RIGA TECHNICAL UNIVERSITY

Faculty of Information Technology and Computer Science
Institute of Applied Computer Systems

Department of Artificial Intelligence and System Engineering

Turii Lepesevich
Academic Bachelor Study Program “Computer Systems”

Student ID 191ADB051

ANALYTICAL COMPARISON OF
NORMALIZATION FUNCTIONS IN
REGRESSION TASKS

Scientific adviser
Doctor of science, Researcher

Evalds, Urtans

RIGA TECHNICAL UNIVERSITY

Faculty of Information Technology and Computer Science
Institute of Applied Computer Systems

Department of Artificial Intelligence and System Engineering

Work Performance and Assessment Sheet of the Bachelor

Paper

The author of the graduation paper:
Student ITurii Lepesevich

(signature, date)

The graduation paper has been approved for the defence:
Scientific adviser:
Doctor of Science, Researcher, Evalds, Urtans

(signature, date)

ABSTRACT IN ENGISH

ABSTRACT IN LATVIAN

TABLE OF CONTENTS

1. Deep maching learning............coocuiiiieeiiiiiiieiiiiee et 8
1.1. Basic archit@Ctureccocueieeiiieeiee ettt 8
T.1.1. LAN@AT JAYET 1.t 8
1.1.2. Activation fUNCEIONc.iiiiiieeeiieee e e e 9

1.2. Normalization functionscccceeeriieriiieeeciieecie e 13
1.3, LSS fUNCHIONS ..eeeiiiiee ettt e e 15
1.4. Optimization algorithm ... 17
1.4.1. The @radientcoooiiiiiiiiiiiie it e 18
1.4.2. Stochastic gradient descent (SGD).....cccoviviiiiiiiiiiiiiiiiiees 19

1.5. Backpropagation algorithmocociiiiiiiiiieeeee 22
1.6, R-SqUAared......ccueiieiiiieeeeee ettt 23
1.7, Regression tasKScooiiiieoiiiii et e et e et 24
171, INPULS — OULPULS - e 25
1.7.2. Example of architecturescccceeveciiiieieniiiceecieeeeeeeeeeee 25
1.7.3. Loss functions — MSE, MAE, Huber LoSScccccoeviviiiiiiieen... 26

1.8. Importance of normalization functionscccccevvvveeirniienrenicinnenn. 27

2. MethOdOIOZY . .cooeieeiieee e e 27
2.1, DAtasets ..ooooveeiiiiiiiiiie e 28
2.1.1. Dataset - Weather in Szegedcccvvveeiiiiiiiniieeeiiee e 28
2.1.2. Datasets — CalCOFI..........ccccccoiiiiniiiiiiiicccc e 36

2.2. Normalization functionscccccveeviuieriiiiciniieeenie e 39
2.3 ATCHILECTUTE ..eeiiiveeiiieeciiceetiee ettt e s e 39
24 MEITICS .ttt ettt e st e et e e e e e e s eesree s 39
2.4, 1. R-SQUATEA ...cocoeeieieeeiiee et e e e e e e s enr e e e e sabar e e s snrnneeenees 39

3. RETCTEIICES uvvevvveiiieiiieie ettt sttt e ee e baeesane e es 41

INTRODUCTION

Artificial Intelligence

Artificial Intelligence (Al) is a specific field in Computer Science that implies
solving cognitive tasks that are created for human intelligence. Such tasks could be
described as:

e Learning.
e Solving problems.
e Pattern recognition.

In modern world Al is widely used in different spheres. We can see
development of this technology in such fields as healthcare, military, social field, etc.

For the last few years development in the discipline of statistical data has
created such new domains as: Machine Learning (ML) and Deep Learning (DL).

Those domains created background for further improvement of Al technology.
Deep Learning

Deep learning is a sub-field of Al. DL uses multilayer algorithms to deep
analysis of inputted data. Such algorithms recognize patterns and find relationship
between different features of data. If a huge dataset would be used, DL algorithm
could recognize dependencies between individual variables.

As an example, image recognition could be given. DL is able to distinguish important
parts of particular image and predict class of that image (such as is bird or fish is
located on the image).

Deep learning models are widely used in such technologies as self-driving cars,

cancer prediction, business production optimization,speech recognition, etc.
Aim

Aim of this paper is to perform analytical comparison of different
normalization functions. It is required to create methodology so optimal normalization
function would be applied in particular problem.

In this graduation paper — basic concepts of DL field will be described, several

experiments will be performed and compared. Based on experiments results —

conclusion will be made and required guidelines for normalization function will be

created.

Section Content

Firstly, theoretical background will be described. There will be information

about basic concepts of DL field:

Linear layers.

Loss functions.

Backpropagation algorithm.
Optimization algorithms.

Metrics (NRMSE, R-2 Score).
Regression tasks.

Importance of normalization functions.
Learnable methods.

Basic architecture.

Datasets.

After theoretical part — experimental part will be shown. Experimental results

will be verified in verification part.

1. DEEP MACHINE LEARNING

1.1. Basic architecture
1.1.1. Linear layer

I ;mear layer is a fundamental structure of DL model. It can take one or several
arguments and as an input and produce one or several arguments as an output.Some

layers are stateless, but more frequently layers have a state: the layer’s weights, one or

several tensors learned with stochastic gradient descent, which together contain the

network’s knowledge (Chollet, 2018).

A common view of linear function is next;:

F(x)=w=+*x+ b, #(1.1)
where F(x) — output of the function that depends on argument x;
w—coeftticient by which independent variable x is multiplied;
b — coefficient which is added toindependent variable x.

Every linear function has view as Formula (1.1). For example, if there is such

—12+x+6

equation as: F(x) = + 5 (you can see there are 2 w arguments and 2 b

arguments) — it can be converted to such view: F(x) = —6 = x + 8.

Below you can see graph of Formula (1.1):

10

o

-5

Fig. 1.1. Example of linear graph

As 1t 1s seen of Figure (1.1), every linear graph can be described as a

8

straightslope. w argument states the angle of the slope and b argument states how far
the line is from x axes.
!.1.2. Activation function

As (Trask, 2019) states: “An_activation function is a function applied to the

neurons in a layer during prediction. Hversimpliﬁed, an activation function is any

function that can take one number and return another number. But there are an infinite

number of functions in the universe, and not all of them are useful as activation

functions. There are several constraints on what makes a function an activation

function. Using functions outside of these constraints is usually a bad idea, as you’ll

see.”

Talking about constrains — several rules could be nameﬁw first one is that
activation function should be continuous and infinite in domain. There should not be a
situation where you put a number in your functions but it can not produce an output
for that value (Trask, 2019).

As an example, let’s look at Figure (1.2) and Figure (1.3):

10

-10

Fig. 1.2. Example of discontinuous function

-10

Fig. 1.3. Example of continuous function

As it is seen, on the first example, Figure (1.2) there are some values of x that

has no values of y. This is a graph of an Formula (1.2):

fx) =x, x>5
f(x){f(x)=2x, x<0’

where f(x) — the function of x value;

#(1.2)

x — independent variable.

Discontinuous activation functions that have some ‘empty’ values of y would
be a horrible example for a DL model (Trask, 2019).

Talking about an alternative — on the Figure (1.3), you can see function that is

continuous. This is a graph of an Formula (1.3):

fx) = x?, #(1.3)
Where f(x) — the function of x value;
x — independent variable.
This activation function seems very nice as no ‘empty’ values are on it’s

domain and no problems would occur during learning algorithm.

Hext important rule is that activation functions should be monotonic (never

10

czan ing direction) (Trask, 2019).
!én Figures (1.3) and (1.4) examples of monotonic and non-monotonic

functions could be seen:

Fig. 1.4. Example of sigmoid function

@mction on Figure (1.3) increases and decreases, in other words, it changes
direction though it’s domain. On the other side, Figure (1.4) shows sigmoid functions
that is monotonic. [t increases from 0 to 1 though the whole slope.

Difference between those 2 types of functions could also be described as non-
monotonic function has one or several places where for 2 or more values of x there
will be only 1 value of y (in Formula (1.2) — for x = (—4,4), y = 2). On the other
hand, monotonic equation assumes that for 1 value of independent variable there can
only be 1 value of dependent variable(Trask, 2019).

As %sk, 2019) states: “This particular constraint isn’t technically a

requirement.” Unlike functions that have missing values (noncontinuous), you can

optimize functions that aren’t monotonic”.

Third rule is about activation function being non-linear: Explanation of this

rule is described in (Trask, 2019): “In order to create it, you had to allow the neurons

to selectively correlate to input neurons such that a very negative signal from one

11

input into a neuron could reduce how much it correlated to any input. As it turns out,

this phenomenon is facilitated by any function that curves. Functions that look like

straight lines, on the other hand, scale the weighted average coming in. Scaling

something doesn’t affect how correlated a neuron is to its various inputs. It makes the

collective correlation that’s represented louder or softer. But the activation doesn’t

allow one weight to affect how correlated the neuron is to the other weights. What

you really want is selective correlation. Given a neuron with an activation function,

you want one incoming signal to be able to increase or decrease how correlated the

neuron is to all the other incoming signals. All curved lines do this™.

Examples of such functions can be seen on Figures (1.1) and (1.4). Linear
function that is based on Formula (1.1) just scales the weighted average, however,
function illustrated on Figure (1.4) allows to see the correlation of the inputted signal

to all other signals.

The last but not least, as we are talking about DL as n algorithm that is
performed by computer and that takes huge dataset as an input, activation functions

are considered to be low on computational resources. E irask, 2019) states: “Many

recent activation functions have become popular because they’re so easy to compute

at the expense of their expressiveness (relu is a great example of this)”.

Relu equation is based on Formula (1.4) and can be seen on Figure (1.5):

)% 150

where f(x) — the function of x value;

x — independent variable.

10

-5

Fig. 1.5. Example of ReLU function

1.2. Normalization functions

To understand, why we need normalization — let’s take an example of a model
that predicts house prices. In such dataset — there will be a lot of features of a house,
such as: number of floors, location, area, number of rooms, height of ceiling, etc. In

such way values of those features would vary from ranges like (0 - 4) and (10000 -

1000000‘.
ook (Chollet, 2018) explains why it can be a problem: “In general, it isn’t

safe to feed into a neural network data that takes relatively large values (for example,

multidigit integers, which are much larger than the initial values taken by the weights

of a network) or data that is heterogeneous (for example, data where one feature is in

the range 0—1 and another is in the range 100—200). Doing so can trigger large

gradient updates that will prevent the network from converging. To make learning

easier for your network, your data should have the following characteristics:

Y Take small values—Typically, most values should be in the 0—1 range.

Y Be homogenous—That is, all features should take values in roughly the

same range.”

Problem described above could be solved though applying normalization

13

function on your dataset. Usually Formula (1.5) is used. It makes all the values of

dataset (values of features) to vary in the range from 0 to 1:

_ (x — Xmin)
(xmax — Ximin)

where x,,.,, — new value of the feature (after recalculation);

#(1.5)

xnew

x — old value of the feature (before recalculation);
Xmin — Minimal value among values of particular feature;
Xmar — Maximal value among values of particular feature.
Another technic to which normalization is referred is “Batch
G?ormalizrcttion”.(Aggrclrwal, 2018) explains that method is such way: ‘“Batch

normalization is a recent method to address the vanishing and exploding gradient

problems, which cause activation gradients in successive layers to either reduce or

increase in magnitude. Another important problem in training deep networks is that of

internal covariate shift. The problem is that the parameters change during training,

and therefore the hidden variable activations change as well. In other words, the

hidden inputs from early layers to later layers keep changing. Changing inputs from

early layers to later layers causes slower convergence during training because the

training data for later layers is not stable. Batch normalization is able to reduce this

effect. In batch normalization, the idea is to add additional “normalization layers”

between hidden layers that resist this type of behavior by creating features with

somewhat similar variance”.

Referring to what was preciously said — our DL model consist of different
layers of linear and activation functions. Batch normalization usually applied before
each linear function except the fist one. In such way, outputs from activation blocks
are normalized and transferred to further linear layers.

Below you can see implementation of such model in Python:
class Model(torch.nn.Module):

def __init__(self);
super().__init__()
self.layers = torch.nn.Sequential(
torch.nn.Linear(in_features=10 + 2 * len(dataset_full.labels), out_features=24),
torch.nn.ReLU(),
BatchNormLast(in_features=24),

torch.nn.Linear(in_features=24, out_features=16),

14

torch.nn.ReLU(),
BatchNormLast(in_features=16),

torch.nn.Linear(in_features=16, out_features=1)

On the example above, several layers are seen. Layers goes in such sequence:
Linear — ReLLU — Batch Normalization — Linear — ReLU — Batch Normalization —
Linear. As it was already stated, each time values go through Linear and ReLU layer
— before being transferred to next block of such layers, they are normalized with
Batch Normalization layer.

More detailed explanation on how those layers work — paper (Buduma and

Locascio, 2017) explains: “Normalization 0; image inputs helps out the training

process by making it more robust to variations. Batch normalization takes this a step

further by normalizing inputs to every layer in our neural network. Specifically, we

modify the architecture of our network to include operations that:

1. Grab the vector of logits incoming to a layer before they pass through the

nonli- nearity.

2. Normalize each component of the vector of logits across all examples of the

mini- batch by subtracting the mean and dividing by the standard deviation (we keep

track of the moments using an exponentially weighted moving average).

3. Given normalized inputs X , use an affine transform to restore

representational power with two vectors of (trainable) parameters: yX + 7.

1.3. Loss functions

Choose of loss function is a crucial moment in DL model. Point of loss
function is to determine how far predicted value is from the real value. More precise
wording is stated in (Chollet, 2018): “Loss function (objective function)—The
quantity that will be minimized during training. It represents a measure of success for
the task at hand™.

Imagine, you have a goal to maximize average of well-being of all humans.
With poor loss function your trained Al will choose to kill all humans, as in that case
their average happiness will grow, however we understand how awful this solution is.
We need to keep in mind that every Al model tries to lower loss functions with any

cost (Chollet, 2018).

15

Table 1.1(Trask, 2019)

Correspondence of loss function to particular problem

(%oblem type

Last-layer activation

Loss function

Binary classification sigmoid binary crossentropy Formula
(1.6)
Multiclass, single-label softmax categorical crossentropy
classification Formula (1.7)
Multiclass, multilabel sigmoid binary crossentropy Formula
classification (1.6)
Regression to arbitrary values None MSE Formula (1.8)
Regression to values between 0 sigmoid mse Formula (1.8) or

and 1

binary crossentropy Formula

(1.6)

N =@ * log(p) + (1 — y) = log(p))

loss =

where loss — loss that should be calculated via formula;

N — number of predictions;

p; — predicted probability;

y; — real probability of the class.

N

#(1.6)

N
loss = = > —(y; + log(p) #(1.7)
i=1

where loss — loss that should be calculated via formula;

N — number of predictions;

p; — predicted probability;

v; — real probability of the class.

where loss — loss that should be calculated via formula;

N — number of predictions;

- p)?
N

16

#(1.8)

p; — predicted probability;
y; — real probability of the class.

1.4. Optimization algorithm

Previously, it was described how data is transformed through different (linear
and activation) layers. Below in Formula (1.9) you can see data transformation via

linear layer:

output = W * input + b#(1.9)
where output — output of linear layer;
W — weight of the input;
b — bias;
input — data that is inputted in the model.
Expression (1.9) shows you very simple prediction of output based on

learnable parameter input. W and b are tensor or so called, learnable parameters of

the layer.
équally, values of those parameters are assigned randomly at the beginning of
the learning process and are changed during this process based on algorithm. The idea
is to adjust those values through training loop (Chollet, 2018).
(Chollet, 2018) describes training loop is such sequence:

e “Draw a batch of training samples x and corresponding targets y.

e Run the network on x (a step called the forward pass) to obtain

predictions y pred.

e Compute the loss of the network on the batch, a measure of the

mismatch between y pred and y.

o Update all weights of the network in a way that slightly reduces the

loss on this batch”.

Iterating through this loop will make you loss dramatically decrease. Now
let’s talk about each step. Step 1 is just about inputting and outputting values. Step 2
is about forward passing inputted x values. In this step your information (features)
that you use are going though sequence of layers of you learning model. Step 3
involves usage of loss function (described in previous section). It calculates the
distance of the output of the model (predicted values) and real values. The most

interesting part is step 4, on this stage we need to somehow decide in which direction

17

and by how far to change the weights of features use&%ifferent examples on how to
do it could be given, such as we could ‘freeze’ all weight except one coefficient
which is under consideration. Let’s imagine that with this one coefficient equals 0.5 -
loss of our computation is 10.After changing this coefficient value to 0.35 — loss
changes to 15, however if we change it to 0.65 — the loss will be 5. From this iteration
it seems that updating our coefficient with +0.15 is the right direction to minimize
loss between real value and predicted one (Chollet, 2018).

iciency of this experiment (Chollet, 2018) describes in such way: “This

approach would be horribly inefficient, because you’d need to compute two forward

passes (which are expensive) for every individual coefficient (of which there are

many, usually thousands and sometimes up to millions). A much better approach is to

take advantage of the fact that all operations used in the network are differentiable

and compute the gradient of the loss with regard to the network’s coefficients. You

can then move the coefficients in the opposite direction from the gradient, thus

decreasing the loss™.

1.4.1. The gradient

In (Chollet, 2018) we can fund such explanation of what is a gradient: “A

gradient is the derivative of a tensor operation. It’s the generalization of the concept

of derivatives to functions of multidimensional inputs: that is, to functions that take

tensors as inputs.Consider an input vector x, a matrix W, a target y, and a loss

function loss. You can use W to compute a target candidate y pred, and compute the

loss, or mismatch, between the target candidate y pred and the target y”.

As an example let’s imagine we have weight W with value WO0. In that case,

derivative of that weight in the point W0 would be gradient:

gradient(f(W0))#(1.10)
where gradient — gradient;
f — function that is the dependable variable of a gradient;
W0 — dependable variable of a function, value of weight that is under consideration.
where each coefficient of that gradient would describe direction and magnitude of the
change of our loss function that will occur in case we adjust different values to W0

coefficient. Gradient described in Formula (1.10) is the gradient of the function:

18

f(W) = loss#(1.11)
where f — function of gradient;
[/ — dependable variable, value of weight;
0ss — value of loss function.
in the point where weight = W0 (Chollet, 2018).

From math we know that derivative of a function f(x) with just a single
coefficient can describe the slope of that f function. In the same way, gradient in
Formula (1.10) can describe curvature of function f(W) around point WO (Chollet,
2018).

Summing up the knowledge above, we can understand how minimizing the
loss in our model could be performed. Just as we can reduce value of f(x) by moving
x in the opposite direction from the derivative, in the same way, value of f (/') could
be reduced via moving the W value from the opposite of it’s gradient. As an example,
such equation could be considered:

W1 = W0 — step * Formula(1.10)#(1.12)
where W1 — updated value of weight that is under consideration;
W0 — value of weight that is under consideration before updating it;
step — small scaling factor that represents how far we will go in the direction to
update new weight;
Formula(1.10) — formula of the gradient described in Formula (1.10), derivative of

the weight W0(Chollet, 2018).

1.4.2. Stochastic gradient descent (SGD)

Having derivation function we could find the point on its gradient where
derivative of the function is equal to 0. Point where derivative of a function equals to
0 — is the point of minimal value of the function itself. In the scope of a neural
network — our task is to find combination of weights using which in forward pass,
lead us to the minimum loss(Zhang ef al, 2021). This could be done solving the

equation:

gradient(f(W)) = 0#(1.13)
where gradient — gradient;

f — function that is the dependable variable of a gradient;

19

W — dependable variable of a function.

Such way of reducing the loss could be applied on tasks small number of

variables (somewhere around 2-4), however doing it in real tasks where datasets have

thousands or millions of features — it would be really insufficient. Instead, we could

use a four-step algorithm that was preciously described. As we are dealing with

differentiable function — computation of its gradient could be performed to optimize

step number 4 (updating the weight in the opposite direction of its derivative will

lower the loss every iteration)(Chollet, 2018):

Draw a batch of training samples x and corresponding targets v.
Run the network on x to obtain predictions y_pred.

Compute the loss of the network on the batch, a measure of the

mismatch between y pred and y.

Compute the gradient of the loss with regard to the network’s

parameters (a backward pass).

Move the parameters a little in the opposite direction from the

gradient—for example W -= step * gradient—thus reducing the loss on

the batch a bit.

Described algorithm above is an example of a SGD algorithm. Below you can

see graphical representation of it.

4
Loss i Step, also called learning rate

value)
Starting

point (t=0)

—

Parameter
value

Fig. 1.6. Graphical representation of SGD algorithm(Chollet, 2018).

It was already described, why we need step variable in Formula (1.12),

however a note about this variable should be added. If too small value would be

20

picked — model could be stuck in local minimum (Figure 1.7) or it would spend too
much iterations and learning process will last for too long time. If large value would
be chosen —updated weights could be found in completely random positions of the

curve and end up not minimizing the loss, but even increasing (Chollet, 2018).

A
Loss
value

Local
minimum

Global
minimum
Parameter

value

Fig. 1.7. Representation of local and global minimum (Chollet, 2018).

As it is seen on Figure (1.7), loss function has several points where its value
could be described as minimum. Local minimum represents point of the curve where
loss decreases, but not getting to the minimal value of the whole curve. With small
step value, model could decide that this local minimum is the only minimum in our
function and get stuck in it, however, we want our model to get to the real minimum,
named global minimum.

Such problem could be solved via using some technics, (Chollet, 2018)
describes how it could be performed: “You can avoid such issues by using

momentum, which draws inspiration from physics. A useful mental image here is to

think of the optimization process as a small ball rolling down the loss curve. If it has

enough momentum, the ball won’t get stuck in a ravine and will end up at the global

minimum. Momentum is implemented by moving the ball at each step based not only

on the current slope value (current acceleration) but also on the current velocity

(resulting from past acceleration). In practice, this means updating the parameter W

based not only on the current gradient value but also on the previous parameter

update, such as in this naive implementation”.

Here you can see a small algorithm in programming language that realizes that

21

ethod (adopted from (Chollet, 2018)):

past_velocity = 0.

momentum = 0.1

while loss > 0.01:

w, loss, gradient = get_current_parameters()

velocity = past_velocity * momentum + learning_rate * gradient

w = w + momentum * velocity - learning_rate * gradient
past_velocity = velocity
update_parameter(w)

1.5. Backpropagation algorithm

With the knowledge background of optimization algorithm, we can proceed
further to backpropagation algorithm. This technic is based on widely known chain
rule of derivation. The situation is that, in neural network, there are a lot of layers, and
they are connected with each other in a certain sequence. To compute gradient of a
whole model —chain rule is applied(Chollet, 2018; Vasilev et al., 2019).

Tern of backpropagation is referred to the backward phase that is used in
every multi-layer neural network. There are 2 phases(Aggarwal, 2018):

e Forward phase: we input values of the features of a dataset that are
going to be used in computation of the output. After values are
inputted — they go through defined layers (like linear or activation) and
used for calculations with respect to their weight. We try to minimize
loss between outputted value and the real value that we have. Next step
would be to calculate derivative of the loss function with respect to
previously used weight.

e Backward phase: idea of this phase is to calculate gradient of loss
function with respect to weights of features to reduce this loss
function. Calculation of those weights is performed via applying chain
rule of differential calculus. Term back appears because, using chain
rule we start calculation from the bottom layers of the model and
sequentially listing up to the top layers.

Let’s consider an example (Chollet, 2018):

fIW1,W2,W3) = f2(W1, f3(W2, f4(W3)))#(1.14)
where f1 — main function of the model that includes all the layers of the model (3

22

layers in our case);
f2 — inner function of the model, that takes W1 and f3as inputs (it is the top layer);
f3 — inner function of the model, that takes W2and f4as inputs (it is an output for
f2)
f4 — inner function of the model, that takes W3 inputs (it is an output for f3);
W1, W2, W3 — weights of the features from dataset.

Using Function (1.14), we would need to apply chain rule in order to calculate
its derivative. We would start from deriving f4, then 3 and up with computing f2. A
more formulaic form of this calculation is represented in Function (1.15)(Petersen and

Pedersen, 2007):

flg(x) = f'(g(x)) * g'(x)#(1.15)
where f — main function that takes (g(x)) as an input;
g — inner function that takes x as an input;
x —argument of g function.
Today’s usage of backpropagation algorithm is thoroughly described in

(Chollet, 2018): “Nowadays, and for years to come, people will implement networks

in modern frameworks that are capable of symbolic differentiation, such as

TensorFlow. This means that, given a chain of operations with a known derivative,

they can compute a gradient function for the chain (by applying the chain rule) that

maps network parameter values to gradient values. When you have access to such a

function, the backward pass is reduced to a call to this gradient function. Thanks to

symbolic differentiation, you’ll never have to implement the Backpropagation

algorithm by hand. For this reason, we won’t waste your time and your focus on

deriving the exact formulation of the Backpropagation algorithm in these pages. All

you need is a good understanding of how gradient-based optimization works”.

1.6. R-Squared

R-squared is a type of metric that is used in popular DL model to determine
variation of dependent variables by the independent variables of the dataset. Book
(Chicco, Warrens and Jurman, 2021) gives such explanation: “The coefficient of
determination (Wright, 1921) can be interpreted as the proportion of the variance in
the dependent variable that is predictable from the independent variables™.

R-squared is based on Formula (1.16):

23

L -)P
';V:1(Y - y:)z

R?2 =1 #(1.16)

where R? — R-squared;

N — number of samples;

X — independent variable of a dataset;

Y; — dependent variable of a dataset (true value of the dataset);
Y— mean of real values.

As it was already described, by the output of the Formula (1.16), we can
understand how teachable dataset is. Values of output could vary from —oo to +1,
where —oo is the worst possible value, while 1 is the best (Chicco, Warrens and
Jurman, 2021).

To understand how that metric could be used, let’s consider an example where
we have 2 regression models with output that scales from 0 to 10 in one case and from
0 to 100 in another. With such metrics as MSE or MAE, it would be impossible to
compare those 2 models, however, using R-squared we would get coefficient in the
range (—oo,1], which will show us the predictive performance of those datasets

(Chicco, Warrens and Jurman, 2021).

1.7. Regression tasks

Now, with theoretical background of deep learning models, we can dive into
regression tasks. There are 2 main types of DL problems(Chollet, 2018; Russell and
Norvig, 2021):

e (lassification tasks: idea of classification task is that you model
outputs probability for every class of your dataset. As an example,
image classification can be given. Pixels are taken as feature and type
of image as an output. You input set of images in required format and
model predicts what kind of classes are shown on the image (model
can predict either dog, cat or elephant is located on the image). In such
tasks, output vary in the range 0 — 1, where 0 means that that exact
class in not found or determined on the image and 1 means that
probability of that class is 100%.

e Regression tasks: in such tasks, model also, teaches based on the

24

features inputted and real values of the dataset, however, output values
can vary in any range. As an example, prediction of house prices could
be named. You input dataset to your model with features of houses,
such as: number of floors, area of the house, distance between house
and center of the city. Those features can, also, have not scalar values,
but categorical, such as: location or type of house. In such case those
categories will be transformed into scalar values so they can be used
by the model (examples of such values will be given in the practical
section). After all house knowledge is inputted, model starts to learn
and after assigning faithful values to the weight of the features, it starts

to can predict the price.

1.7.1. Inputs — Qutputs

First stage of building the model-implementation of dataset based on which
learning would be performed. Usually, values of dataset can vary in a huge range and

it can slow down the learning. Eolution of this problem is described in (Chollet,

2018): “It would be problematic to feed into a neural network values that all take

wildly different ranges. The network might be able to automatically adapt to such

heterogeneous data, but it would definitely make learning more difficult. A

widespread best practice to deal with such data is to do feature-wise normalization:

or each feature in the in§ut data (a column in the input data matrix), you subtract the

mean of the feature and divide by the standard deviation, so that the feature is

centered around 0 and has a unit standard deviation”.

Book (Chollet, 2018), also, gives example of how such normalization could be
rformed:

mean = frain_data.mean(axis=0)

train_data -= mean

std = train_data.std(axis=0)

train_data /= std
test_data -= mean
test_data /= std

1.7.2. Example of architectures

After successful implementation of the dataset, we can proceed to building the

25

%‘gical unit of the model. As it was previously mentioned, model consist of different
layers of functions, such as linear or activation (sigmoid, ReLU, Tanh, etc...).
Depending on size of dataset, complexity of the model and many other circumstances,
different layers and their sequence will be built.

sually, last layer of a regression model is a linear layer. With that, model can

output values in a various range, which is a crucial factor of a regression neural

network. For example, if sigmoid function would be chosen, for the last layer, output

could only vary in a range from 1 to 0 (which is acceptable for classification model,
but not for regression)(Chollet, 2018).

Example of such architecture is given in scientific paper (Chollet, 2018). This

is an example of Python code using opensource library for deep learning models

eras':

from keras import models

from keras import layers
def build_model():

model = models.Sequential()

model.add(layers.Dense(64, activation="relu’,

input_shape=(train_data.shape[1],)))

model.add(laye@inse(m, activation="relu'))
model.add(layers.Dense(1))

model.compile(optimizer="rmsprop', loss='mse', metrics='mae'])

return model

1.7.3. Loss functions — MSE, MAE, Huber Loss

In the previous sub-section you can find background knowledge of loss
functions. It was already said, that loss function allows you to determine distance
between real values and predicted ones. Here briefly will be described 3 main types of
such loss function that are used in regression models.

ean average error (MAE) is one of the most common and simple functions
to calculate loss of the model. MAE is based on Formula (1.17). First step is to find
distance between one particular output and real value connected with features of this
output. Then all of those distances are summed up and divided by the number of

outputs(Chai and Draxler, 2014):

26

N 1y, — 7
loss = W#(l.lﬂ

where loss — value that represents loss that calculates via formula;
N — number of observations;

y; —real value;

Vi — output of the model;

i — number of iteration.

Another common function that is used to determine loss, is the mean square
error (MSE). First step is the same as in MAE, we calculate distance, however, after
that, result of first calculation is squared. After that program must sum all of those
squares and divide by the number of observations. Formula (1.18) represents that
equation(Chai and Draxler, 2014):

Z?:l()’:‘ - ¥)?

loss = N #(1.18)

where loss — value that represents loss that calculates via formula;

N — number of observations;
y; — real value;
¥; — output of the model;
i — number of iteration.
Last example of a loss function in this section is Huber loss. This function is
considered as a balance between MSE and MAE. Calculation of loss could be

performed using Formula (1.19)(Meyer, 2021):

1 N

E *(yi — V)

delta®
2 ’

where loss — value that represents loss that calculates via formula;

loss = ,for(y; — ¥;) < delta#(1.19)

otherwise

delta = (y; — %) —

delta — parameter defined by user;
y; — real value;

¥; — output of the model.

1.8. Importance of normalization functions

2. METHODOLOGY

27

2.1. Datasets

In the related work several datasets will be implemented to compare usage of

normalization functions under different circumstances. In this section such dataset are

described.

2.1.1. Dataset - Weather in Szeged

The first dataset is “Weather in Szeged”. It consists of 96543 samples of data

with 12 features. Each row has next features:

Formatted Date: In this column date and time of weather observation is
recorded. Data is stored in scalar type. Example: “2006-04-01
00:00:00.000 +0200”.

Summary: Overall information about forecast. Data is stored in text
format. Example: “Partly Cloudy”.

Precip type: Type of precipitation during particular time. Data is stored
in textformat. Example: “rain”. Figure (2.1).

Temperature: This column represents the temperature in Celsius. Data
is stored in scalar type. Example: ©“9.47222222222222”. Figure (2.2).
Apparent Temperature: This feature represents apparent temperature of
particular time. Data is stored in scalar type. Example:
“7.38888888888888™. Figure (2.3).

Humidity: Here humidity of the air is observed. Data is stored in scalar
type. Example: “0.89”. Figure (2.4).

Wind Speed: Information about speed of the wind is stored (in
kilometers per hour). Data is stored in scalar type. Example:
“14.1197”. Figure (2.5).

Wind Bearing: Wind bearing is observed in this column (in degrees).
Data stored in scalar type. Example: “251”. Figure (2.6).

Visibility: This feature represents visibility in kilometers. Data is

stored in scalar type. Example: “15.8263”. Figure (2.7).

This dataset is based on weather observations during period from 2006 — 2016

in Szeged.

Below you can see histograms for most of the features to understand the

statistics of this dataset:

28

70000

30000

20000

Fig. 2.1. Histogram forfeature “Precip type”

On Figure (2.1), you can see histogram for the feature “Precip type” which
shown how many number of different types of precipitation were stored in current
dataset. Each number on x axes represents each type of precipitation:

e (0 — No precipitation was recorded,
e 1 —Rain,
e 2 —Snow.

It is clearly seen that rain is the dominant precipitation among dataset. To be

exact, there are 85224 times rain was recorded, 10712 — snow and 517 times no

precipitation was found (all together 96543 records).

29

Fig. 2.2. Histogram for feature “Temperature”

Figure (2.2) allows us to notice normal or Gaussian distribution of the
temperature samples. X axes represents temperature of a row. We can see that most of
values of that feature are concentrated in the middle of a range. The lowest

temperature recorded is -21.8 C, while maximum is 39.9 C.

14000

6000

30

Fig. 2.3. Histogram for feature “Apparent temperature”

This histogram (Figure 2.3), as previous, shows us normal distribution of the
values of current feature. Most of the values are located in the range from -5 C to 25

C. Minimal apparent temperature recoded is -27.7 C, while maximum is 39.3 C.

17500

15000

10000

Fig. 2.4. Histogram for feature “Humidity”

On Figure (2,4) histogram for feature “Humidity” is located. Unlike Figure
(2.2) and Figure (2.3) no Gaussian distribution is seen. As values grow their number
of occurrences increases. Most of occurrences are seen at the highest numbers of
humidity. In such sequence, most of the samples are located in the range from 0.7 to

1. Minimal value of humidity recorded is 0 and the maxim is 1.

31

Fig. 2.5. Histogram for feature “Wind Speed”

Looking on Figure (2.5), it is clearly seen situation that is opposite to what is
shown on Figure (2.4). As values of feature decreases — number of their occurrences
increases. This kind of distribution is called exponential distribution. With that logic,
most of the values of wind speed are distributed across the range from 0 km/h to
15km/h. Minimal wind speed that was stored in the dataset is 0 km/h, while maximum

1s 63.9 km/h.

Fig. 2.6. Histogram for feature “Wind Bearing"

32

Looking at Figure (2.6) we can observe that most of the features are located on
the extrema and at the middle part of the histogram. Biggest angle of wind bearing
recorded is 0 degree, while maximum is 359 degree. This distribution is logical as we
are talking about degrees, which are applied to a circle. It could, also, be described as:
most of the samples are located in the places where sinus of their degree would be
equal to 0 and vice versa, as sinus of their degree approaches 1 — number of

occurrences decrease.

15000

Fig. 2.7. Histogram for feature “Visibility"

Figure (2.7) allows us to understand normal visibility in the region when data
was recorded. Most of the time, visibility is approximately 10 kilometers. Minimal

value that was recorded is 0 km, while maximum is 16.1 km.

33

30000

20000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Fig. 2.8. Histogram for feature “Summary”

24 25 26

As on Figure (2.1), Figure (2.8) shows us distribution of text format data. That

kind of data usage was described in previous section. To use text data in learning

process — we need to represent it in a way of scalar values. For each value there is one

concrete class:

0 —Breezy,

1 — Breezy and dry,

2 — Breezy and Foggy,

3 — Breezy and Mostly Cloudy,
4 — Breezy and Overcast,

5 — Breezy and Partly Cloudy,
6 — Clear,

7 — Dangerously Windy and Partly Cloudy,
8 — Drizzle,

9 — Dry,

10 — Dry and Mostly Cloudy,
11 — Dry and Partly Cloudy,

34

e 12 -Foggy,
e 13 — Humid and Mostly Cloudy,
e 14 — Humid and Overcast,
e 15 —Humid and Partly Cloudy,
e 16— Light Rain,
e 17 —Mostly Cloudy,
e 18 — Overcast,
e 19— Partly Cloudy,
e 20— Rain,
e 2] — Windy,
e 22— Windy and Dry,
e 23 — Windy and Foggy,
e 24 — Windy and Mostly Cloudy,
e 25 - Windy and Overcast,
e 26 - Windy and Partly Cloudy.
It is seen that mostly, dataset is filled with values of: “Clear”, “Foggy”,
“Mostly Cloudy”, “Overcast”, “Partly Cloudy”.
Plotting of histograms was performed using python programming language
with opensource library for plotting “matplotlib”. Below, you can see code which was
written for plotting:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
X =np.array(pd.read_csv("./weatherHistory.csv"))
for scalar_feature in range(3, 6):
self. X = X[;, scalar_feature:9]
plt.hist(self. X[:, 5], bins=15)
plt.show()
for text_feature in range(1, 3):
self.Y = np.array((X[;, text_feature])).astype(np.str_)
unique, counts = np.unique(self.Y, return_counts=True)
y_hist = dict(zip(unique, counts))
names = list(range(0, len(y_hist)))

values = list(y_hist.values())

35

plt.bar(range(len(y_hist)), values, tick_label=names)

plt.show()

2.1.2. Datasets —CalCOFI

CalCOFI is a dataset of a 60 years of oceanographic observation by California
Cooperative Fisheries Investigations. It consists of 864864 samples with 74 rows of
features each.There is data of:

e temperature,

e salinity,

e oxygen,

e phosphate,

e silicate,

e nitrate and nitrite,

e chlorophyll,

e transmissometer

e PAR,

e (14 primary productivity,
e phytoplankton biodiversity,
e zooplankton biomass,

e zooplankton biodiversity.

Even though, having such big data, not all of the rows are filled fully,
however, this problem can be solved during the stage of implementation of the
dataset.

Description of such big data would take too much space; only statistics of

most usable and important features are listed below:

36

350000

300000

250000

200000

150000

100000

Fig. 2.9. Histogram for feature “Depthm”

Histogram located on Figure (2.9) shows us distribution of values of feature
“Depthm”. This feature represents depth (in meters) that was recorded. All of those
values are of scalar type. We can see that most of the occurrences are of a depth not

more than 400 meters. As value of feature increases — number of samples — decreases.

37

50000

20000

10000

Fig. 2.10. Histogram for feature “T_degC”

Figure (2.10) shown values of feature “T degC”. Most of the values are

located in the range from 3 to 17.

40000

10000

Fig. 2.11. Histogram for feature “STheta”

38

Figure (2.11) shown values of feature “STheta”. We can see 2 point of largest
cluster of samples around values 0.4 and 5.5. Most of other values are located

between those 2 clusters.

400000

300000

100000

Fig. 2.12. Histogram for feature “Salnty”

On Figure (2.12) values of feature “Salnty” are shown. It is seen that most of
values are equal to 34. Other don’t deviate from it very much. 99% of them are in the

range from 33 to 35.

2.2. Normalization functions
2.3. Architecture

2.4. Metrics

2.4.1. R-Squared

39

R-squared is a type of metric that is used in popular DL model to determine
variation of dependent variables by the independent variables of the dataset. Book
(Chicco, Warrens and Jurman, 2021) gives such explanation: “The coefficient of
determination (Wright, 1921) can be interpreted as the proportion of the variance in
the dependent variable that is predictable from the independent variables”.

R-squared is based on Formula (2.1):

XL - 1)
va=1(y - Yi)z

R% = #(2.1)

where R? — R-squared;

N — number of samples;

X — independent variable of a dataset;

Y; — dependent variable of a dataset (true value of the dataset);
Y- mean of real values.

As it was already described, by the output of the Formula (2.1), we can
understand how teachable dataset is. Values of output could vary from —oo to +1,
where —oo is the worst possible value, while 1 is the best (Chicco, Warrens and
Jurman, 2021).

To understand how that metric could be used, let’s consider an example where
we have 2 regression models with output that scales from 0 to 10 in one case and from
0 to 100 in another. With such metrics as MSE or MAE, it would be impossible to
compare those 2 models, however, using R-squared we would get coefficient in the

range (—oo,1], which will show us the predictive performance of those datasets

(Chicco, Warrens and Jurman, 2021).

40

3. REFERENCES

Aggarwal, C.C. (2018) Neural networks and deep learning: a textbook. Cham,
Switzerland: Springer. doi:10.1007/978-3-319-94463-0.

Buduma, N. and Locascio, N. (2017) Fundamentals of deep learning: designing next-
generation machine intelligence algorithms. First edition. Sebastopol, CA: O’Reilly
Media.

Chai, T. and Draxler, R.R. (2014) ‘Root mean square error (RMSE) or mean absolute
error (MAE)? — Arguments against avoiding RMSE in the literature’, Geoscientific
Model Development, 7(3), pp. 1247-1250. doi:10.5194/gmd-7-1247-2014.

Chicco, D., Warrens, M.J. and Jurman, G. (2021) ‘The coefficient of determination R-
squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in
regression analysis evaluation’, PeerJ. Computer Science, 7, p. €623.
doi:10.7717/peerj-cs.623.

Chollet, F. (2018) Deep learning with Python. Shelter Island, New York: Manning
Publications Co.

Meyer, G.P. (2021) ‘An Alternative Probabilistic Interpretation of the Huber Loss’, in
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Nashville, TN, USA: IEEE, pp. 5257-5265. doi:10.1109/CVPR46437.2021.00522.

Petersen, K.B. and Pedersen, M.S. (2007) ‘The Matrix Cookbook’.

Russell, S.J. and Norvig, P. (2021) Artificial intelligence: a modern approach. Fourth
edition. Hoboken: Pearson (Pearson series in artificial intelligence).

Trask, A.W. (2019) Grokking deep learning. Shelter Island: Manning.

Vasilev, 1. et al. (2019) Python deep learning: exploring deep learning techniques
and neural network architectures with PyTorch, Keras, and TensorFlow. Second
edition. Birmingham Mumbai: Packt Publishing Limited.

Zhang, A. et al. (2021) ‘Dive into Deep Learning’, arXiv preprint arXiv:2106.11342
[Preprint].

41

