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Topicality of the thesis topic

The dropout method prevents overfitting in deep neural network. Not much researches have been
made regarding dropout effect on regression tasks in deep models.

During litrachure search only one paper with similar research was found. The information there was
not sufficient, because first “old” version of dropout method was tested.

Most of the researches that test the effect of dropout methods are made on classification, image and
speech recognition tasks.

Papers: https://www.researchgate.net/publication/344274687_Effect of Dropout_Layer_on_Classical_Regression_Problems (similar topic)
https://arxiv.ora/pdf/2010.05244.pdf(Advanced dropout)
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The goal of the thesis

= Type 1

The purpose of this work is to perform a comparison analysis of
Simple, Drop-Connect, Gaussian and Advanced dropout methods in
a regression tasks with four datasets in deep learning model.
(Boston houses, California housing price, Weather is Szeged, BNG).



Hypothesis and tasks

Hypothesis:

1. The dropout functions prevent overfitting in regression tasks.
2. The modern ‘Advanced’ dropout function (Xie, et al., 2021) reduce overfitting better

than its predecessors.

Tasks:
e To study the background information of neural network, regression, overfitting, and

dropout function

e Analyze the open source framework ‘PyTorch’ to build a deep neural model for this
experiment.

e Develop the methodology of the experiment.

e Compare and analyze the results of four dropout functions in different datasets



Overfitting problem

Overfitting is a problem in machine learning when the model learned patterns
specific to the training data, which are irrelevant to other data. In other words,
the model is unable to produce accurate predictions for real data.

The overfitting may appear due to these factors:
e Data for deep models may contain many errors.
e Model complexity is high
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Image source: https://stackoverflow.com/questions/59856614/overfitting-and-data-leakage-in-tensorflow-keras-neural-network



Dropout method

One method of preventing overfitting is the dropout. It was invented in 2012
and since then, researchers have continued to upgrade it. This method is
often used in models for picture and voice recognition, because it showed
it's practically usefulness for long time.

(a) Standard Neural Net (b) After applying dropout.

Image source:
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-le
arning-74334da4bfc5



Simple dropout
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Drop-Connect
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Gaussian Dropout

Simple dropout Gaussian dropout
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Advanced dropout

Same behavior as gaussian dropout, but different formula, with 2
learnable parameters (mu, sigma)

y=a(w*xX+Db)*M]
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Model architecture, without
dropout
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Figure 10 Experiment model without dropout
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Drop-connect model

Drop-Connect model
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Gaussian and Advanced dropou
models
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Parameters grid-search method

Dataset Learning Epochs Amount of Batch size Dropout
name rate data to test method
(%)
Simple
Boston 0.001 2500 40% 8 dropout
houses .
Gaussian
California 0.001 2500 40% 16 dropout
houses
Drop-Connect
Weather in 0.001 2500 40% 32
Szeged
g Advanced
BNG 0.001 2500 40% 32 dropout
Table 2. Dataset information
Name Total samples Features Link
Boston houses 506 14 http://lib.stat.cmu.edu/datasets/boston
Califomnia houses 20,640 9 https://www kaggle.com/camnugent/ca
lifornia-housing-prices
Wealher'in Szeged 96,540 4 https://www .kaggle.com/budincsevity/
szeged-weather
BNG 1,000,000 18 https://www.openml.org/d/1191

Drop rate

50%

50%

50%

parameters
learning rate:
0.0001



Results, boston houses

Boston houses contains data regarding the real estate situation in Boston in 1978.

The best accuracy with standard model was 75.86%. Advanced and Simple dropout
increased max accuracy by 15% and reached 90.51%. During advanced dropout testing,

the highest accuracy was reached in 300 epochs.

Table 3 Boston houses dataset, results overview

Dropout method Dropout Best Loss in test Best R? score in P — value
probability (p) (Smaller the test (With regard to the
better) (Higher the NoDropout model and
better) Dropout models)
No Dropout - 0.2955 75.86%
Simple Dropout 0.5 0.2218 90.26% 0.022
Drop-Connect 0.5 0.365 66.88% 0.0
Gaussian Dropout 0.5 0.2454 88.03% 1.8 % 107184
Advanced Dropout - 0.2096 90.51% 1.3%107%1




Boston houses, Loss/R2 plot
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Figure 14 Boston dataset, no dropout
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Figure 18 Boston dataset with Advanced dropout
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Figure 15 Boston dataset with Simple Dropout




Results, california houses

California houses, it contains the data regarding real estate situation in

California in 1990.

Simple dropout performed the best in this case, best accuracy was

80.06%, very close to standard model’s result.

The Drop-Connect performed very bad, the R2 score results have a

large variance.

Advanced dropout reached the max accuracy during 500 epochs.

Table 4 California Housing dataset, overview of results

Dropout method Dropout Best Loss in test Best R? score in P —value
probability (p) (Smaller the test (With regard to NoDropout
better) (Higher the with Dropout models)
better)
No Dropout 0.2861 80.35%
Simple Dropout 0.5 0.2894 80.06% 3.9% 1072
Drop-Connect 0.5 0.4705 56.9% 0.0
Gaussian Dropout 0.5 0.3333 75.59% 0.0
Advanced Dropout 0.2938 79.37% 61073




alifornia housing, Loss/R2 plot
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Figure 19 California Housing - overfitting in ANN model
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Figure 20 California Housing dataset, Simple dropout
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Figure 21 California Housing dataset with Drop-Connect




Advanced dropout, california
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Figure 23 Advanced Dropout, California Housing dataset



Results, weather in szeged

Weather in Szeged is the weather storage dataset, which contains weather data
from 2006 to 2016 in the Czech Republic area. Predict the temperature by “Wind
Speed (km/h)”, “Humidity”, “Wind Bearing (degrees)” factors.

Simple dropout is the best solution with best accuracy 44.36%.

Gaussian dropout had many accuracy drops, untrustable results.
Advanced dropout reached its maximum during 500 epochs.

Table 5. Dropout functions results review, weather dataset

Dropout method Dropout Best Loss in test Best RZ score in P — value
probability (p) (Smaller the test (With regard to NoDropout
better) (Higher the with Dropout models)
better)
No Dropout - 0.58 44.96%
Simple Dropout 0.5 0.5981 44.36% 3.8% 107100
Drop-Connect 0.5 0.6068 41.83% 1.6 * 107280
Gaussian Dropout 0.5 0.6095 42.32% 0.0
Advanced Dropout - 0.5952 43.71% 8.5 % 107260




Weather dataset, Loss/R2 plot
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Figure 24 Dataset "Weather in Szeged' - Overfitting in the ANN model.
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Figure 25 Simple Dropout, weather dataset
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Figure 17 Boston dataset with Gaussian dropout




Results, BNG

BNG is synthetic dataset, generated by Bayesian Network. Many
features and many samples.

The best solution was Simple dropout with R2 score 42.89%.

However, Advanced dropout prevented overfitting and reached max
accuracy in 300 epochs.

Table 6 BNG dataset, results overview

Dropout method Dropout Best Loss in test Best R? score in P-value
probability (p) (Smaller the test (With regard to NoDropout
better) (Higher the with Dropout models)
better)
No Dropout - 0.5559 41.46%
Simple Dropout 0.5 0.5412 42.89% 0.0
Drop-Connect 0.5 0.6415 31.80% 0.0
Gaussian Dropout 0.5 0.5561 40.52% 2.7 % 107156
Advanced Dropout - 0.5817 39.40% 3 % 107106




BNG Loss/R2 plots
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Figure 29 BNG dataset without dropout
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Figure 30 BNG dataset with Simple dropout




Further research

Make more diverse comparison research with classification, speech
recognition, image classification or recognition tasks. Make comparison
analysis between simple and advanced dropouts in those tasks.

Beside dropout, add other regularization methods: L1 and L2 norms
and batch normalizations. Test them together.



Conclusions

First hypothesis is proved. No matter size or type of dropout method, it is preventing
overfitting.

Second hypothesis is disproved. The Simple dropout had better R2 score results in 3 out of
4 datasets.

Drop-Connect is the worst method to implement. It was able to prevent the overfitting,
however the R2 scores were the much lower in comparison with other dropout methods.

Advanced dropout is the good solution to replace gaussian dropout, as it produces more
precise results and the max accuracy achieved faster, that other dropout methods .



Thank you for
attention!




