2022-04-25 Meeting #33 - PPO - Contrastive Loss - Siamese Network

Report: http://share.yellowrobot.xyz/quick/share-2022-04-11-65861.html

Github: https://github.com/zirismetov/AI_tutorial_tasks/tree/master/32_PPO_HPC

 

TODO

  1. Implement properly PPO - Document results

image-20220425124240297

 

image-20220425124508770

  1. Materials / Video

Youtube Video

https://youtu.be/RCoeAYpt8ZY

Jamboard: https://jamboard.google.com/d/1ofo6GOikHjjmiKtoeM9p8uKbA24LxXjZ-YmyjxC4m8I/edit?usp=sharing

Preparation materials: https://towardsdatascience.com/contrastive-loss-explaned-159f2d4a87ec https://gombru.github.io/2019/04/03/ranking_loss/

 

  1. Implement classification model

Implement classification model based on template, complete TODOs, do not use loss function for test dataset, because it has different classes.

Template: http://share.yellowrobot.xyz/1636095494-dml-course-2021-q4/1_1_contrastive_classification_template.py.zip

  1. Implement Contrastive Loss and Center of the mass classification

Implement Contrastive Loss and Center of the mass classification

using template from 1.2. task

 

  1. Composite loss

Template: http://share.yellowrobot.xyz/1636095494-dml-course-2021-q4/1_3_contrastive_homework_template.py.zip

  1. Add on top of embedding z, projection to logits and calculate CCE composite loss. Often in practice combination of both loss functions work better.

    Implement following structure of model:

    http://share.yellowrobot.xyz/1636095494-dml-course-2021-q4/homework_1_4.png

  2. For encoder implement pre-trained DenseNet from torchvision

  3. Change metric for distances from L2 Euclidean distance to Cosine Distance using following formula (change it for training and also for class evaluation/matching): http://share.yellowrobot.xyz/1636095494-dml-course-2021-q4/cosine_dist.png

     

    More on metric functions:

    https://github.com/taki0112/Vector_Similarity

  4. Train on Google Colab or on VeA GPU nodes, submit code and screenshots of results

 

Cosine similarity range: −1 meaning exactly opposite, 1 meaning exactly the same, 0 indicating orthogonality.

cosine distance

L=||zazp||2+max((m||zazn||2),0)Ccoeflog(yyidx+ϵ)D=1zazb||za||||zb||=1zazbza2zb2