General Pair Weighting for Deep Metric Learning				Loss
	[119] for Deep Metric Learning				
28	A Simple and Effective	2019	Euclidean	TopK Loss mining	DRO-TopK Loss
	Framework for Pairwise				-
20	Deep Metric Learning [82]	2020	10 E 1:1	N	77 . 1
29	Deep Metric Learning Meets Deep Clustering:	2020	L2, Euclidean	None	Unsupervised UDML Loss
	An Novel Unsupervised				ODMII 1088
	Approach for Feature				
	Embedding [73]				
30	Exponential triplet loss	2020	Unit-Range	Hard	Exponential
	[110]				Triplet Loss

In Fig. 4 relationship of DML Loss functions has been summarized. Colours denote similar groups of loss functions by their origin and methodology. It is possible to observe that most of the loss functions come from the seminal works of Contrastive Loss [7], NCA Loss [27], and Triplet Loss [127]. Most of the functions are extensions of simple Hinge Loss [127]. As seen in Table 3, most of the loss functions use sample mining methods, because they are trained only using a few data samples per training iteration. Some methods like Histogram Loss [113] or Quadruplet Hinge Loss [52] use more samples per training iteration, but their results on benchmark datasets are not significantly better than other methods as seen in Table 5.

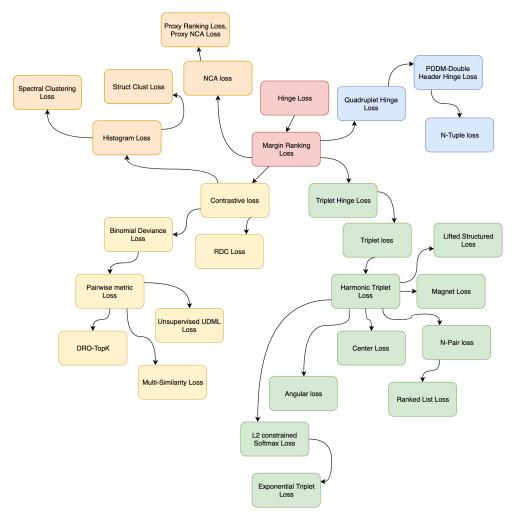


Figure 4: Relationship of DML Loss functions. Colours denote similar groups of loss functions by their origin and methodology.

Table 5 lists practical applications for each of DML loss functions that have been studied, as well as their benchmark datasets and the best results on those datasets. Where applicable, Top-1 accuracy has been selected for the best results on each of the datasets. As seen in the listings, most of the practical applications and datasets have been used for face and product re-identification.

 $\label{eq:Table 5: Table 5: Practical applications and best results for every dataset.}$

No	Title	Year	Practical application	Dataset / Top-1 Acc.
1	Signature Verification Us- ing A "Siamese" Time De- lay Neural Network [7]	1993	Signature re- identification	Signatures: 97%
2	Neighbourhood Components Analysis [27]	2004	Handwriting iden- tification, Face re-identification	USPS: 85% FERET-B
3	Learning a Similarity Metric Discriminatively, with Application to Face Verification [14]	2005	Face Re-identification	AT&T: 92.5%
4	Distance metric learning for large margin near- est neighbor classification [127]	2005	Handwriting identifi- cation, text classifica- tion	MNIST: 98.8% Letters: 96.3% 20news: 92% Isolet: 96.6% YaleFaces: 93.9%
5	Large scale metric learning from equivalence constraints [46]	2012	Face Reidentification, Image Reidenification	LFW: 80.5% VIPeR: 22%
6	Quadruplet-Wise Image Similarity Learning [52]	2013	Product or image re- trieval	OSR: 74.6% Pubfig: 77.6%
7	Reidentification by Relative Distance Comparison [135]	2013	Face Re-identification	ETHZ: 61.58% i-LIDS: 32.60% VIPeR: 9.12%
8	Deep Metric Learning for Practical Person Re-Identification [132]	2014	Face Re-identification	VIPER: 34.49%
9	FaceNet: A unified embedding for face recognition and clustering [23]	2015	Face Re-identification	LFW: 99.63% YTF: 95.12%
10	Improved Deep Metric Learning with Multi-class N-pair Loss Objective [98]	2016	Product image retrieval, Face Re-identification	LFW: 98.33% SOP: 28.19% CAR-196: 33.5% CUB-200: 27.24%
11	A Discriminative Feature Learning Approach for Deep Face Recognition [128]	2016	Face Re-identification	LFW: 99.28% YTF: 94.9% MegaFace: 76.5%
12	Deep Metric Learning via Lifted Structured Feature Embedding [100]	2016	Product or image retrieval	CUB200: 55%, CARS196: 48%, SOP: 62%
13	Deep clustering: Discriminative embeddings for segmenta- tion and separation [34]	2016	Speaker diarization, seperation	WSJ0: 2.74 dB (SDR)
14	Learning Deep Embeddings with Histogram Loss [113]	2016	Product or image re- trieval	CUHK03: 65.7% CUB-200: 51% Market-1501: 59.47% SOP: 65%
15	Local Similarity-Aware Deep Feature Embedding [37]	2016	Product or image re- trieval	CARS196: 57.4% CUB-200: 58.3% ImageNet: 48.2%
16	Metric Learning with Adaptive Density Dis- crimination [86]	2016	Image classification, Face Re-identification	Stanford Dogs: 75.1% Flowers-102: 91.4% Oxford-HIT Pet: 89.4% ImageNet: 84.1%
17	L2-constrained Softmax Loss for Discriminative Face Verification [84]	2017	Image classification, Face Re-identification	LFW: 99.33% YTF: 99.78% MNIST: 99.05% IJB-A: 97.5%
18	In Defense of the Triplet Loss for Person Re- Identification [33]	2017	Product image retrieval, Face Re-identification	MARS: 90.53%, Market-1501: 79.8%, CUHK03: 87.58%

19	Deep Metric Learning with Angular Loss [117]	2017	Product or image re- trieval	CAR-196: 71.4%, CUB-200: 54.7%, SOP: 70.9%
20	No Fuss Distance Metric Learning Using Proxies [70]	2017	Product or image re- trieval	CARS196: 73:22% CUB200: 73.22% SOP: 73.73%
21	Sampling Matters in Deep Embedding Learning [64]	2017	Product or image re- trieval, Face Re-identification	CARS196: 86.9% CUB200: 63.9% SOP: 72.7%
22	Deep Metric Learning via Facility Location [99]	2017	Product or image re- trieval	CARS196: 58.11% CUB200: 48.18% SOP: 67.02%
23	Deep spectral clustering learning [53]	2017	Product or image re- trieval	CARS196: 73.07% CUB200: 43.22% SOP: 67.59%
24	Hard-Aware Deeply Cascaded Embedding [133]	2017	Product or image retrieval	CARS196: 83.8% CUB-200: 60.7% In-shop: 62.1 % SOP: 70.1%
25	PPFNet: Global Context Aware Local Features for Robust 3D Point Matching [17]	2018	3D Point Cloud matching	SUN3D: 71%
26	Ranked List Loss for Deep Metric Learning [121]	2019	Product or image re- trieval	CARS196: 82.1% CUB-200: 61.3% SOP: 79.8%
27	Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning [119]	2019	Product or image retrieval	CARS196: 77.3% CUB-200: 65.7% In-Shop: 78.2%
28	A Simple and Effective Framework for Pairwise Deep Metric Learning [82]	2019	Product or image re- trieval	In-shop: 91.3% CARS-196: 86.2% CUB-200: 68.1%
29	Deep Metric Learning Meets Deep Clustering: An Novel Unsupervised Approach for Feature Embedding [73]	2020	Product or image re- trieval	CUB200: 47.5%, Car196: 42.6%
30	Exponential triplet loss [110]	2020	Face Reidentification, Image Reidenification	VGGFace2: 85.7% EMNIST: 86% FMNIST: 93.1% CIFAR10: 87.3% MNIST: 99.6%

The Quality Assessment (QA) criteria are as follows:

- QA1: Does the publication provide open-source implementation of a novel loss function or methodology?
- QA2: Has a publication achieved state-of-the-art results on the datasets it studies?
- QA3: Does the publication provide a theoretical proof of a novel loss function or methodology?
- QA4: Does the publication include an ablation study to test effects on the results of functional parts one by one?
- QA5: Does a publication have over 100 citations?

Table 7: Evaluation of quality of publications baset on criteria.

No	Title	QA1	QA2	QA3	QA4	QA5	Total
11	A Discriminative Feature	Yes	Yes	No	Yes	Yes	4
	Learning Approach for Deep Face Recognition						
	[128]						
18	In Defense of the Triplet	Yes	Yes	No	Yes	Yes	4
	Loss for Person Re-						
21	Identification [33] Sampling Matters in Deep	No	Yes	Yes	Yes	Yes	4
21	Embedding Learning [64]	No	Yes	Yes	Yes	Yes	4
23	Deep spectral clustering	No	Yes	Yes	Yes	Yes	4
	learning [53]						
28	A Simple and Effective	Yes	Yes	Yes	Yes	No	4
	Framework for Pairwise Deep Metric Learning [82]						
3	Learning a Similarity	No	Yes	Yes	No	Yes	3
	Metric Discriminatively,						
	with Application to						
5	Face Verification [14] Large scale metric learn-	No	Yes	Yes	No	Yes	3
э	ing from equivalence con-	INO INO	res	res	No	res	3
	straints [46]						
9	FaceNet: A unified	No	Yes	No	Yes	Yes	3
	embedding for face						
	recognition and clustering [23]						
16	Metric Learning with	Yes	Yes	No	No	Yes	3
	Adaptive Density Dis-						
	crimination [86]						
17	L2-constrained Softmax Loss for Discriminative	No	Yes	No	Yes	Yes	3
	Face Verification [84]						
19	Deep Metric Learning	No	Yes	Yes	No	Yes	3
	with Angular Loss [117]						
20	No Fuss Distance Met-	No	Yes	Yes	No	Yes	3
	ric Learning Using Proxies [70]						
22	Deep Metric Learning via	No	Yes	Yes	No	Yes	3
	Facility Location [99]						
25	PPFNet: Global Context	No	Yes	No	Yes	Yes	3
	Aware Local Features for Robust 3D Point						
	Matching [17]						
27	Multi-Similarity Loss with	Yes	No	No	Yes	Yes	3
	General Pair Weighting						
	for Deep Metric Learning [119]						
1	Signature Verification Us-	No	Yes	No	No	Yes	2
1	ing A "Siamese" Time De-	'''	103	110	110	103	-
	lay Neural Network [7]						
4	Distance metric learning	No	No	Yes	No	Yes	2
	for large margin near- est neighbor classification						
	est neighbor classification [127]						
6	Quadruplet-Wise Image	No	No	Yes	Yes	No	2
	Similarity Learning [52]		1		1		
7	Reidentification by Rela- tive Distance Comparison	No	Yes	No	No	Yes	2
	[135] tive Distance Comparison						
8	Deep Metric Learning	No	No	Yes	Yes	Yes	2
	for Practical Person		1				
1.5	Re-Identification [132]		.,	1	1,	1,	
10	Improved Deep Metric Learning with Multi-class	No	No	No	Yes	Yes	2
	N-pair Loss Objective [98]						
12	Deep Metric Learning via	No	Yes	No	No	Yes	2
	Lifted Structured Feature		1				
	Embedding [100]						

14	Learning Deep Embeddings with Histogram Loss [113]	Yes	No	No	No	Yes	2
24	Hard-Aware Deeply Cas- caded Embedding [133]	Yes	No	No	No	Yes	2
26	Ranked List Loss for Deep Metric Learning [121]	No	Yes	No	Yes	No	2
29	Deep Metric Learning Meets Deep Clustering: An Novel Unsupervised Approach for Feature Embedding [73]	No	No	Yes	Yes	No	2
30	Exponential triplet loss [110]	Yes	Yes	No	No	No	2
2	Neighbourhood Compo- nents Analysis [27]	No	No	No	No	Yes	1
13	Deep clustering: Discriminative embeddings for segmenta- tion and separation [34]	No	No	No	No	Yes	1
15	Local Similarity-Aware Deep Feature Embedding [37]	No	No	No	No	Yes	1

After reviewing over 30 publications in the field of DML, the following answers have been found to the research questions (RQ):

- RQ1: In this study, 27 types of loss functions for DML have been identified. They have been categorized and listed in their historical order in Fig. 4. All the DML loss functions originate from Margin Ranking Loss, which itself is a variant of earlier Hinge Loss functions [127]. Then most of the newer loss functions originate from Contrastive loss [7], Triplet Loss [23], Histogram Loss [113], and Quadruplet Hinge Loss [52]. For most of the publications included in the study research subject is either the loss function itself or the sample mining methodology.
- RQ2: Latest loss functions and sample mining strategy achieve significantly better results than the previous functions as seen in Table
 Also, datasets used in experiments have changed over time, but practical applications like image re-identification have not.
- RQ3: Most of the novel loss functions do not have theoretical explanations or derivations of the novel loss functions used in the model, but nonetheless some loss functions like Contrastive Loss [14], Triplet Hinge Loss [127], KISS-BCE Loss [46], Quadruplet Hinge Loss [52] and Binomial Deviance Loss [132] do have theoretical proof. Most of the other loss functions discussed in this study have their grounding in empirical experiments.

• RQ4: A number of significant limitations of DML loss functions and methods have been found in this study. Most of the loss functions require hyper-paramter α that is, a margin between clusters, but in realistic datasets this might not be equal for all classes. Some classes might have more variance than others. Some efforts have been made to resolve the issue like Proxy NCA Loss [70], but even this loss function requires hyper-parameter tuning and prior knowledge of class distributions.

Intra-class similarities are also a significant problem. Most of DML loss functions ignore the fact that the same class samples also have their own distributions of similarities. Some works address this problem, but it still not fully solved [86] [52] [121].

Sample mining strategies also are a major problem as they require significant computing resources dedicated just for selecting the best samples to train the model and apply the loss function. Multiple sampling strategies have been developed like Hard [23], Semi-Hard [23], N Hard Mining [98], Neighborhood Sampling [86], Distance weighted sampling [64] and others, but the problem is still not yet fully solved.

Choice of the number of dimensions of embedding vectors and their embedding space also is a problem that still needs more studies. Publications differ in suggestions, how many dimensions to choose, and what normalization methods to apply to embeddings. Typical method is to use Euclidean distance with L2 normalized embeddings with high dimensionality of at least 128 dimensions [23], but some of the latest papers propose also alternative embedding space normalization [37] [117] and lower number of dimensions per embedding [110].

Another significant limitation is the computing resources required to reach higher accuracy in re-identification tasks, some earlier works from 2015 required over 2000 CPU hours to reach the highest accuracy on face re-identification tasks [23]. Latest works have been using GPUs to accelerate and parallelize training, but even nowadays as datasets grow larger that requires expensive GPU hardware [110].