https://playground.tensorflow.org
Constant rule
Power rule
Exponent rule
Chain rule
Product rule
Quotient Rule
Reciprocal rule
reciprocal rule = chain & power rule
exponent rule
import numpy as np
import matplotlib.pyplot as plt
x = np.array(
[
[2002, 300_000],
[2012, 100_000],
[2018, 1_000],
])
y = np.array(
[
[2000],
[10_000],
[30_000]
]
)
x_mean = np.mean(x, axis=0)
x_std = np.std(x, axis=0)
x = (x - x_mean) / x_std
print(x.shape)
y_mean = np.mean(y, axis=0)
y_std = np.std(y, axis=0)
y = (y - y_mean) / y_std
W_1 = np.ones((2, 4))
b_1 = np.zeros((4, ))
W_2 = np.ones((4, 1))
b_2 = np.zeros((1, ))
alpha = 0.1
losses = []
for epoch in range(10):
print(x)
linear_1_w = W_1.T @ x[:, :, np.newaxis]
linear_1 = linear_1_w[:, :, 0] + b_1
sigmoid_2 = 1 / (1 + np.exp(-linear_1))
linear_2_w = W_2.T @ sigmoid_2[:, :, np.newaxis]
y_prim = linear_2_w[:, :, 0] + b_2
print(y)
print(y_prim)
loss = np.mean(np.abs(y_prim - y))
#loss = np.mean((y - y_prim)** 2)
losses.append(loss)
d_loss = (y_prim - y)/(np.abs(y_prim - y) + 1e-8)
#d_loss = -2*(y - y_prim)
d_W_2 = sigmoid_2[:, :, np.newaxis] @ d_loss[:, :, np.newaxis]
d_b_2 = 1 * d_loss
d_x_2 = W_2 @ d_loss[:, :, np.newaxis]
d_x_2 = d_x_2[:, :, 0]
d_x_sigmoid = (np.exp(-linear_1)/(1 + np.exp(-linear_1))**2)
d_x_sigmoid_chain = d_x_sigmoid * d_x_2
d_W_1 = x[:, :, np.newaxis] @ d_x_sigmoid_chain[:, np.newaxis, :]
d_b_1 = 1 * d_x_sigmoid_chain.shape
W_1 = W_1 - np.mean(d_W_1, axis=0) * alpha
b_1 = b_1 - np.mean(d_b_1, axis=0) * alpha
W_2 = W_2 - np.mean(d_W_2, axis=0) * alpha
b_2 = b_2 - np.mean(d_b_2, axis=0) * alpha
plt.plot(losses)