
THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

I R V K A L B

O B J E C T - O R I E N T E D

P Y T H O N
M A S T E R O O P B Y

B U I L D I N G G A M E S A N D G U I S

K
A

L
B

O
B

JE
C

T
-

O
R

IE
N

T
E

D
 P

Y
T

H
O

N

Object-oriented programming (OOP) is a paradigm
that combines data and code into cohesive units,
allowing you to think differently about computational
problems and solve them in a highly reusable way.
Aimed at intermediate-level programmers, Object-
Oriented Python is a hands-on tutorial that goes deep
into the core tenets of OOP, showing you how to use
encapsulation, polymorphism, and inheritance to write
games and apps using Python.

The book begins by demonstrating key problems
inherent in procedural programming, then guides you
through the basics of creating classes and objects in
Python. You’ll build on this groundwork by developing
buttons, text fi elds, and other GUI elements that are
standard in event-driven environments. You’ll also use
many real-world code examples and two pygame-
based packages to help turn theory into practice,
enabling you to easily write interactive games and
applications complete with GUI widgets, animations,
multiple scenes, and reusable game logic. In the final
chapter, you’ll bring it all together by building a
fully functional video game that incorporates many
of the OOP techniques and GUI elements covered in
the book.

You’ll learn how to:

• Create and manage multiple objects using an object
manager object

• Use encapsulation to hide the inner details of objects
from client code

• Use polymorphism to defi ne one interface and
implement it in multiple classes

• Apply inheritance to build on existing code

Object-Oriented Python is a visual, intuitive guide to
fully understanding how OOP operates and how you
can use it to make your code more maintainable,
readable, and effi cient—without sacrificing
functionality.

A B O U T T H E A U T H O R

Irv Kalb is an adjunct professor at UCSC Silicon
Valley Extension and the University of Silicon Valley,
where he teaches introductory and object-oriented
programming courses in Python. He is also the author
of Learn to Program with Python 3: A Step-by-Step
Guide to Programming.

B U I LT W I T H
P Y T H O N 3 . x A N D

P Y G A M E 2 . x

T A K E C O N T R O L
O F Y O U R P Y T H O N

O B J E C T S

$44.99 ($59.99 CDN)

FSC FPO ®

PRAISE FOR
OBJECT-ORIENTED PYTHON

“This book is both entertaining and educational, and a great stocking stuffer,
especially for anyone involved with data analysis.”

—�The Vancouver Sun

“If only I could have learned programming with this book! Any sufficiently
advanced Python code will work with classes and Irv Kalb has provided a use-
ful, fun introduction to Object-Oriented Programming (OOP). The projects
start simple and build upon each other, always with a specific outcome in
mind. For example, the first example is a basic card game written in proce-
dural Python. A dozen chapters later, you’ll be including card graphics and
keeping track of the state of the deck with OOP concepts like encapsulation,
polymorphism, and inheritance—all without reading a dry textbook. Object-
Oriented Python is a fun way for new coders to level up their skills.”

—�Adam DuVander, EveryDeveloper

“The projects for the most part are real-world appropriate and easily under-
standable for multiple levels of expertise of the readers . . . Anyone who is
interested in learning Python Object-Oriented Programming would benefit
by having this book in their library. Kudos to both Mr. Kalb and No Starch
Press for this book!”

—�Full Circle Magazine

“A guide to mastering object-oriented programming from the ground up.
Irv Kalb covers the basics of building classes and creating objects, and puts
theory into practice using the pygame package with clear examples that help
visualize the object-oriented style.”

—�I Programmer

San Francisco

®

O B J E C T - O R I E N T E D
P Y T H O N

M a s t e r O O P b y
B u i l d i n g G a m e s a n d G U I s

by Ir v Kalb

OBJECT-ORIENTED PYTHON. Copyright © 2022 by Irv Kalb.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Fourth printing

28 27 26 25 24 4 5 6 7 8

ISBN-13: 978-1-7185-0206-2 (print)
ISBN-13: 978-1-7185-0207-9 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Rachel Monaghan
Production Editor: Kate Kaminski
Developmental Editor: Liz Chadwick
Cover Illustrator: James L. Barry
Interior Design: Octopod Studios
Technical Reviewer: Monte Davidoff
Copyeditor: Rachel Head
Compositor: Maureen Forys, Happenstance Type-O-Rama
Proofreader: Paula L. Fleming
Indexer: Valerie Haynes Perry

The following images are reproduced with permission:

Figure 2-1, photo by David Benbennick, printed under the Creative Commons Attribution-Share Alike 3.0
Unported license, https://creativecommons.org/licenses/by-sa/3.0/deed.en.

Library of Congress Cataloging-in-Publication Data

Names: Kalb, Irv, author.
Title: Object-oriented Python: master OOP by building games and GUIs / Irv Kalb.
Description: San Francisco : No Starch Press, [2021] | Includes index. |
Identifiers: LCCN 2021044174 (print) | LCCN 2021044175 (ebook) | ISBN
 9781718502062 (print) | ISBN 9781718502079 (ebook)
Subjects: LCSH: Object-oriented programming (Computer science) | Python
 (Computer program language)
Classification: LCC QA76.64 .K3563 2021 (print) | LCC QA76.64 (ebook) |
 DDC 005.1/17--dc23
LC record available at https://lccn.loc.gov/2021044174
LC ebook record available at https://lccn.loc.gov/2021044175

For customer service inquiries, please contact info@nostarch.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this work:
rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press iron logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

[E]

®

To my wonderful wife, Doreen.
You are the glue that keeps

our family together.

Many years ago, I said, “I do,”
but what I meant was, “I will.”

About the Author
Irv Kalb is an adjunct professor at UCSC Silicon Valley Extension and
the University of Silicon Valley (formerly Cogswell Polytechnical College),
where he teaches introductory and object-oriented programming courses in
Python. Irv has a bachelor’s and a master’s degree in computer science, has
been using object-oriented programming for over 30 years in a number of
different computer languages, and has been teaching for over 10 years. He
has decades of experience developing software, with a focus on educational
software. As Furry Pants Productions, he and his wife created and shipped
two edutainment CD-ROMs based on the character Darby the Dalmatian.
Irv is also the author of Learn to Program with Python 3: A Step-by-Step Guide to
Programming (Apress).

Irv was heavily involved in the early development of the sport of Ultimate
Frisbee®. He led the effort of writing many versions of the official rule
book and co-authored and self-published the first book on the sport,
Ultimate: Fundamentals of the Sport.

About the Technical Reviewer
Monte Davidoff is an independent software development consultant. His
areas of expertise include DevOps and Linux. Monte has been program-
ming in Python for over 20 years. He has used Python to develop a variety of
software, including business-critical applications and embedded software.

B R I E F C O N T E N T S

Acknowledgments . xix

Introduction . xxi

PART I: INTRODUCING OBJECT-ORIENTED PROGRAMMING 1

Chapter 1: Procedural Python Examples . . 3

Chapter 2: Modeling Physical Objects with Object-Oriented Programming 21

Chapter 3: Mental Models of Objects and the Meaning of “self” . 47

Chapter 4: Managing Multiple Objects . 57

PART II: GRAPHICAL USER INTERFACES WITH PYGAME 87

Chapter 5: Introduction to Pygame . 89

Chapter 6: Object-Oriented Pygame . 121

Chapter 7: Pygame GUI Widgets . 143

PART III: ENCAPSULATION, POLYMORPHISM, AND INHERITANCE 161

Chapter 8: Encapsulation . . 163

Chapter 9: Polymorphism . . 183

Chapter 10: Inheritance . . 211

Chapter 11: Managing Memory Used by Objects . 241

PART IV: USING OOP IN GAME DEVELOPMENT 265

Chapter 12: Card Games . 267

Chapter 13: Timers . 281

Chapter 14: Animation . 295

Chapter 15: Scenes . 311

x Brief Contents

Chapter 16: Full Game: Dodger . 341

Chapter 17: Design Patterns and Wrap-Up . 367

Index . . 377

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS XIX

INTRODUCTION XXI
Who Is This Book For? . xxii
Python Version(s) and Installation . xxii
How Will I Explain OOP? . xxiii
What’s in the Book . xxiv
Development Environments . xxvi
Widgets and Example Games . xxvi

PART I: INTRODUCING OBJECT-ORIENTED
PROGRAMMING

1
PROCEDURAL PYTHON EXAMPLES	 3
Higher or Lower Card Game . 4

Representing the Data . . 4
Implementation . 4
Reusable Code . 7

Bank Account Simulations . 7
Analysis of Required Operations and Data . 7
Implementation 1—Single Account Without Functions . 8
Implementation 2—Single Account with Functions . 10
Implementation 3—Two Accounts . . 12
Implementation 4—Multiple Accounts Using Lists . 13
Implementation 5—List of Account Dictionaries . 16

Common Problems with Procedural Implementation . 18
Object-Oriented Solution—First Look at a Class . 19
Summary . 20

2
MODELING PHYSICAL OBJECTS WITH OBJECT-ORIENTED
PROGRAMMING 21
Building Software Models of Physical Objects . . 22

State and Behavior: Light Switch Example . 22
Introduction to Classes and Objects . . 23
Classes, Objects, and Instantiation . 25

Writing a Class in Python . . 26
Scope and Instance Variables . 27

xii Contents in Detail

Differences Between Functions and Methods . 28
Creating an Object from a Class . 28
Calling Methods of an Object . 30
Creating Multiple Instances from the Same Class . 31
Python Data Types Are Implemented as Classes . 32
Definition of an Object . 33

Building a Slightly More Complicated Class . 33
Representing a More Complicated Physical Object as a Class 35

Passing Arguments to a Method . . 40
Multiple Instances . . 41
Initialization Parameters . 43

Classes in Use . 45
OOP as a Solution . 45
Summary . 46

3
MENTAL MODELS OF OBJECTS AND THE MEANING OF “SELF”	 47
Revisiting the DimmerSwitch Class . . 48
High-Level Mental Model #1 . . 49
A Deeper Mental Model #2 . 49
What Is the Meaning of “self”? . 52
Summary . 55

4
MANAGING MULTIPLE OBJECTS	 57
Bank Account Class . . 58
Importing Class Code . 60
Creating Some Test Code . . 61

Creating Multiple Accounts . 62
Multiple Account Objects in a List . . 64
Multiple Objects with Unique Identifiers . 66
Building an Interactive Menu . 68

Creating an Object Manager Object . . 70
Building the Object Manager Object . 72
Main Code That Creates an Object Manager Object 74

Better Error Handling with Exceptions . 76
try and except . 76
The raise Statement and Custom Exceptions . 77

Using Exceptions in Our Bank Program . 78
Account Class with Exceptions . 78
Optimized Bank Class . 79
Main Code That Handles Exceptions . 81

Calling the Same Method on a List of Objects . 83
Interface vs. Implementation . 84
Summary . 85

Contents in Detail xiii

PART II: GRAPHICAL USER INTERFACES
WITH PYGAME

5
INTRODUCTION TO PYGAME	 89
Installing Pygame . 90
Window Details . 91

The Window Coordinate System . 91
Pixel Colors . 94

Event-Driven Programs . 95
Using Pygame . 96

Bringing Up a Blank Window . 97
Drawing an Image . 100
Detecting a Mouse Click . 102
Handling the Keyboard . . 105
Creating a Location-Based Animation . 109
Using Pygame rects . 111

Playing Sounds . 114
Playing Sound Effects . 114
Playing Background Music . 115

Drawing Shapes . 116
Reference for Primitive Shapes . 118

Summary . 120

6
OBJECT-ORIENTED PYGAME	 121
Building the Screensaver Ball with OOP Pygame . 121

Creating a Ball Class . 122
Using the Ball Class . 124
Creating Many Ball Objects . 125
Creating Many, Many Ball Objects . 126

Building a Reusable Object-Oriented Button . 127
Building a Button Class . 128
Main Code Using a SimpleButton . . 130
Creating a Program with Multiple Buttons . 131

Building a Reusable Object-Oriented Text Display . 133
Steps to Display Text . 133
Creating a SimpleText Class . 133

Demo Ball with SimpleText and SimpleButton . 135
Interface vs. Implementation . 137
Callbacks . . 137

Creating a Callback . 138
Using a Callback with SimpleButton . 139

Summary . 141

xiv Contents in Detail

7
PYGAME GUI WIDGETS	 143
Passing Arguments into a Function or Method . . 144

Positional and Keyword Parameters . 145
Additional Notes on Keyword Parameters . 146
Using None as a Default Value . 146
Choosing Keywords and Default Values . 148
Default Values in GUI Widgets . . 148

The pygwidgets Package . 148
Setting Up . 149
Overall Design Approach . 150
Adding an Image . . 151
Adding Buttons, Checkboxes, and Radio Buttons . 152
Text Output and Input . 154
Other pygwidgets Classes . . 157
pygwidgets Example Program . 157

The Importance of a Consistent API . 158
Summary . 158

PART III: ENCAPSULATION, POLYMORPHISM,
AND INHERITANCE

8
ENCAPSULATION 163
Encapsulation with Functions . 164
Encapsulation with Objects . 164

Objects Own Their Data . 165
Interpretations of Encapsulation . . 165

Direct Access and Why You Should Avoid It . 166
Strict Interpretation with Getters and Setters . . 170
Safe Direct Access . 172

Making Instance Variables More Private . 172
Implicitly Private . 172
More Explicitly Private . 173

Decorators and @property . 174
Encapsulation in pygwidgets Classes . . 177
A Story from the Real World . . 178
Abstraction . . 179
Summary . 182

9
POLYMORPHISM 183
Sending Messages to Real-World Objects . 184
A Classic Example of Polymorphism in Programming . . 184
Example Using Pygame Shapes . 185

The Square Shape Class . 186
The Circle and Triangle Shape Classes . 187

Contents in Detail xv

The Main Program Creating Shapes . 190
Extending a Pattern . 192

pygwidgets Exhibits Polymorphism . 192
Polymorphism for Operators . 193

Magic Methods . 194
Comparison Operator Magic Methods . 195
A Rectangle Class with Magic Methods . 196
Main Program Using Magic Methods . 198
Math Operator Magic Methods . 200
Vector Example . 201

Creating a String Representation of Values in an Object . 203
A Fraction Class with Magic Methods . 205
Summary . 208

10
INHERITANCE 211
Inheritance in Object-Oriented Programming . 212
Implementing Inheritance . 213
Employee and Manager Example . 214

Base Class: Employee . . 214
Subclass: Manager . 215
Test Code . 217

The Client’s View of a Subclass . . 218
Real-World Examples of Inheritance . . 219

InputNumber . 219
DisplayMoney . 222
Example Usage . 224

Multiple Classes Inheriting from the Same Base Class . 227
Abstract Classes and Methods . 231
How pygwidgets Uses Inheritance . . 234
Class Hierarchy . 236
The Difficulty of Programming with Inheritance . 238
Summary . 239

11
MANAGING MEMORY USED BY OBJECTS	 241
Object Lifetime . 242

Reference Count . 242
Garbage Collection . 248

Class Variables . 248
Class Variable Constants . . 249
Class Variables for Counting . 250

Putting It All Together: Balloon Sample Program . 251
Module of Constants . . 253
Main Program Code . . 254
Balloon Manager . 256
Balloon Class and Objects . 258

Managing Memory: Slots . . 261
Summary . 263

xvi Contents in Detail

PART IV: USING OOP IN GAME DEVELOPMENT

12
CARD GAMES 267
The Card Class . 268
The Deck Class . 270
The Higher or Lower Game . 272

Main Program . 272
Game Object . 274

Testing with __name__ . 276
Other Card Games . 278

Blackjack Deck . 278
Games with Unusual Card Decks . 279

Summary . 279

13
TIMERS 281
Timer Demonstration Program . 282
Three Approaches for Implementing Timers . 283

Counting Frames . 283
Timer Event . 284
Building a Timer by Calculating Elapsed Time . 285

Installing pyghelpers . . 287
The Timer Class . . 287
Displaying Time . 290

CountUpTimer . 291
CountDownTimer . 293

Summary . 294

14
ANIMATION 295
Building Animation Classes . 296

SimpleAnimation Class . 296
SimpleSpriteSheetAnimation Class . 300
Merging Two Classes . 304

Animation Classes in pygwidgets . 304
Animation Class . . 305
SpriteSheetAnimation Class . 306
Common Base Class: PygAnimation . 307
Example Animation Program . 308

Summary . 310

15
SCENES 311
The State Machine Approach . 312
A pygame Example with a State Machine . 314
A Scene Manager for Managing Many Scenes . 319

Contents in Detail xvii

A Demo Program Using a Scene Manager . . 320
The Main Program . 322
Building the Scenes . 323
A Typical Scene . 326

Rock, Paper, Scissors Using Scenes . 328
Communication Between Scenes . 332

Requesting Information from a Target Scene . 333
Sending Information to a Target Scene . 333
Sending Information to All Scenes . 334
Testing Communications Among Scenes . 334

Implementation of the Scene Manager . 334
run() Method . 336
Main Methods . 337
Communication Between Scenes . 338

Summary . 340

16
FULL GAME: DODGER	 341
Modal Dialogs . . 342

Yes/No and Alert Dialogs . . 342
Answer Dialogs . 345

Building a Full Game: Dodger . 347
Game Overview . 347
Implementation . 348
Extensions to the Game . . 366

Summary . 366

17
DESIGN PATTERNS AND WRAP-UP	 367
Model View Controller . . 367

File Display Example . 368
Statistical Display Example . 368
Advantages of the MVC Pattern . 373

Wrap-Up . 374

INDEX	 377

A C K N O W L E D G M E N T S

I would like to thank the following people, who helped make this book
possible:

Al Sweigart, for getting me started in the use of pygame (especially with
his “Pygbutton” code) and for allowing me to use the concept of his
“Dodger” game.

Monte Davidoff, who was instrumental in helping me get the source
code and documentation of that code to build correctly through the
use of GitHub, Sphinx, and ReadTheDocs. He worked miracles using a
myriad of tools to wrestle the appropriate files into submission.

Monte Davidoff (yes, the same guy), for being an outstanding tech-
nical reviewer. Monte made excellent technical and writing suggestions
throughout the book, and many of the code examples are more Pythonic
and more OOP-ish because of his comments.

Tep Sathya Khieu, who did a stellar job of drawing all the original dia-
grams for this book. I am not an artist (I don’t even play one on TV).
Tep was able to take my primitive pencil sketches and turn them into
clear, consistent pieces of art.

Harrison Yung, Kevin Ly, and Emily Allis, for their contributions of
artwork in some of the game art.

xx Acknowledgments

The early reviewers, Illya Katsyuk, Jamie Kalb, Gergana Angelova, and
Joe Langmuir, who found and corrected many typos and made excel-
lent suggestions for modifications and clarifications.

All the editors who worked on this book: Liz Chadwick (developmen-
tal editor), Rachel Head (copyeditor), and Kate Kaminski (production
editor). They all made huge contributions by questioning and often
rewording and reorganizing some of my explanations of concepts.
They were also extremely helpful in adding and removing commas [do
I need one here?] and lengthening my sentences as I am doing here
to make sure that the point comes across cleanly (OK, I’ll stop!). I’m
afraid that I’ll never understand when to use “which” versus “that,” or
when to use a comma and when to use a dash, but I’m glad that they
know! Thanks also to Maureen Forys (compositor) for her valuable
contributions to the finished product.

All the students who have been in my classes over the years at the
UCSC Silicon Valley Extension and at the University of Silicon Valley
(formerly Cogswell Polytechnical College). Their feedback, suggestions,
smiles, frowns, light-bulb moments, frustrations, knowing head nods,
and even thumbs-up (in Zoom classes during the COVID era) were
extremely helpful in shaping the content of this book and my overall
teaching style.

Finally, my family, who supported me through the long process of writ-
ing, testing, editing, rewriting, editing, debugging, editing, rewriting,
editing (and so on) this book and the associated code. I couldn’t have
done it without them. I wasn’t sure if we had enough books in our
library, so I wrote another one!

I N T R O D U C T I O N

This book is about a software development
technique called object-oriented programming

(OOP) and how it can be used with Python.
Before OOP, programmers used an approach

known as procedural programming, also called structured
programming, which involves building a set of functions
(procedures) and passing data around through calls
to those functions. The OOP paradigm gives program-
mers an efficient way to combine code and data into
cohesive units that are often highly reusable.

In preparation for writing this book, I extensively researched existing lit-
erature and videos, looking specifically at the approaches taken to explain
this important and wide-ranging topic. I found that instructors and writers
typically start by defining certain key terms: class, instance variable, method,
encapsulation, inheritance, polymorphism, and so on.

xxii Introduction

While these are all important concepts, and I’ll cover all of them in
depth in this book, I’ll begin in a different way: by considering the ques-
tion, “What problem are we solving?” That is, if OOP is the solution, then
what is the problem? To answer this question, I’ll start by presenting a few
examples of programs built using procedural programming and identifying
complications inherent in this style. Then I’ll show you how an object-
oriented approach can make the construction of such programs much
easier and the programs themselves more maintainable.

Who Is This Book For?
This book is intended for people who already have some familiarity with
Python and with using basic functions from the Python Standard Library.
I will assume that you understand the fundamental syntax of the language
and can write small- to medium-sized programs using variables, assignment
statements, if/elif/else statements, while and for loops, functions and func-
tion calls, lists, dictionaries, and so on. If you aren’t comfortable with all of
these concepts, then I suggest that you get a copy of my earlier book, Learn
to Program with Python 3 (Apress), and read that first.

This is an intermediate-level text, so there are a number of more advanced
topics that I will not address. For example, to keep the book practical, I
will not often go into detail on the internal implementation of Python. For
simplicity and clarity, and to keep the focus on mastering OOP techniques,
the examples are written using a limited subset of the language. There are
more advanced and concise ways to code in Python that are beyond the
scope of this book.

I will cover the underlying details of OOP in a mostly language-
independent way, but will point out areas where there are differences
between Python and other OOP languages. Having learned the basics
of OOP-style coding through this book, if you wish, you should be able to
easily apply these techniques to other OOP languages.

Python Version(s) and Installation
All the example code in this book was written and tested using Python
version 3.9. All the examples should work fine with version 3.9 or newer.

Python is available for free at https://www.python.org. If you don’t have
Python installed, or you want to upgrade to the latest version, go to that
site, find the Downloads tab, and click the Download button. This will
download an installable file onto your computer. Double-click the file that
was downloaded to install Python.

https://
https://www.python.org

Introduction xxiii

W INDOW S INS TA L L AT ION

If you’re installing on a Windows system, there is one important option that you
need to set correctly. When running through the installation steps, you should
see a screen like this:

At the bottom of the dialog is a checkbox labeled “Add Python 3.x to PATH.” Please
be sure to check this box (it defaults to unchecked). This setting will make the installa-
tion of the pygame package (which is introduced later in the book) work correctly.

NOTE	 I am aware of the “PEP 8 – Style Guide for Python Code” and its specific recommendation
to use the snake case convention (snake_case) for variable and function names. However,
the document starts by saying that the convention is “for the Python code comprising the
standard library.” I fully applaud this consistency. I have been using the camel case nam-
ing convention (camelCase) for many years before the PEP 8 document was written and
have become comfortable with it during my career. Therefore, all variable and function
names in this book are consistently written using camel case.

How Will I Explain OOP?
The examples in the first few chapters use text-based Python; these sample
programs get input from the user and output information to the user
purely in the form of text. I’ll introduce OOP by showing you how to
develop text-based simulations of physical objects in code. We’ll start by
creating representations of light switches, dimmer switches, and TV remote
controls as objects. I’ll then show you how we can use OOP to simulate bank
accounts and a bank that controls many accounts.

xxiv Introduction

Once we’ve covered the basics of OOP, I’ll introduce the pygame module,
which allows programmers to write games and applications that use a
graphical user interface (GUI). With GUI-based programs, the user intuitively
interacts with buttons, checkboxes, text input and output fields, and other
user-friendly widgets.

I chose to use pygame with Python because this combination allows me
to demonstrate OOP concepts in a highly visual way using elements on the
screen. Pygame is extremely portable and runs on nearly every platform
and operating system. All the sample programs that use the pygame package
have been tested with the recently released pygame version 2.0.

I’ve created a package called pygwidgets that works with pygame and
implements a number of basic widgets, all of which are built using an
OOP approach. I’ll introduce this package later in the book, providing
sample code you can run and experiment with. This approach will allow
you to see real, practical examples of key object-oriented concepts, while
incorporating these techniques to produce fun, playable games. I’ll also
introduce my pyghelpers package, which provides code to help write more
complicated games and applications.

All the example code shown in the book is available as a single download
from the No Starch website: https://www.nostarch.com/object-oriented-python/.

The code is also available on a chapter-by-chapter basis from my
GitHub repository: https://github.com/IrvKalb/Object-Oriented-Python-Code/.

What’s in the Book
This book is divided into four parts. Part I introduces object-oriented
programming:

•	 Chapter 1 provides a review of coding using procedural programming.
I’ll show you how to implement a text-based card game and simulate a
bank performing operations on one or more accounts. Along the way, I
discuss common problems with the procedural approach.

•	 Chapter 2 introduces classes and objects and shows how you can rep-
resent real-world objects like light switches or a TV remote in Python
using classes. You’ll see how an object-oriented approach solves the
problems highlighted in the first chapter.

•	 Chapter 3 presents two mental models that you can use to think about
what’s going on behind the scenes when you create objects in Python. We’ll
use Python Tutor to step through code and see how objects are created.

•	 Chapter 4 demonstrates a standard way to handle multiple objects of
the same type by introducing the concept of an object manager object.
We’ll expand the bank account simulation using classes, and I’ll show
you how to handle errors using exceptions.

https://www.nostarch.com/object-oriented-python/
https://github.com/IrvKalb/Object-Oriented-Python-Code/

Introduction xxv

Part II focuses on building GUIs with pygame:

•	 Chapter 5 introduces the pygame package and the event-driven model
of programming. We’ll build a few simple programs to get you started
with placing graphics in a window and handling keyboard and mouse
input, then develop a more complicated ball-bouncing program.

•	 Chapter 6 goes into much more detail on using OOP with pygame pro-
grams. We’ll rewrite the ball-bouncing program in an OOP style and
develop some simple GUI elements.

•	 Chapter 7 introduces the pygwidgets module, which contains full imple-
mentations of many standard GUI elements (buttons, checkboxes, and
so on), each developed as a class.

Part III delves into the main tenets of OOP:

•	 Chapter 8 discusses encapsulation, which involves hiding implementa-
tion details from external code and placing all related methods in one
place: a class.

•	 Chapter 9 introduces polymorphism—the idea that multiple classes
can have methods with the same names—and shows how it enables you to
make calls to methods in multiple objects, without having to know the type
of each object. We’ll build a Shapes program to demonstrate this concept.

•	 Chapter 10 covers inheritance, which allows you to create a set of sub-
classes that all use common code built into a base class, rather than
having to reinvent the wheel with similar classes. We’ll look at a few
real-world examples where inheritance comes in handy, such as imple-
menting an input field that only accepts numbers, then rewrite our
Shapes example program to use this feature.

•	 Chapter 11 wraps up this part of the book by discussing some additional
important OOP topics, mostly related to memory management. We’ll
look at the lifetime of an object, and as an example we’ll build a small
balloon-popping game.

Part IV explores several topics related to using OOP in game development:

•	 Chapter 12 demonstrates how we can rebuild the card game developed
in Chapter 1 as a pygame-based GUI program. I also show you how
to build reusable Deck and Card classes that you can use in other card
games you create.

•	 Chapter 13 covers timing. We’ll develop different timer classes that
allow a program to keep running while concurrently checking for a
given time limit.

•	 Chapter 14 explains animation classes you can use to show sequences
of images. We’ll look at two animation techniques: building animations
from a collection of separate image files and extracting and using mul-
tiple images from a single sprite sheet file.

xxvi Introduction

•	 Chapter 15 explains the concept of a state machine, which represents
and controls the flow of your programs, and a scene manager, which
you can use to build a program with multiple scenes. To demonstrate
the use of each of these, we’ll build two versions of a Rock, Paper,
Scissors game.

•	 Chapter 16 discusses different types of modal dialogs, another impor-
tant user interaction feature. We then walk through building a full-
featured OOP-based video game called Dodger that demonstrates
many of the techniques described in the book.

•	 Chapter 17 introduces the concept of design patterns, focusing on the
Model View Controller pattern, then presents a dice-rolling program
that uses this pattern to allow the user to visualize data in numerous
different ways. It concludes with a short wrap-up for the book.

Development Environments
In this book, you’ll need to use the command line only minimally for
installing software. All installation instructions will be clearly written out,
so you won’t need to learn any additional command line syntax.

Rather than using the command line for development, I believe strongly
in using an interactive development environment (IDE). An IDE handles
many of the details of the underlying operating system for you, and it allows
you to write, edit, and run your code using a single program. IDEs are typi-
cally cross-platform, allowing programmers to easily move from a Mac to a
Windows computer or vice versa.

The short example programs in the book can be run in the IDLE devel-
opment environment that is installed when you install Python. IDLE is very
simple to use and works well for programs that can be written in a single
file. When we get into more complicated programs that use multiple Python
files, I encourage you to use a more sophisticated environment instead; I
use the JetBrains PyCharm development environment, which handles
multiple-file projects more easily. The Community Edition is available for
free from https://www.jetbrains.com/, and I highly recommend it. PyCharm
also has a fully integrated debugger that can be extremely useful when
writing larger programs. For more information on how to use the debug-
ger, please see my YouTube video “Debugging Python 3 with PyCharm” at
https://www.youtube.com/watch?v=cxAOSQQwDJ4&t=43s/.

Widgets and Example Games
The book introduces and makes available two Python packages: pygwidgets
and pyghelpers. Using these packages, you should be able to build full GUI
programs—but more importantly, you should gain an understanding of
how each of the widgets is coded as a class and used as an object.

https://www.jetbrains.com/
https://www.youtube.com/watch?v=cxAOSQQwDJ4&t=43s/

Introduction xxvii

Incorporating various widgets, the example games in the book start out
relatively simple and get progressively more complicated. Chapter 16 walks
you through the development and implementation of a full-featured video
game, complete with a high-scores table that is saved to a file.

By the end of this book, you should be able to code your own games—
card games, or video games in the style of Pong, Hangman, Breakout,
Space Invaders, and so on. Object-oriented programming gives you the
ability to write programs that can easily display and control multiple items
of the same type, which is often required when building user interfaces and
is frequently necessary in game play.

Object-oriented programming is a general style that can be used in all
aspects of programming, well beyond the game examples I use to demon-
strate OOP techniques here. I hope you find this approach to learning
OOP enjoyable.

Let’s get started!

PART I
I N T R O D U C I N G

O B J E C T - O R I E N T E D
P R O G R A M M I N G

This part of the book introduces you to object-oriented
programming. We’ll discuss problems inherent in pro-
cedural code, then see how object-oriented program-
ming addresses those concerns. Thinking in objects
(with state and behavior) will give you a new perspec-
tive about how to write code.

Chapter 1 provides a review of procedural Python. I start by presenting
a text-based card game named Higher or Lower, then work through a few
progressively more complex implementations of a bank account in Python
to help you better understand common problems with coding in a proce-
dural style.

Chapter 2 shows how we might represent real-world objects in Python
using classes. We’ll write a program to simulate a light switch, modify it
to include dimming capabilities, then move on to a more complicated TV
remote simulation.

Chapter 3 gives you two different ways to think about what is going on
behind the scenes when you create objects in Python.

Chapter 4 then demonstrates a standard way to handle multiple objects
of the same type (for example, consider a simple game like checkers where
you have to keep track of many similar game pieces). We’ll expand the bank
account programs from Chapter 1, and explore how to handle errors.

1
P R O C E D U R A L P Y T H O N

E X A M P L E S

Introductory courses and books typically
teach software development using the pro-

cedural programming style, which involves
splitting a program into a number of functions

(also known as procedures or subroutines). You pass
data into functions, each of which performs one or
more computations and, typically, passes back results.
This book is about a different paradigm of programming known as object-
oriented programming (OOP) that allows programmers to think differently
about how to build software. Object-oriented programming gives program-
mers a way to combine code and data together into cohesive units, thereby
avoiding some complications inherent in procedural programming.

In this chapter, I’ll review a number of concepts in basic Python by
building two small programs that incorporate various Python constructs.
The first will be a small card game called Higher or Lower; the second will
be a simulation of a bank, performing operations on one, two, and multiple
accounts. Both will be built using procedural programming—that is, using

4 Chapter 1

the standard techniques of data and functions. Later, I’ll rewrite these
programs using OOP techniques. The purpose of this chapter is to demon-
strate some key problems inherent in procedural programming. With that
understanding, the chapters that follow will explain how OOP solves those
problems.

Higher or Lower Card Game
My first example is a simple card game called Higher or Lower. In this
game, eight cards are randomly chosen from a deck. The first card is shown
face up. The game asks the player to predict whether the next card in the
selection will have a higher or lower value than the currently showing card.
For example, say the card that’s shown is a 3. The player chooses “higher,”
and the next card is shown. If that card has a higher value, the player is
correct. In this example, if the player had chosen “lower,” they would have
been incorrect.

If the player guesses correctly, they get 20 points. If they choose incor-
rectly, they lose 15 points. If the next card to be turned over has the same
value as the previous card, the player is incorrect.

Representing the Data
The program needs to represent a deck of 52 cards, which I’ll build as a list.
Each of the 52 elements in the list will be a dictionary (a set of key/value
pairs). To represent any card, each dictionary will contain three key/value
pairs: 'rank', 'suit', and 'value'. The rank is the name of the card (Ace, 2,
3, … 10, Jack, Queen, King), but the value is an integer used for comparing
cards (1, 2, 3, … 10, 11, 12, 13). For example, the Jack of Clubs would be
represented as the following dictionary:

{'rank': 'Jack', 'suit': 'Clubs', 'value': 11}

Before the player plays a round, the list representing the deck is created
and shuffled to randomize the order of the cards. I have no graphical rep-
resentation of the cards, so each time the user chooses “higher” or “lower,”
the program gets a card dictionary from the deck and prints the rank and
the suit for the user. The program then compares the value of the new card
to that of the previous card and gives feedback based on the correctness of
the user’s answer.

Implementation
Listing 1-1 shows the code of the Higher or Lower game.

N O T E 	 As a reminder, the code associated with all the major listings in this book is avail-
able for download at https://www.nostarch.com/object-oriented-python/ and
https://github.com/IrvKalb/Object-Oriented-Python-Code/. You can either
download and run the code or type it in yourself.

https://www.nostarch.com/object-oriented-python/
https://github.com/IrvKalb/Object-Oriented-Python-Code/

Procedural Python Examples 5

File: HigherOrLowerProcedural.py

HigherOrLower

import random

Card constants
SUIT_TUPLE = ('Spades', 'Hearts', 'Clubs', 'Diamonds')
RANK_TUPLE = ('Ace', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'Jack',
'Queen', 'King')

NCARDS = 8

Pass in a deck and this function returns a random card from the deck
def getCard(deckListIn):
 thisCard = deckListIn.pop() # pop one off the top of the deck and return
 return thisCard

Pass in a deck and this function returns a shuffled copy of the deck
def shuffle(deckListIn):
 deckListOut = deckListIn.copy() # make a copy of the starting deck
 random.shuffle(deckListOut)
 return deckListOut

Main code
print('Welcome to Higher or Lower.')
print('You have to choose whether the next card to be shown will be higher or
lower than the current card.')
print('Getting it right adds 20 points; get it wrong and you lose 15 points.')
print('You have 50 points to start.')
print()

startingDeckList = []
1 for suit in SUIT_TUPLE:
 for thisValue, rank in enumerate(RANK_TUPLE):
 cardDict = {'rank':rank, 'suit':suit, 'value':thisValue + 1}
 startingDeckList.append(cardDict)

score = 50

while True: # play multiple games
 print()
 gameDeckList = shuffle(startingDeckList)
 2 currentCardDict = getCard(gameDeckList)
 currentCardRank = currentCardDict['rank']
 currentCardValue = currentCardDict['value']
 currentCardSuit = currentCardDict['suit']
 print('Starting card is:', currentCardRank + ' of ' + currentCardSuit)
 print()

 3 for cardNumber in range(0, NCARDS): # play one game of this many cards
 answer = input('Will the next card be higher or lower than the ' +
 currentCardRank + ' of ' +
 currentCardSuit + '? (enter h or l): ')

6 Chapter 1

 answer = answer.casefold() # force lowercase
 4 nextCardDict = getCard(gameDeckList)
 nextCardRank = nextCardDict['rank']
 nextCardSuit = nextCardDict['suit']
 nextCardValue = nextCardDict['value']
 print('Next card is:', nextCardRank + ' of ' + nextCardSuit)

 5 if answer == 'h':
 if nextCardValue > currentCardValue:
 print('You got it right, it was higher')
 score = score + 20
 else:
 print('Sorry, it was not higher')
 score = score - 15

 elif answer == 'l':
 if nextCardValue < currentCardValue:
 score = score + 20
 print('You got it right, it was lower')

 else:
 score = score - 15
 print('Sorry, it was not lower')

 print('Your score is:', score)
 print()
 currentCardRank = nextCardRank
 currentCardValue = nextCardValue
 currentCardSuit = nextCardSuit

 6 goAgain = input('To play again, press ENTER, or "q" to quit: ')
 if goAgain == 'q':
 break

print('OK bye')

Listing 1-1: A Higher or Lower game using procedural Python

The program starts by creating a deck as a list 1. Each card is a dic-
tionary made up of a rank, a suit, and a value. For each round of the game,
I retrieve the first card from the deck and save the components in vari-
ables 2. For the next seven cards, the user is asked to predict whether the
next card will be higher or lower than the most recently showing card 3.
The next card is retrieved from the deck, and its components are saved in a
second set of variables 4. The game compares the user’s answer to the card
drawn and gives the user feedback and points based on the outcome 5.
When the user has made predictions for all seven cards in the selection, we
ask if they want to play again 6.

This program demonstrates many elements of programming in gen-
eral and Python in particular: variables, assignment statements, functions
and function calls, if/else statements, print statements, while loops, lists,
strings, and dictionaries. This book will assume you're already familiar with
everything shown in this example. If there is anything in this program that

Procedural Python Examples 7

is unfamiliar or not clear to you, it would probably be worth your time to
review the appropriate material before moving on.

Reusable Code
Since this is a playing card–based game, the code obviously creates and
manipulates a simulated deck of cards. If we wanted to write another card-
based game, it would be great to be able to reuse the code for the deck
and cards.

In a procedural program, it can often be difficult to identify all the
pieces of code associated with one portion of the program, such as the deck
and cards in this example. In Listing 1-1, the code for the deck consists of
two tuple constants, two functions, some main code to build a global list
that represents the starting deck of 52 cards, and another global list that
represents the deck that is used while the game is being played. Further,
notice that even in a small program like this, the data and the code that
manipulates the data might not be closely grouped together.

Therefore, reusing the deck and card code in another program is not
that easy or straightforward. In Chapter 12, we will revisit this program and
show how an OOP solution makes reusing code like this much easier.

Bank Account Simulations
In this second example of procedural coding, I’ll present a number of varia-
tions of a program that simulates running a bank. In each new version of
the program, I’ll add more functionality. Note that these programs are not
production-ready; invalid user entries or misuse will lead to errors. The
intent is to have you focus on how the code interacts with the data associ-
ated with one or more bank accounts.

To start, consider what operations a client would want to do with a bank
account and what data would be needed to represent an account.

Analysis of Required Operations and Data
A list of operations a person would want to do with a bank account would
include:

•	 Create (an account)

•	 Deposit

•	 Withdraw

•	 Check balance

Next, here is a minimal list of the data we would need to represent a
bank account:

•	 Customer name

•	 Password

•	 Balance

8 Chapter 1

Notice that all the operations are action words (verbs) and all the data
items are things (nouns). A real bank account would certainly be capable of
many more operations and would contain additional pieces of data (such as
the account holder’s address, phone number, and Social Security number),
but to keep the discussion clear, I’ll start with just these four actions and
three pieces of data. Further, to keep things simple and focused, I’ll make
all amounts an integer number of dollars. I should also point out that in
a real bank application, passwords would not be kept in cleartext (unen-
crypted) as it is in these examples.

Implementation 1—Single Account Without Functions
In the starting version in Listing 1-2, there is only a single account.

File: Bank1_OneAccount.py

Non-OOP
Bank Version 1
Single account

1 accountName = 'Joe'
accountBalance = 100
accountPassword = 'soup'

while True:
 2 print()
 print('Press b to get the balance')
 print('Press d to make a deposit')
 print('Press w to make a withdrawal')
 print('Press s to show the account')
 print('Press q to quit')
 print()

 action = input('What do you want to do? ')
 action = action.lower() # force lowercase
 action = action[0] # just use first letter
 print()

 if action == 'b':
 print('Get Balance:')
 userPassword = input('Please enter the password: ')
 if userPassword != accountPassword:
 print('Incorrect password')
 else:
 print('Your balance is:', accountBalance)

 elif action == 'd':
 print('Deposit:')
 userDepositAmount = input('Please enter amount to deposit: ')
 userDepositAmount = int(userDepositAmount)
 userPassword = input('Please enter the password: ')

 if userDepositAmount < 0:

Procedural Python Examples 9

 print('You cannot deposit a negative amount!')

 elif userPassword != accountPassword:
 print('Incorrect password')

 else: # OK
 accountBalance = accountBalance + userDepositAmount
 print('Your new balance is:', accountBalance)

 elif action == 's': # show
 print('Show:')
 print(' Name', accountName)
 print(' Balance:', accountBalance)
 print(' Password:', accountPassword)
 print()

 elif action == 'q':
 break

 elif action == 'w':
 print('Withdraw:')

 userWithdrawAmount = input('Please enter the amount to withdraw: ')
 userWithdrawAmount = int(userWithdrawAmount)
 userPassword = input('Please enter the password: ')

 if userWithdrawAmount < 0:
 print('You cannot withdraw a negative amount')

 elif userPassword != accountPassword:
 print('Incorrect password for this account')

 elif userWithdrawAmount > accountBalance:
 print('You cannot withdraw more than you have in your account')

 else: #OK
 accountBalance = accountBalance - userWithdrawAmount
 print('Your new balance is:', accountBalance)

print('Done')

Listing 1-2: Bank simulation for a single account

The program starts off by initializing three variables to represent the
data of one account 1. Then it displays a menu that allows a choice of oper-
ations 2. The main code of the program acts directly on the global account
variables.

In this example, all the actions are at the main level; there are no func-
tions in the code. The program works fine, but it may seem a little long. A
typical approach to make longer programs clearer is to move related code
into functions and make calls to those functions. We’ll explore that in the
next implementation of the banking program.

10 Chapter 1

Implementation 2—Single Account with Functions
In the version of the program in Listing 1-3, the code is broken up into
separate functions, one for each action. Again, this simulation is for a single
account.

File: Bank2_OneAccountWithFunctions.py

Non-OOP
Bank 2
Single account

accountName = ''
accountBalance = 0
accountPassword = ''

1 def newAccount(name, balance, password):
 global accountName, accountBalance, accountPassword
 accountName = name
 accountBalance = balance
 accountPassword = password

def show():
 global accountName, accountBalance, accountPassword
 print(' Name', accountName)
 print(' Balance:', accountBalance)
 print(' Password:', accountPassword)
 print()

2 def getBalance(password):
 global accountName, accountBalance, accountPassword
 if password != accountPassword:
 print('Incorrect password')
 return None
 return accountBalance

3 def deposit(amountToDeposit, password):
 global accountName, accountBalance, accountPassword
 if amountToDeposit < 0:
 print('You cannot deposit a negative amount!')
 return None

 if password != accountPassword:
 print('Incorrect password')
 return None

 accountBalance = accountBalance + amountToDeposit
 return accountBalance

4 def withdraw(amountToWithdraw, password):
 5 global accountName, accountBalance, accountPassword
 if amountToWithdraw < 0:
 print('You cannot withdraw a negative amount')
 return None

Procedural Python Examples 11

 if password != accountPassword:
 print('Incorrect password for this account')
 return None

 if amountToWithdraw > accountBalance:
 print('You cannot withdraw more than you have in your account')
 return None

 6 accountBalance = accountBalance - amountToWithdraw
 return accountBalance

newAccount("Joe", 100, 'soup') # create an account

while True:
 print()
 print('Press b to get the balance')
 print('Press d to make a deposit')
 print('Press w to make a withdrawal')
 print('Press s to show the account')
 print('Press q to quit')
 print()

 action = input('What do you want to do? ')
 action = action.lower() # force lowercase
 action = action[0] # just use first letter
 print()

 if action == 'b':
 print('Get Balance:')
 userPassword = input('Please enter the password: ')
 theBalance = getBalance(userPassword)
 if theBalance is not None:
 print('Your balance is:', theBalance)

 7 elif action == 'd':
 print('Deposit:')
 userDepositAmount = input('Please enter amount to deposit: ')
 userDepositAmount = int(userDepositAmount)
 userPassword = input('Please enter the password: ')

 8 newBalance = deposit(userDepositAmount, userPassword)
 if newBalance is not None:
 print('Your new balance is:', newBalance)

--- snip calls to appropriate functions ---

print('Done')

Listing 1-3: Bank simulation for one account with functions

In this version, I’ve built a function for each of the operations that we
identified for a bank account (create 1, check balance 2, deposit 3, and
withdraw 4) and rearranged the code so that the main code contains calls
to the different functions.

12 Chapter 1

As a result, the main program is much more readable. For example, if
the user types d to indicate that they want to make a deposit 7, the code
now calls a function named deposit() 3, passing in the amount to be depos-
ited and the account password the user entered.

However, if you look at the definition of any of these functions—for
example, the withdraw() function—you’ll see that the code uses global state-
ments 5 to access (get or set) the variables that represent the account. In
Python, a global statement is only required if you want to change the value
of a global variable in a function. However, I am using them here to make it
clear that these functions are referring to global variables, even if they are
just getting a value.

As a general programming tenet, functions should never modify global
variables. A function should only use data that is passed into it, make cal-
culations based on that data, and potentially return a result or results. The
withdraw() function in this program does work, but it violates this rule by
modifying the value of the global variable accountBalance 6 (in addition to
accessing the value of the global variable accountPassword).

Implementation 3—Two Accounts
The version of the bank simulation program in Listing 1-4 uses the same
approach as Listing 1-3 but adds the ability to have two accounts.

File: Bank3_TwoAccounts.py

Non-OOP
Bank 3
Two accounts

account0Name = ''
account0Balance = 0
account0Password = ''
account1Name = ''
account1Balance = 0
account1Password = ''
nAccounts = 0

def newAccount(accountNumber, name, balance, password):
 1 global account0Name, account0Balance, account0Password
 global account1Name, account1Balance, account1Password

 if accountNumber == 0:
 account0Name = name
 account0Balance = balance
 account0Password = password
 if accountNumber == 1:
 account1Name = name
 account1Balance = balance
 account1Password = password

Procedural Python Examples 13

def show():
 2 global account0Name, account0Balance, account0Password
 global account1Name, account1Balance, account1Password

 if account0Name != '':
 print('Account 0')
 print(' Name', account0Name)
 print(' Balance:', account0Balance)
 print(' Password:', account0Password)
 print()
 if account1Name != '':
 print('Account 1')
 print(' Name', account1Name)
 print(' Balance:', account1Balance)
 print(' Password:', account1Password)
 print()

def getBalance(accountNumber, password):
 3 global account0Name, account0Balance, account0Password
 global account1Name, account1Balance, account1Password

 if accountNumber == 0:
 if password != account0Password:
 print('Incorrect password')
 return None
 return account0Balance
 if accountNumber == 1:
 if password != account1Password:
 print('Incorrect password')
 return None
 return account1Balance

--- snipped additional deposit() and withdraw() functions ---

--- snipped main code that calls functions above ---

print('Done')

Listing 1-4: Bank simulation for two accounts with functions

Even with just two accounts, you can see that this approach gets out of
hand quickly. First, we set three global variables for each account at 1, 2,
and 3. Also, every function now has an if statement to choose which set
of global variables to access or change. Any time we want to add another
account, we’ll need to add another set of global variables and more if state-
ments in every function. This is simply not a feasible approach. We need a
different way to handle an arbitrary number of accounts.

Implementation 4—Multiple Accounts Using Lists
To more easily accommodate multiple accounts, in Listing 1-5 I’ll represent
the data using lists. I’ll use three parallel lists in this version of the program:
accountNamesList, accountPasswordsList, and accountBalancesList.

14 Chapter 1

File: Bank4_N_Accounts.py

Non-OOP Bank
Version 4
Any number of accounts - with lists

1 accountNamesList = []
accountBalancesList = []
accountPasswordsList = []

def newAccount(name, balance, password):
 global accountNamesList, accountBalancesList, accountPasswordsList
 2 accountNamesList.append(name)
 accountBalancesList.append(balance)
 accountPasswordsList.append(password)

def show(accountNumber):
 global accountNamesList, accountBalancesList, accountPasswordsList
 print('Account', accountNumber)
 print(' Name', accountNamesList[accountNumber])
 print(' Balance:', accountBalancesList[accountNumber])
 print(' Password:', accountPasswordsList[accountNumber])
 print()

def getBalance(accountNumber, password):
 global accountNamesList, accountBalancesList, accountPasswordsList
 if password != accountPasswordsList[accountNumber]:
 print('Incorrect password')
 return None
 return accountBalancesList[accountNumber]

--- snipped additional functions ---

Create two sample accounts
3 print("Joe's account is account number:", len(accountNamesList))
newAccount("Joe", 100, 'soup')

4 print("Mary's account is account number:", len(accountNamesList))
newAccount("Mary", 12345, 'nuts')

while True:
 print()
 print('Press b to get the balance')
 print('Press d to make a deposit')
 print('Press n to create a new account')
 print('Press w to make a withdrawal')
 print('Press s to show all accounts')
 print('Press q to quit')
 print()

 action = input('What do you want to do? ')
 action = action.lower() # force lowercase
 action = action[0] # just use first letter
 print()

Procedural Python Examples 15

 if action == 'b':
 print('Get Balance:')
 5 userAccountNumber = input('Please enter your account number: ')
 userAccountNumber = int(userAccountNumber)
 userPassword = input('Please enter the password: ')
 theBalance = getBalance(userAccountNumber, userPassword)
 if theBalance is not None:
 print('Your balance is:', theBalance)

--- snipped additional user interface ---

print('Done')

Listing 1-5: Bank simulation with a parallel lists

At the beginning of the program, I set all three lists to the empty list 1.
To create a new account, I append the appropriate value to each of the
three lists 2.

Since I am now dealing with multiple accounts, I use the basic concept
of a bank account number. Every time a user creates an account, the code
uses the len() function on one of the lists and returns that number as the
user’s account number 3, 4. When I create an account for the first user,
the length of the accountNamesList is zero. Therefore, the first account cre-
ated will be given account number 0, the second account is given account
number 1, and so on. Then, like at a real bank, to do any operation after
creating an account (like deposit or withdraw funds), the user must supply
their account number 5.

However, this code is still working with global data; now there are three
global lists of data.

Imagine viewing this data as a spreadsheet. It might look like Table 1-1.

Table 1-1: A Table of Our Data

Account
number Name Password Balance

0 Joe soup 100

1 Mary nuts 3550

2 Bill frisbee 1000

3 Sue xxyyzz 750

4 Henry PW 10000

The data is maintained as three global Python lists, where each list
represents a column in this table. For example, as you can see from the
highlighted column, all the passwords are grouped together as one list. The
users’ names are grouped in another list, and the balances are grouped in
a third list. With this approach, to get information about one account, you
need to access these lists with a common index value.

While this works, it seems extremely awkward. The data is not grouped in
a logical way. For example, it doesn’t seem right to keep all users’ passwords

16 Chapter 1

together. Further, every time you add a new attribute to an account, like an
address or phone number, you need to create and access another global list.

Instead, what you really want is a grouping that represents a row in the
same spreadsheet, as in Table 1-2.

Table 1-2: A Table of Our Data

Account
number Name Password Balance

0 Joe soup 100

1 Mary nuts 3550

2 Bill frisbee 1000

3 Sue xxyyzz 750

4 Henry PW 10000

With this approach, each row represents the data associated with a sin-
gle bank account. While this is the same data, this grouping is a much more
natural way of representing an account.

Implementation 5—List of Account Dictionaries
To implement this last approach, I’ll use a slightly more complicated data
structure. In this version, I’ll create a list of accounts, where each account
(each element of this list) is a dictionary that looks like this:

{'name':<someName>, 'password':<somePassword>, 'balance':<someBalance>}

N O T E 	 In this book, whenever I present a value in angle brackets (<>), this means you should
replace that item (including the brackets) with a value of your choosing. For example,
in the preceding code line, <someName>, <somePassword>, and <someBalance> are place-
holders and should be replaced with actual values.

The code for the final implementation is presented in Listing 1-6.

File: Bank5_Dictionary.py

Non-OOP Bank
Version 5
Any number of accounts - with a list of dictionaries

accountsList = [] 1

def newAccount(aName, aBalance, aPassword):
 global accountsList
 newAccountDict = {'name':aName, 'balance':aBalance, 'password':aPassword}
 accountsList.append(newAccountDict) 2

Procedural Python Examples 17

def show(accountNumber):
 global accountsList
 print('Account', accountNumber)
 thisAccountDict = accountsList[accountNumber]
 print(' Name', thisAccountDict['name'])
 print(' Balance:', thisAccountDict['balance'])
 print(' Password:', thisAccountDict['password'])
 print()

def getBalance(accountNumber, password):
 global accountsList
 thisAccountDict = accountsList[accountNumber] 3
 if password != thisAccountDict['password']:
 print('Incorrect password')
 return None
 return thisAccountDict['balance']

--- snipped additional deposit() and withdraw() functions ---

Create two sample accounts
print("Joe's account is account number:", len(accountsList))
newAccount("Joe", 100, 'soup')

print("Mary's account is account number:", len(accountsList))
newAccount("Mary", 12345, 'nuts')

while True:
 print()
 print('Press b to get the balance')
 print('Press d to make a deposit')
 print('Press n to create a new account')
 print('Press w to make a withdrawal')
 print('Press s to show all accounts')
 print('Press q to quit')
 print()

 action = input('What do you want to do? ')
 action = action.lower() # force lowercase
 action = action[0] # just use first letter
 print()

 if action == 'b':
 print('Get Balance:')
 userAccountNumber = input('Please enter your account number: ')
 userAccountNumber = int(userAccountNumber)
 userPassword = input('Please enter the password: ')
 theBalance = getBalance(userAccountNumber, userPassword)
 if theBalance is not None:
 print('Your balance is:', theBalance)

 elif action == 'd':
 print('Deposit:')
 userAccountNumber= input('Please enter the account number: ')
 userAccountNumber = int(userAccountNumber)
 userDepositAmount = input('Please enter amount to deposit: ')

18 Chapter 1

 userDepositAmount = int(userDepositAmount)
 userPassword = input('Please enter the password: ')

 newBalance = deposit(userAccountNumber, userDepositAmount, userPassword)
 if newBalance is not None:
 print('Your new balance is:', newBalance)

 elif action == 'n':
 print('New Account:')
 userName = input('What is your name? ')
 userStartingAmount = input('What is the amount of your initial deposit? ')
 userStartingAmount = int(userStartingAmount)
 userPassword = input('What password would you like to use for this account? ')

 userAccountNumber = len(accountsList)
 newAccount(userName, userStartingAmount, userPassword)
 print('Your new account number is:', userAccountNumber)

--- snipped additional user interface ---

print('Done')

Listing 1-6: Bank simulation with a list of dictionaries

With this approach, all the data associated with one account can be
found in a single dictionary 1. To create a new account, we build a diction-
ary and append it to the list of accounts 2. Each account is assigned a num-
ber (a simple integer), and that account number must be supplied when
doing any action with the account. For example, the user supplies their
account number when making a deposit, and the getBalance() function uses
that account number as an index into the list of accounts 3.

This cleans things up quite a bit, making the organization of the data
more logical. But each of the functions in the program must still have access
to the global list of accounts. As we’ll see in the next section, granting func-
tions access to all account data raises potential security risks. Ideally, each
function should only be able to affect the data of a single account.

Common Problems with Procedural Implementation
The examples shown in this chapter share a common problem: all the data
the functions operate on is stored in one or more global variables. For the
following reasons, using lots of global data with procedural programming is
bad coding practice:

1.	 Any function that uses and/or changes global data cannot easily be
reused in a different program. A function that accesses global data is
operating on data that lives at a different (higher) level than the code
of the function itself. That function will need a global statement to
access this data. You can’t just take a function that relies on global data
and reuse it in another program; it can only be reused in a program
with similar global data.

Procedural Python Examples 19

2.	 Many procedural programs tend to have large collections of global
variables. By definition, a global variable can be used or changed by
any piece of code anywhere in the program. Assignments to global vari-
ables are often widely scattered throughout procedural programs, both
in the main code and inside functions. Because variable values can
change anywhere, it can be extremely difficult to debug and maintain
programs written this way.

3.	 Functions written to use global data often have access to too much data.
When a function uses a global list, dictionary, or any other global data
structure, it has access to all the data in that data structure. However,
typically the function should operate on only one piece (or just a small
amount) of that data. Having the ability to read and modify any data in
a large data structure can lead to errors, such as accidentally using or
overwriting data that the function was not intended to touch.

Object-Oriented Solution—First Look at a Class
Listing 1-7 is an object-oriented approach that combines all the code and
associated data of a single account. There are many new concepts here, and
I will get into all the details starting in the next chapter. While I am not
expecting you to fully understand this example yet, notice that there is a
combination of code and data in a single script (called a class). Here is your
first look at object-oriented code.

File: Account.py

Account class

class Account():
 def __init__(self, name, balance, password):
 self.name = name
 self.balance = int(balance)
 self.password = password

 def deposit(self, amountToDeposit, password):
 if password != self.password:
 print('Sorry, incorrect password')
 return None

 if amountToDeposit < 0:
 print('You cannot deposit a negative amount')
 return None

 self.balance = self.balance + amountToDeposit
 return self.balance

 def withdraw(self, amountToWithdraw, password):
 if password != self.password:
 print('Incorrect password for this account')
 return None

20 Chapter 1

 if amountToWithdraw < 0:
 print('You cannot withdraw a negative amount')
 return None

 if amountToWithdraw > self.balance:
 print('You cannot withdraw more than you have in your account')
 return None

 self.balance = self.balance - amountToWithdraw
 return self.balance

 def getBalance(self, password):
 if password != self.password:
 print('Sorry, incorrect password')
 return None
 return self.balance

 # Added for debugging
 def show(self):
 print(' Name:', self.name)
 print(' Balance:', self.balance)
 print(' Password:', self.password)
 print()

Listing 1-7: First example of a class in Python

For now, take a look at the functions and see how they’re similar to
our earlier procedural programming examples. The functions have the
same names as in the earlier code—show(), getBalance(), deposit(), and
withdraw()—but you’ll also see the word self (or self.) peppered through-
out this code. You’ll learn what this means in the next chapters.

Summary
This chapter started with a procedural implementation of the code for
a card game called Higher or Lower. In Chapter 12, I will show you how
to make an object-oriented version of the game with a graphical user
interface.

I next introduced the problem of simulating a bank with one, then
several bank accounts. I discussed several different ways to use procedural
programming to implement the simulation and described some of the
problems that this approach creates. Finally, I gave a first glimpse of what
the code describing a bank account would look like if it were written using
a class.

2
M O D E L I N G P H Y S I C A L O B J E C T S

W I T H O B J E C T - O R I E N T E D
P R O G R A M M I N G

In this chapter, I’ll introduce the general
concepts behind object-oriented program-

ming. I’ll show a simple example program
written using procedural programming, intro-

duce classes as the basis of writing OOP code, and
explain how the elements of a class work together. I’ll
then rewrite the first procedural example as a class in
the object-oriented style and show how you create an
object from a class.

In the remainder of the chapter, I’ll go through some increasingly com-
plex classes that represent physical objects to demonstrate how OOP fixes
the problems of procedural programming we ran into in Chapter 1. This
should give you a solid understanding of the underlying object-oriented con-
cepts and how they can improve your programming skills.

22 Chapter 2

Building Software Models of Physical Objects
To describe a physical object in our everyday world, we often reference its
attributes. When talking about a desk, you might describe its color, dimen-
sions, weight, material, and so on. Some objects have attributes that apply
only to them and not others. A car could be described by its number of
doors, but a shirt could not. A box could be sealed or open, empty or full,
but those characteristics would not apply to a block of wood. Additionally,
some objects are capable of performing actions. A car can go forward, back
up, and turn left or right.

To model a real-world object in code, we need to decide what data will
represent that object’s attributes and what operations it can perform. These
two concepts are often referred to as an object’s state and behavior, respec-
tively: the state is the data that the object remembers, and the behaviors are
the actions that the object can do.

State and Behavior: Light Switch Example
Listing 2-1 is a software model of a standard two-position light switch writ-
ten in procedural Python. This is a trivial example, but it will demonstrate
state and behavior.

File: LightSwitch_Procedural.py

Procedural light switch

1 def turnOn():
 global switchIsOn
 # turn the light on
 switchIsOn = True

2 def turnOff():
 global switchIsOn
 # turn the light off
 switchIsOn = False

Main code
3 switchIsOn = False # a global Boolean variable

Test code
print(switchIsOn)
turnOn()
print(switchIsOn)
turnOff()
print(switchIsOn)
turnOn()
print(switchIsOn)

Listing 2-1: Model of a light switch written with procedural code

Modeling Physical Objects with Object-Oriented Programming 23

The switch can only be in one of two positions: on or off. To model
the state, we only need a single Boolean variable. We name this variable
switchIsOn 3 and we say that True means on and False indicates off. When
the switch comes from the factory, it is in the off position, so we initially set
switchIsOn to False.

Next, we look at the behavior. This switch can only perform two actions:
“turn on” and “turn off.” We therefore build two functions, turnOn() 1 and
turnOff() 2, which set the value of the single Boolean variable to True and
False, respectively.

I’ve added some test code at the end to turn the switch on and off a few
times. The output is exactly what we would expect:

False
True
False
True

This is an extremely simple example, but starting with small functions
like these makes the transition to an OOP approach easier. As I explained
in Chapter 1, because we’ve used a global variable to represent the state (in
this case, the variable switchIsOn), this code will only work for a single light
switch, but one of the main goals of writing functions is to make reusable
code. I’ll therefore rebuild the light switch code using object-oriented pro-
gramming, but I need to work through a bit of the underlying theory first.

Introduction to Classes and Objects
The first step to understanding what an object is and how it works is to
understand the relationship between a class and an object. I’ll give formal
definitions later, but for now, you can think of a class as a template or a
blueprint that defines what an object will look like when one is created. We
create objects from a class.

As an analogy, imagine if we started an on-demand cake-baking busi-
ness. Being “on-demand,” we only create a cake when an order for one
comes in. We specialize in Bundt cakes, and we’ve spent a lot of time devel-
oping the cake pan in Figure 2-1 to make sure our cakes are not only tasty
but also beautiful and consistent.

The pan defines what a Bundt cake will look like when we create one,
but it certainly is not a cake. The pan represents our class. When an order
comes in, we create a Bundt cake from our pan (Figure 2-2). The cake is an
object made using the cake pan.

Using the pan, we can create any number of cakes. Our cakes could
have different attributes, like different flavors, different types of frosting,
and optional extras like chocolate chips, but all the cakes will come from
the same cake pan.

24 Chapter 2

Figure 2-1: A cake pan as a metaphor for a class

Figure 2-2: A cake as a metaphor for an object made from the cake pan class

Modeling Physical Objects with Object-Oriented Programming 25

Table 2-1 provides some other real-world examples to help clarify the
relationship between a class and an object.

Table 2-1: Examples of Real-World Classes and Objects

Class Object made from the class

Blueprint for a house House

Sandwich listed on a menu Sandwich in your hand

Die used to manufacture a 25-cent coin A single quarter

Manuscript of a book written by an author Physical or electronic copy of the book

Classes, Objects, and Instantiation
Let’s see how this works in code.

	 class	 Code that defines what an object will remember (its data or state) and the things that
it will be able to do (its functions or behavior).

To get a feel for what a class looks like, here is the code of a light switch
written as a class:

OO_LightSwitch

class LightSwitch():
 def __init__(self):
 self.switchIsOn = False

 def turnOn(self):
 # turn the switch on
 self.switchIsOn = True

 def turnOff(self):
 # turn the switch off
 self.switchIsOn = False

We’ll go through the details in just a bit, but the things to notice are
that this code defines a single variable, self.switchIsOn, which is initial-
ized in one function, and contains two other functions for the behaviors:
turnOn() and turnoff().

If you write the code of a class and try to run it, nothing happens, in
the same way as when you run a Python program that consists of only func-
tions and no function calls. You have to explicitly tell Python to make an
object from the class.

To create a LightSwitch object from our LightSwitch class, we typically use
a line like this:

oLightSwitch = LightSwitch()

26 Chapter 2

This says: find the LightSwitch class, create a LightSwitch object from that
class, and assign the resulting object to the variable oLightSwitch.

N O T E 	 As a naming convention in this book, I will generally use the prefix of a lowercase o
to denote a variable that represents an object. This is not required, but it’s a way to
remind myself that the variable represents an object.

Another word that you’ll come across in OOP is instance. The words
instance and object are essentially interchangeable; however, to be precise, we
would say that a LightSwitch object is an instance of the LightSwitch class.

	 instantiation	 The process of creating an object from a class.

In the previous assignment statement, we went through the instantia-
tion process to create a LightSwitch object from the LightSwitch class. We can
also use this as a verb; we instantiate a LightSwitch object from the LightSwitch
class.

Writing a Class in Python
Let’s discuss the different parts of a class and the details of instantiating
and using an object. Listing 2-2 shows the general form of a class in Python.

class <ClassName>():

 def __init__(self, <optional param1>, ..., <optional paramN>):
 # any initialization code here

 # Any number of functions that access the data
 # Each has the form:

 def <functionName1>(self, <optional param1>, ..., <optional paramN>):
 # body of function

 # ... more functions

 def <functionNameN>(self, <optional param1>, ..., <optional paramN>):
 # body of function

Listing 2-2: The typical form of a class in Python

You begin a class definition with a class statement specifying the name
you want to give the class. The convention for class names is to use camel
case, with the first letter uppercase (for example, LightSwitch). Following the
name you can optionally add a set of parentheses, but the statement must
end with a colon to indicate that you’re about to begin the body of the class.
(I’ll explain what can go inside the parentheses in Chapter 10, when we dis-
cuss inheritance.)

Within the body of the class, you can define any number of functions.
All the functions are considered part of the class, and the code that defines

Modeling Physical Objects with Object-Oriented Programming 27

them must be indented. Each function represents some behavior that
an object created from the class can perform. All functions must have at
least one parameter, which by convention is named self (I’ll explain what
this name means in Chapter 3). OOP functions are given a special name:
method.

	 method	 A function defined inside a class. A method always has at least one parameter,
which is usually named self.

The first method in every class should have the special name __init__.
Whenever you create an object from a class, this method will run automati-
cally. Therefore, this method is the logical place to put any initialization
code that you want to run whenever you instantiate an object from a class.
The name __init__ is reserved by Python for this very task, and it must be
written exactly this way, with two underscores before and after the word init
(which must be lowercase). In reality, the __init__() method is not strictly
required. However, it’s generally considered good practice to include it and
use it for initialization.

N O T E 	 When you instantiate an object from a class, Python takes care of constructing the
object (allocating memory) for you. The special __init__() method is called the “ini-
tializer” method, where you give variables initial values. (Most other OOP languages
require a method named new(), which is often referred to as a constructor.)

Scope and Instance Variables
In procedural programming, there are two principal levels of scope: vari-
ables created in the main code have global scope and are available anywhere
in a program, while variables created inside a function have local scope and
only live as long as the function runs. When the function exits, all local
variables (variables with local scope) literally go away.

Object-oriented programming and classes introduce a third level of
scope, typically called object scope, though sometimes referred to as class scope
or more rarely as instance scope. They all mean the same thing: the scope
consists of all the code inside the class definition.

Methods can have both local variables and instance variables. In a
method, any variable whose name does not start with self. is a local vari-
able and will go away when that method exits, meaning other methods
within the class can no longer use that variable. Instance variables have
object scope, which means they are available to all methods defined in a
class. Instance variables and object scope are the keys to understanding
how objects remember data.

	instance variable	 In a method, any variable whose name begins, by convention, with the prefix self.
(for example, self.x). Instance variables have object scope.

28 Chapter 2

Just like local and global variables, instance variables are created when
they are first given a value and do not need any special declaration. The
__init__() method is the logical place to initialize instance variables. Here
we have an example of a class where the __init__() method initializes an
instance variable self.count (read as “self dot count”) to zero and another
method, increment(), that simply adds 1 to self.count:

class MyClass():
 def __init__(self):
 self.count = 0 # create self.count and set it to 0
 def increment(self):
 self.count = self.count + 1 # increment the variable

When you instantiate an object from the MyClass class, the __init__()
method runs and sets the value of the instance variable self.count to zero. If
you then call the increment() method, the value of self.count goes from zero
to one. If you call increment() again, the value goes from one to two, and on
and on.

Each object created from a class gets its own set of instance variables,
independent of any other objects instantiated from that class. In the case of
the LightSwitch class, there is only one instance variable, self.switchIsOn, so
every LightSwitch object will have its own self.switchIsOn. Therefore, you can
have multiple LightSwitch objects, each with its own independent value of
True or False for its self.switchIsOn variable.

Differences Between Functions and Methods
To recap, there are three key differences between a function and a method:

1.	 All methods of a class must be indented under the class statement.

2.	 All methods have a special first parameter that (by convention) is
named self.

3.	 Methods in a class can use instance variables, written in the form
self.<variableName>.

Now that you know what methods are, I’ll show you how to create an
object from a class and how to use the different methods that are available
in a class.

Creating an Object from a Class
As I said earlier, a class simply defines what an object will look like. To use a
class, you have to tell Python to make an object from the class. The typical
way to do this is to use an assignment statement like this:

<object> = <ClassName>(<optional arguments>)

This single line of code invokes a sequence of steps that ends with
Python handing you back a new instance of the class, which you typically
store into a variable. That variable then refers to the resulting object.

Modeling Physical Objects with Object-Oriented Programming 29

T HE INS TA N T I AT ION PROCESS

Figure 2-3 shows the steps involved in instantiating a LightSwitch object from
the LightSwitch class, going from the assignment statement into Python, then to
the code of the class, then back out through Python again, and finally back to
the assignment statement.

Instantiation code

oLightSwitch = LightSwitch()

oLightSwitch = LightSwitch()

Allocates space for a
LightSwitch object

Calls __init__() method
of the LightSwitch class,
passing in the new object

Returns the new object

Assigns the new object
to oLightSwitch

__init__() method
runs, sets value of
“self” to the new
object

Initializes any
instance variables

Python LightSwitch class

Figure 2-3: The process of instantiating an object

The process consists of five steps:

1.	 Our code asks Python to create an object from the LightSwitch class.

2.	 Python allocates space in memory for a LightSwitch object, then calls the
__init__() method of the LightSwitch class, passing in the newly created
object.

3.	 The __init__() method of the LightSwitch class runs. The new object
is assigned to the parameter self. The code of __init__() initializes
any instance variables in the object (in this case, the instance variable
self.switchIsOn).

4.	 Python returns the new object to the original caller.

5.	 The result of the original call is assigned into the variable oLightSwitch, so
it now represents the object.

You can make a class available in two ways: you can place the code of
the class in the same file with the main program, or you can put the code of
the class in an external file and use an import statement to bring in the con-
tents of the file. I’ll show the first approach in this chapter and the second

30 Chapter 2

approach in Chapter 4. The only rule is that the class definition must pre-
cede any code that instantiates an object from the class.

Calling Methods of an Object
After creating an object from a class, to call a method of the object, you use
the generic syntax:

<object>.<methodName>(<any arguments>)

Listing 2-3 contains the LightSwitch class, code to instantiate an object
from the class, and code to turn that LightSwitch object on and off by calling
its turnOn() and turnOff() methods.

File: OO_LightSwitch_with_Test_Code.py

OO_LightSwitch

class LightSwitch():
 def __init__(self):
 self.switchIsOn = False

 def turnOn(self):
 # turn the switch on
 self.switchIsOn = True

 def turnOff(self):
 # turn the switch off
 self.switchIsOn = False

 def show(self): # added for testing
 print(self.switchIsOn)

Main code
oLightSwitch = LightSwitch() # create a LightSwitch object

Calls to methods
oLightSwitch.show()
oLightSwitch.turnOn()
oLightSwitch.show()
oLightSwitch.turnOff()
oLightSwitch.show()
oLightSwitch.turnOn()
oLightSwitch.show()

Listing 2-3: The LightSwitch class and test code to create an object and call its methods

First we create a LightSwitch object and assign it to the oLightSwitch
variable. We then use that variable to call other methods available in
the LightSwitch class. We would read these lines as “oLightSwitch dot show,”
“oLightSwitch dot turnOn,” and so on. If we run this code, it will output:

Modeling Physical Objects with Object-Oriented Programming 31

False
True
False
True

Recall that this class has a single instance variable named self.switchIsOn,
but its value is remembered and easily accessed when different methods of
the same object run.

Creating Multiple Instances from the Same Class
One of the key features of OOP is that you can instantiate as many objects
as you want from a single class, in the same way that you can make endless
cakes from a Bundt cake pan.

So, if you want two light switch objects, or three, or more, you can just
create additional objects from the LightSwitch class like so:

oLightSwitch1 = LightSwitch() # create a light switch object
oLightSwitch2 = LightSwitch() # create another light switch object

The important point here is that each object that you create from a
class maintains its own version of the data. In this case, oLightSwitch1 and
oLightSwitch2 each have their own instance variable, self.switchIsOn. Any
changes you make to the data of one object will not affect the data of
another object. You can call any of the methods in the class with either
object.

The example in Listing 2-4 creates two light switch objects and calls
methods on the different objects.

File: OO_LightSwitch_Two_Instances.py

OO_LightSwitch

class LightSwitch():
--- snipped code of LightSwitch class, as in Listing 2-3 ---

Main code
oLightSwitch1 = LightSwitch() # create a LightSwitch object
oLightSwitch2 = LightSwitch() # create another LightSwitch object

Test code
oLightSwitch1.show()
oLightSwitch2.show()
oLightSwitch1.turnOn() # Turn switch 1 on
Switch 2 should be off at start, but this makes it clearer
oLightSwitch2.turnOff()
oLightSwitch1.show()
oLightSwitch2.show()

Listing 2-4: Create two instances of a class and call methods of each

32 Chapter 2

Here’s the output when this program is run:

False
False
True
False

The code tells oLightSwitch1 to turn itself on and tells oLightSwitch2 to
turn itself off. Notice that the code in the class has no global variables.
Each LightSwitch object gets its own set of any instance variables (just one in
this case) defined in the class.

While this may not seem like a huge improvement over having two
simple global variables that could be used to do the same thing, the impli-
cations of this technique are enormous. You’ll get a better sense of this in
Chapter 4, where I’ll discuss how to create and maintain a large number of
instances made from a class.

Python Data Types Are Implemented as Classes
It might not surprise you that all built-in data types in Python are imple-
mented as classes. Here is a simple example:

>>> myString = 'abcde'
>>> print(type(myString))
<class 'str'>

We assign a string value to a variable. When we call the type() function
and print the results, we see that we have an instance of the str string class.
The str class gives us a number of methods we can call with strings, includ-
ing myString.upper(), myString.lower(), myString.strip(), and so on.

Lists work in a similar way:

>>> myList = [10, 20, 30, 40]
>>> print(type(myList))
<class 'list'>

All lists are instances of the list class, which has many methods includ-
ing myList.append(), myList.count(), myList.index(), and so on.

When you write a class, you are defining a new data type. Your code
provides the details by defining what data it maintains and what operations
it can perform. After creating an instance of your class and assigning it to
a variable, you can use the type() built-in function to determine the class
used to create it, just like with a built-in data type. Here we instantiate a
LightSwitch object and print out its data type:

>>> oLightSwitch = LightSwitch()
>>> print(type(oLightSwitch))
<class 'LightSwitch'>

Modeling Physical Objects with Object-Oriented Programming 33

Just like with Python’s built-in data types, we can then use the variable
oLightSwitch to call the methods available in the oLightSwitch class.

Definition of an Object
To summarize this section, I’ll give my formal definition of an object.

	 object	 Data, plus code that acts on that data, over time.

A class defines what an object will look like when you instantiate one.
An object is a set of instance variables and the code of the methods in the
class from which the object was instantiated. Any number of objects can
be instantiated from a class, and each has its own set of instance variables.
When you call a method of an object, the method runs and uses the set of
instance variables in that object.

Building a Slightly More Complicated Class
Let’s build on the concepts introduced so far and work through a second,
slightly more complicated example in which we’ll make a dimmer switch
class. A dimmer switch has an on/off switch, but it also has a multiposition
slider that affects the brightness of the light.

The slider can move through a range of brightness values. To make
things straightforward, our dimmer digital slider has 11 positions, from 0
(completely off) through 10 (completely on). To raise or lower the bright-
ness of the bulb to the maximum extent, you must move the slider through
every possible setting.

This DimmerSwitch class has more functionality than our LightSwitch class
and needs to remember more data:

•	 The switch state (on or off)

•	 Brightness level (0 to 10)

And here are the behaviors a DimmerSwitch object can perform:

•	 Turn on

•	 Turn off

•	 Raise level

•	 Lower level

•	 Show (for debugging)

The DimmerSwitch class uses the standard template shown earlier in
Listing 2-2: it starts with a class statement and a first method named
__init__(), then defines a number of additional methods, one for each of
the behaviors listed. The full code for this class is presented in Listing 2-5.

34 Chapter 2

File: DimmerSwitch.py

DimmerSwitch class

class DimmerSwitch():
 def __init__(self):
 self.switchIsOn = False
 self.brightness = 0

 def turnOn(self):
 self.switchIsOn = True

 def turnOff(self):
 self.switchIsOn = False

 def raiseLevel(self):
 if self.brightness < 10:
 self.brightness = self.brightness + 1

 def lowerLevel(self):
 if self.brightness > 0:
 self.brightness = self.brightness - 1

 # Extra method for debugging
 def show(self):
 print(Switch is on?', self.switchIsOn)
 print('Brightness is:', self.brightness)

Listing 2-5: The slightly more complicated DimmerSwitch class

In this __init__() method we have two instance variables: the famil-
iar self.switchIsOn and a new one, self.brightness, which remembers the
brightness level. We assign starting values to both instance variables. All
other methods can access the current value of each of these. In addition
to turnOn() and turnOff(), we include two new methods for this class:
raiseLevel() and lowerLevel(), which do exactly what their names imply.
The show() method is used during development and debugging and just
prints the current values of the instance variables.

The main code in Listing 2-6 tests our class by creating a DimmerSwitch
object (oDimmer), then calling the various methods.

File: OO_DimmerSwitch_with_Test_Code.py

DimmerSwitch class with test code

class DimmerSwitch():
--- snipped code of DimmerSwitch class, as in Listing 2-5 ---

Main code
oDimmer = DimmerSwitch()

Turn switch on, and raise the level 5 times

Modeling Physical Objects with Object-Oriented Programming 35

oDimmer.turnOn()
oDimmer.raiseLevel()
oDimmer.raiseLevel()
oDimmer.raiseLevel()
oDimmer.raiseLevel()
oDimmer.raiseLevel()
oDimmer.show()

Lower the level 2 times, and turn switch off
oDimmer.lowerLevel()
oDimmer.lowerLevel()
oDimmer.turnOff()
oDimmer.show()

Turn switch on, and raise the level 3 times
oDimmer.turnOn()
oDimmer.raiseLevel()
oDimmer.raiseLevel()
oDimmer.raiseLevel()
oDimmer.show()

Listing 2-6: DimmerSwitch class with test code

When we run this code, the resulting output is:

Switch is on? True
Brightness is: 5
Switch is on? False
Brightness is: 3
Switch is on? True
Brightness is: 6

The main code creates the oDimmer object, then makes calls to the vari-
ous methods. Each time we call the show() method, the on/off state and the
brightness level are printed. The key thing to remember here is that oDimmer
represents an object. It allows access to all methods in the class from which
it was instantiated (the DimmerSwitch class), and it has a set of all instance
variables defined in the class (self.switchIsOn and self.brightness). Again,
instance variables maintain their values between calls to methods of an
object, so the self.brightness instance variable is incremented by 1 for each
call to oDimmer.raiseLevel().

Representing a More Complicated Physical Object as a Class
Let’s consider a more complicated physical object: a television. With this
more complicated example, we’ll take a closer look at how arguments work
in classes.

A television requires much more data than a light switch to represent
its state, and it has more behaviors. To create a TV class, we must consider
how a user would typically use a TV and what the TV would have to remem-
ber. Let’s look at some of the important buttons on a typical TV remote
(Figure 2-4).

36 Chapter 2

Power

Mute

1 2 3

4 5 6

7 8

0

9

Get Info

ChannelVolume

Figure 2-4: A simplified TV remote

From this, we can determine that to keep track of its state, a TV class
would have to maintain the following data:

•	 Power state (on or off)

•	 Mute state (is it muted?)

•	 List of channels available

•	 Current channel setting

•	 Current volume setting

•	 Range of volume levels available

And the actions that the TV must provide include:

•	 Turn the power on and off

•	 Raise and lower the volume

•	 Change the channel up and down

•	 Mute and unmute the sound

•	 Get information about the current settings

•	 Go to a specified channel

Modeling Physical Objects with Object-Oriented Programming 37

The code for our TV class is shown in Listing 2-7. We include the __init__()
method for initialization, followed by a method for each of the behaviors.

File: TV.py

TV class

class TV():
 def __init__(self): 1

self.isOn = False
self.isMuted = False
Some default list of channels
self.channelList = [2, 4, 5, 7, 9, 11, 20, 36, 44, 54, 65]
self.nChannels = len(self.channelList)
self.channelIndex = 0
self.VOLUME_MINIMUM = 0 # constant
self.VOLUME_MAXIMUM = 10 # constant
self.volume = self.VOLUME_MAXIMUM // 2 # integer divide

 def power(self): 2
self.isOn = not self.isOn # toggle

 def volumeUp(self):
if not self.isOn:

return
if self.isMuted:

self.isMuted = False # changing the volume while muted unmutes the sound
if self.volume < self.VOLUME_MAXIMUM:

self.volume = self.volume + 1

 def volumeDown(self):
if not self.isOn:

return
if self.isMuted:

self.isMuted = False # changing the volume while muted unmutes the sound
if self.volume > self.VOLUME_MINIMUM:

self.volume = self.volume - 1

 def channelUp(self): 3
if not self.isOn:

return
self.channelIndex = self.channelIndex + 1
if self.channelIndex == self.nChannels:

self.channelIndex = 0 # wrap around to the first channel

 def channelDown(self): 4
if not self.isOn:

return
self.channelIndex = self.channelIndex - 1
if self.channelIndex < 0:

self.channelIndex = self.nChannels - 1 # wrap around to the top channel

 def mute(self): 5
if not self.isOn:

38 Chapter 2

 return
 self.isMuted = not self.isMuted

 def setChannel(self, newChannel):
 if newChannel in self.channelList:
 self.channelIndex = self.channelList.index(newChannel)
 # if the newChannel is not in our list of channels, don't do anything

 def showInfo(self): 6
 print()
 print('TV Status:')
 if self.isOn:
 print(' TV is: On')
 print(' Channel is:', self.channelList[self.channelIndex])
 if self.isMuted:
 print(' Volume is:', self.volume, '(sound is muted)')
 else:
 print(' Volume is:', self.volume)
 else:
 print(' TV is: Off')

Listing 2-7: The TV class with many instance variables and methods

The __init__() method 1 creates all the instance variables used in all the
methods and assigns reasonable starting values to each. Technically, you can
create an instance variable inside any method; however, it is a good program-
ming practice to define all instance variables in the __init__() method. This
avoids the risk of an error when attempting to use an instance variable in a
method before it’s been defined.

The power() method 2 represents what happens when you push the
power button on a remote. If the TV is off, pushing the power button turns
it on; if the TV is on, pushing the power button turns it off. To code this
behavior I’ve used a toggle, which is a Boolean that’s used to represent one
of two states and can easily be switched between them. With this toggle, the
not operator switches the self.isOn variable from True to False, or from False
to True. The mute() method code 5 does a similar thing, with the self.muted
variable toggling between muted and not-muted, but first has to check that
the TV is on. If the TV is off, calling the mute() method has no effect.

One interesting thing to note is that we don’t really keep track of
the current channel. Instead, we keep track of the index of the current
channel, which allows us to get the current channel at any time by using
self.channelList[self.channelIndex].

The channelUp() 3 and channelDown() 4 methods basically increment and
decrement the channel index, but there is also some clever code in them to
allow for wrap-around. If you’re currently at the last index in the channel list
and the user asks to go to the next channel up, the TV goes to the first chan-
nel in the list. If you’re at the first index in the channel list and the user asks
to go the next channel down, the TV goes to the last channel in the list.

The showInfo() method 6 prints out the current status of the TV based
on the values of the instance variables (on/off, current channel, current
volume setting, and mute setting).

Modeling Physical Objects with Object-Oriented Programming 39

In Listing 2-8, we’ll create a TV object and call methods of that object.

File: OO_TV_with_Test_Code.py

TV class with test code

--- snipped code of TV class, as in Listing 2-7 ---

Main code
oTV = TV() # create the TV object

Turn the TV on and show the status
oTV.power()
oTV.showInfo()

Change the channel up twice, raise the volume twice, show status
oTV.channelUp()
oTV.channelUp()
oTV.volumeUp()
oTV.volumeUp()
oTV.showInfo()

Turn the TV off, show status, turn the TV on, show status
oTV.power()
oTV.showInfo()
oTV.power()
oTV.showInfo()

Lower the volume, mute the sound, show status
oTV.volumeDown()
oTV.mute()
oTV.showInfo()

Change the channel to 11, mute the sound, show status
oTV.setChannel(11)
oTV.mute()
oTV.showInfo()

Listing 2-8: TV class with test code

When we run this code, here is what we get as output:

TV Status:
 TV is: On
 Channel is: 2
 Volume is: 5

TV Status:
 TV is: On
 Channel is: 5
 Volume is: 7

TV Status:
 TV is: Off

40 Chapter 2

TV Status:
 TV is: On
 Channel is: 5
 Volume is: 7

TV Status:
 TV is: On
 Channel is: 5
 Volume is: 6 (sound is muted)

TV Status:
 TV is: On
 Channel is: 11
 Volume is: 6

All of the methods are working correctly, and we get the expected
output.

Passing Arguments to a Method
When calling any function, the number of arguments must match the num-
ber of parameters listed in the matching def statement:

def myFunction(param1, param2, param3):
 # body of function

call to a function:
myFunction(argument1, argument2, argument3)

The same rule applies with methods and method calls. However, you
may notice that whenever we make a call to a method, it appears that we are
specifying one less argument than the number of parameters. For example,
the definition of the power() method in our TV class looks like this:

def power(self):

This implies that the power() method is expecting one value to be
passed in and whatever is passed in will be assigned to the variable self. Yet
when we started by turning on the TV in Listing 2-8, we made this call:

oTV.power()

When we make the call, we don’t explicitly pass anything inside the
parentheses.

This may seem even stranger in the case of the setChannel() method.
The method is written to accept two parameters:

def setchannel(self, newchannel):
 if newChannel in self.channelList:
 self.channelIndex = self.channelList.index(newChannel)

Modeling Physical Objects with Object-Oriented Programming 41

But we called setChannel() like this:

oTV.setChannel(11)

It appears that only one value is being passed in.
You might expect Python to generate an error here, due to a mismatch

in the number of arguments (one) and the number of parameters (two). In
practice, Python is doing a bit of behind-the-scenes work to make the syntax
easier to follow.

Let’s examine this. Earlier, I said that to make a call to a method of an
object, you use the following generic syntax:

<object>.<method>(<any arguments>)

Python takes the <object> you specify in the call and rearranges it to
become the first argument. Any values in the parentheses of the method
call are considered the subsequent argument(s). Thus, Python makes it
appear that you wrote this instead:

<method of object>(<object>, <any arguments>)

Figure 2-5 shows how this works in our example code, again using the
setChannel() method of the TV class.

#Call
oTV.setChannel(11)V

Method in the TV class
def setChannel(self, newChannel):
 …

Figure 2-5: Calling a method

Although it looks like we’re only providing one argument here (for
newChannel), there are really two arguments passed in—oTV and 11—and the
method provides two parameters to receive these values (self and newChannel,
respectively). Python rearranges the arguments for us when the call is
made. This may seem odd at first, but it will become second nature very
quickly. Writing the call with the object first makes it much easier for a
programmer to see which object is being acted on.

This is a subtle but important feature. Remember that the object (in
this case, oTV) keeps the current settings of all of its instance variables.
Passing the object as the first argument allows the method to run with the
values of the instance variables of that object.

Multiple Instances
Every method is written with self as the first parameter, so the self variable
receives the object used in each call. This has a major implication: it allows

42 Chapter 2

any method within a class to work with different objects. I’ll explain how this
works using an example.

In Listing 2-9, we’ll create two TV objects and save them in two variables,
oTV1 and oTV2. Each TV object has a volume setting, a channel list, a channel
setting, and so on. We’ll make calls to a number of different methods of
the different objects. At the end, we’ll call the showInfo() method on each TV
object to see the resulting settings.

File: OO_TV_TwoInstances.py

Two TV objects with calls to their methods
class TV():
--- snipped code of TV class, as in Listing 2-7 ---
Main code
oTV1 = TV() # create one TV object
oTV2 = TV() # create another TV object

Turn both TVs on
oTV1.power()
oTV2.power()

Raise the volume of TV1
oTV1.volumeUp()
oTV1.volumeUp()

Raise the volume of TV2
oTV2.volumeUp()
oTV2.volumeUp()
oTV2.volumeUp()
oTV2.volumeUp()
oTV2.volumeUp()

Change TV2's channel, then mute it
oTV2.setChannel(44)
oTV2.mute()

Now display both TVs
oTV1.showInfo()
oTV2.showInfo()

Listing 2-9: Creating two instances of the TV class and calling methods of each

If we run this code, it will generate the following output:

Status of TV:
 TV is: On
 Channel is: 2
 Volume is: 7

Status of TV:
 TV is: On
 Channel is: 44
 Volume is: 10 (sound is muted)

Modeling Physical Objects with Object-Oriented Programming 43

Each TV object maintains its own set of the instance variables defined in
the class. This way, each TV object’s instance variables can be manipulated
independently of those of any other TV object.

Initialization Parameters
The ability to pass arguments to method calls also works when instantiat-
ing an object. So far, when we’ve created our objects, we’ve always set their
instance variables to constant values. However, you’ll often want to create
different instances with different starting values. For example, imagine we
want to instantiate different TVs and identify them using their brand name
and location. This way, we can differentiate between a Samsung television
in the family room and a Sony television in the bedroom. Constant values
would not work for us in this situation.

To initialize an object with different values, we add parameters to the
definition of the __init__() method, like this:

TV class

class TV():
 def __init__(self, brand, location): # pass in a brand and location for the TV
 self.brand = brand
 self.location = location
 --- snipped remaining initialization of TV ---
 ...

In all methods, parameters are local variables, so they literally go away
when the method ends. For example, in the __init__() method of the TV
class shown here, brand and location are local variables that will disappear
when the method ends. However, we often want to save values that are
passed in via parameters to use them in other methods.

In order to allow an object to remember initial values, the standard
approach is to store any values passed in into instance variables. Since
instance variables have object scope, they can be used in other methods in
the class. The Python convention is that the name of the instance variable
should be the same as the parameter name, but prefixed with self and a
period:

def __init__(self, someVariableName):
 self.someVariableName = someVariableName

In the TV class, the line after the def statement tells Python to take the
value of the brand parameter and assign it to an instance variable named
self.brand. The next line does the same thing with the location parameter
and the instance variable self.location. After these assignments, we can use
self.brand and self.location in other methods.

44 Chapter 2

Using this approach, we can create multiple objects from the same class
but start each off with different data. So, we can create our two TV objects
like this:

oTV1 = TV('Samsung', 'Family room')
oTV2 = TV('Sony', 'Bedroom')

When executing the first line, Python first allocates space for a TV
object. Then it rearranges the arguments as discussed in the previous sec-
tion and calls the __init__() method of the TV class with three arguments:
the newly allocated oTV1 object, the brand, and the location.

When initializing the oTV1 object, self.brand is set to the string 'Samsung'
and self.location is set to the string 'Family room'. When initializing oTV2,
its self.brand is set to the string 'Sony', and its self.location gets set to the
string 'Bedroom'.

We can modify the showInfo() method to report the name and location
of the TV.

File: OO_TV_TwoInstances_with_Init_Params.py

def showInfo(self):
 print()
 print('Status of TV:', self.brand)
 print(' Location:', self.location)
 if self.isOn:
 ...

And we’ll see this as output:

Status of TV: Sony
 Location: Family room
 TV is: On
 Channel is: 2
 Volume is: 7

Status of TV: Samsung
 Location: Bedroom
 TV is: On
 Channel is: 44
 Volume is: 10 (sound is muted)

We made the same method calls as in the previous example in
Listing 2-9. The difference is that each TV object is now initialized with a
brand and a location, and you can now see that information printed in
response to each call to the modified showInfo() method.

Modeling Physical Objects with Object-Oriented Programming 45

Classes in Use
Using everything we’ve learned in this chapter, we can now create classes
and build multiple independent instances from those classes. Here are a
few examples of how we might use this:

•	 Say we wanted to model a student in a course. We could have a Student
class that has instance variables for name, emailAddress, currentGrade, and
so on. Each Student object we create from this class would have its own
set of these instance variables, and the values given to the instance vari-
ables would be different for each student.

•	 Consider a game where we have multiple players. A player could be
modeled by a Player class with instance variables for name, points, health,
location, and so on. Each player would have the same capabilities, but
the methods could work differently based on the different values in the
instance variables.

•	 Imagine an address book. We could create a Person class with instance
variables for name, address, phoneNumber, and birthday. We could create
as many objects from the Person class as we want, one for each person
we know. The instance variables in each Person object would contain
different values. We could then write code to search through all the
Person objects and retrieve information about the one or ones we are
looking for.

In future chapters, I will explore this concept of instantiating multiple
objects from a single class and give you tools to help manage a collection of
objects.

OOP as a Solution
Toward the end of Chapter 1, I mentioned three problems that are inher-
ent in procedural coding. Hopefully, after working through the examples
in this chapter, you can see how object-oriented programming solves all of
those problems:

1.	 A well-written class can be easily reused in many different programs.
Classes do not need to access global data. Instead, objects provide code
and data at the same level.

2.	 Object-oriented programming can greatly reduce the number of global
variables required, because a class provides a framework in which data
and code that acts on the data exist in one grouping. This also tends to
make code easier to debug.

3.	 Objects created from a class only have access to their own data—their
set of the instance variables in the class. Even when you have multiple
objects created from the same class, they do not have access to each
other’s data.

46 Chapter 2

Summary
In this chapter, I provided an introduction to object-oriented program-
ming by demonstrating the relationship between a class and an object. The
class defines the shape and capabilities of an object. An object is a single
instance of a class that has its own set of all the data defined in the instance
variables of the class. Each piece of data you want an object to contain is
stored in an instance variable, which has object scope, meaning that it is
available within all methods defined in the class. All objects created from
the same class get their own set of all the instance variables, and because
these may contain different values, calling the methods on different objects
can result in different behavior.

I showed how you create an object from a class, typically through an
assignment statement. After instantiating an object, you can use it to make
calls to any method defined in the class of that object. I also showed how
you can instantiate multiple objects from the same class.

In this chapter, the demonstration classes implemented physical objects
(light switches, TVs). This is a good way to start understanding the con-
cepts of a class and an object. However, in future chapters, I will introduce
objects that do not represent physical objects.

3
M E N T A L M O D E L S O F O B J E C T S
A N D T H E M E A N I N G O F “ S E L F ”

Hopefully the new concepts and terminol-
ogy I’ve introduced so far are starting to

make sense. Some people new to OOP have
trouble envisioning what an object is and how

the methods of an object work with its instance vari-
ables. The specifics are fairly complex, so it can be
helpful to develop a mental model of how objects and
classes operate.

In this chapter, I’ll present two mental models of OOP. Right up front,
I want to be clear that neither of these models is an exact representation
of how objects work in Python. Instead, these models are intended to give
you a way to think about what an object looks like and what happens when
you call a method. This chapter will also go into more detail about self and
show how it is used to make methods work with multiple objects instanti-
ated from the same class. Throughout the rest of the book, you’ll gain a
much deeper insight into objects and classes.

48 Chapter 3

Revisiting the DimmerSwitch Class
In the following examples, we’ll continue with the DimmerSwitch class from
Chapter 2 (Listing 2-5). The DimmerSwitch class already has two instance vari-
ables: self.isOn and self.brightness. The only modification we’ll make is to
add a self.label instance variable so each object we create can be identified
easily in the output when we run our program. These variables are created
and assigned initial values in the __init__() method. They are then accessed
or modified in the five other methods of the class.

Listing 3-1 provides some test code to create three DimmerSwitch objects
from the DimmerSwitch class, which we’ll use in our mental models. I’ll call
various methods for each of the DimmerSwitch objects.

File: OO_DimmerSwitch_Model1.py

Create first DimmerSwitch, turn it on, and raise the level twice
oDimmer1 = DimmerSwitch('Dimmer1')
oDimmer1.turnOn()
oDimmer1.raiseLevel()
oDimmer1.raiseLevel()

Create second DimmerSwitch, turn it on, and raise the level 3 times
oDimmer2 = DimmerSwitch('Dimmer2')
oDimmer2.turnOn()
oDimmer2.raiseLevel()
oDimmer2.raiseLevel()
oDimmer2.raiseLevel()

Create third DimmerSwitch, using the default settings
oDimmer3 = DimmerSwitch('Dimmer3')

Ask each switch to show itself
oDimmer1.show()
oDimmer2.show()
oDimmer3.show()

Listing 3-1: Creating three DimmerSwitch objects and calling various methods on each

When run with our DimmerSwitch class, this code gives the following
output:

Label: Dimmer1
Light is on? True
Brightness is: 2

Label: Dimmer2
Light is on? True
Brightness is: 3

Label: Dimmer3
Light is on? False
Brightness is: 0

Mental Models of Objects and the Meaning of “self” 49

This is exactly what you would expect. Each DimmerSwitch object is inde-
pendent of any other DimmerSwitch objects, and each object contains and
modifies its own instance variables.

High-Level Mental Model #1
In this first model, you can think of each object as a self-contained unit that
contains a data type, a set of the instance variables defined in the class, and
a copy of all the methods defined in the class (Figure 3-1).

Type:
 DimmerSwitch

Data:
 label: Dimmer1
 isOn: True
 brightness: 2

Methods:
 init()
 turnOn()
 turnOff()
 raiseLevel()
 lowerLevel()
 show()

oDimmer1

Type:
 DimmerSwitch

Data:
 label: Dimmer2
 isOn: True
 brightness: 3

Methods:
 init()
 turnOn()
 turnOff()
 raiseLevel()
 lowerLevel()
 show()

oDimmer2

Type:
 DimmerSwitch

Data:
 label: Dimmer3
 isOn: False
 brightness: 0

Methods:
 init()
 turnOn()
 turnOff()
 raiseLevel()
 lowerLevel()
 show()

oDimmer3

Figure 3-1: In mental model #1 each object is a unit that has a type, data,
and methods.

The data and methods of each object are packaged together. The
scope of an instance variable is defined as all the methods in the class,
so all methods have access to the instance variables associated with that
object.

If this mental model makes the concepts clear, then you’re in good
shape. While this is not the way objects are actually implemented, it’s a per-
fectly reasonable way to think about how an object’s instance variables and
methods work together.

A Deeper Mental Model #2
This second model explores objects at a lower level and will explain more
about what an object is.

Every time you instantiate an object, you get back a value from Python.
We typically store the returned value in a variable that refers to the object.
In Listing 3-2, we create three DimmerSwitch objects. After creating each one,
we’ll add code to inspect the result by printing out the type and value of
each variable.

50 Chapter 3

File: OO_DimmerSwitch_Model2_Instantiation.py

Create three DimmerSwitch objects
oDimmer1 = DimmerSwitch('Dimmer1')
print(type(oDimmer1))
print(oDimmer1)
print()
oDimmer2 = DimmerSwitch('Dimmer2')
print(type(oDimmer2))
print(oDimmer2)
print()
oDimmer3 = DimmerSwitch('Dimmer3')
print(type(oDimmer3))
print(oDimmer3)
print()

Listing 3-2: Creating three DimmerSwitch objects and printing the type and value of each

Here is the output:

<class '__main__.DimmerSwitch'>
<__main__.DimmerSwitch object at 0x7ffe503b32e0>
<class '__main__.DimmerSwitch'>
<__main__.DimmerSwitch object at 0x7ffe503b3970>
<class '__main__.DimmerSwitch'>
<__main__.DimmerSwitch object at 0x7ffe503b39d0>

The first line in each grouping tells us the data type. Instead of a built-in
type like integer or float, we see that all three objects are of the programmer-
defined DimmerSwitch type. (The __main__ indicates that the DimmerSwitch code
was found inside our single Python file, not imported from any other file.)

The second line of each grouping contains a string of characters. Each
string represents a location in the memory of the computer. The memory
location is where all the data associated with each object can be found.
Notice each object is in a different location in memory. If you run this code
on your computer, you will most likely get different values, but the actual
values do not matter to understanding the concept.

All DimmerSwitch objects report the same type: class DimmerSwitch. The
extremely important takeaway is that the objects all refer to the code of the
same class, which really only exists in one place. When your program starts
running, Python reads through all the class definitions and remembers the
locations of all the classes and their methods.

The Python Tutor website (http://PythonTutor.com) provides some useful
tools that can help you to visualize the execution of small programs by allow-
ing you to step through each line of your code. Figure 3-2 is a screenshot from
running the DimmerSwitch class and test code through the visualization tool,
stopping execution before instantiating the first DimmerSwitch object.

In this screenshot, you can see that Python remembers the location
of the DimmerSwitch class and all of its methods. While classes can contain
hundreds or even thousands of lines of code, no object actually gets a copy
of the class’s code. Having only one copy of the code is very important, as
it keeps the size of OOP programs small. When you instantiate an object,

http://PythonTutor.com

Mental Models of Objects and the Meaning of “self” 51

Python allocates enough memory for each object to represent its own set
of the instance variables defined in the class. In general, instantiating an
object from a class is memory-efficient.

Figure 3-2: Python remembers all classes and all methods in each class.

The screenshot in Figure 3-3 shows the result of running all the test
code in Listing 3-2.

Figure 3-3: Running Listing 3-2 demonstrates that objects do not include code, in accor-
dance with mental model #2.

52 Chapter 3

This matches our second mental model. On the right side of this
screenshot, the code for the DimmerSwitch class appears only once. Each
object knows the class it was instantiated from and contains its own set of
the instance variables defined in the class.

N O T E 	 While the following is an implementation detail, it may help to further your under-
standing of objects. Internally, all instance variables of an object are kept as name/
value pairs in a Python dictionary. You can inspect all the instance variables in an
object by calling the built-in vars() function on any object. For example, in the test
code from Listing 3-2, if you want to see the internal representation of the instance
variables, you can add this line at the end:

print('oDimmer1 variables:', vars(oDimmer1))

When you run it, you’ll see this output:

oDimmer1 variables: {'label': 'Dimmer1', 'isOn': True, 'brightness': 2}

What Is the Meaning of “self”?
Philosophers have struggled with this question for centuries, so it would be
rather pretentious of me to try to explain it in just a few pages. In Python,
however, the variable named self does have a highly specialized and clear
meaning. In this section, I’ll show how self is given a value and how the
code of the methods in a class work with the instance variables of any object
instantiated from the class.

N O T E 	 The variable name self is not a keyword in Python but is used by convention—any
other name could be used and the code would work fine. However, using self is a
universally accepted practice in Python, and I will use it throughout this book. If you
want your code to be understood by other Python programmers, use the name self as
the first parameter in all methods of a class. (Other OOP languages have the same
concept but use other names, such as this or me.)

Suppose you write a class named SomeClass, then create an object from
that class, like this:

oSomeObject = SomeClass(<optional arguments>)

The object oSomeObject contains a set of all the instance variables
defined in the class. Every method of the SomeClass class has a definition
that looks like this:

def someMethod(self, <any other parameters>):

And here is the general form of a call to such a method:

oSomeObject.someMethod(<any other arguments>)

Mental Models of Objects and the Meaning of “self” 53

As we know, Python rearranges the arguments in a call to a method, so
that the object is passed in as the first argument. That value is received in the
first parameter of the method and is put into the variable self (Figure 3-4).

def someMethod(self, <any other parameters>):

oSomeObject.someMethod(<any other arguments>)

Figure 3-4: How Python rearranges arguments in a call to a method

Therefore, whenever a method is called, self will be set to the object
in the call. This means that the code of a method can operate on the
instance variables of any object instantiated from the class. It does so
using the form:

self.<instanceVariableName>

This essentially says to use the object referred to by self and access
the instance variable specified by <instanceVariableName>. Since every
method uses self as the first parameter, every method in a class uses this
same approach.

To illustrate this concept, let’s use the DimmerSwitch class. In the follow-
ing example, we’ll instantiate two DimmerSwitch objects, then walk through
what happens when we raise the brightness level of these objects by calling
the raiseLevel() method with each.

The code of the method we’re calling is:

def raiseLevel(self):
 if self.brightness < 10:
 self.brightness = self.brightness + 1

Listing 3-3 shows some example test code for two DimmerSwitch objects.

File: OO_DimmerSwitch_Model2_Method_Calls.py

Create two DimmerSwitch objects
oDimmer1 = DimmerSwitch('Dimmer1')
oDimmer2 = DimmerSwitch('Dimmer2')

Tell oDimmer1 to raise its level
oDimmer1.raiseLevel()

Tell oDimmer2 to raise its level
oDimmer2.raiseLevel()

Listing 3-3: Calling the same method on different DimmerSwitch objects

54 Chapter 3

In this listing, we first instantiate two DimmerSwitch objects. Then we have
two calls to the raiseLevel() method: first we call it with oDimmer1, then we
call the same method using oDimmer2.

Figure 3-5 shows the result of running the test code in Listing 3-3
in Python Tutor, with execution stopped while making the first call to
raiseLevel().

Figure 3-5: The program in Listing 3-3 stopped in call to oDimmer1.raiseLevel()

Notice that self and oDimmer1 refer to the same object. When the
method executes and uses any self.<instanceVariable>, it will use oDimmer1’s
instance variables. Therefore, when this method runs, self.brightness refers
to the brightness instance variable in oDimmer1.

If we continue to execute the test code in Listing 3-3, we get to the sec-
ond call to raiseLevel() with oDimmer2. In Figure 3-6, I’ve stopped execution
inside this method call.

Notice that this time, self refers to the same object as oDimmer2. Now,
self.brightness refers to the brightness instance variable of oDimmer2.

No matter what object we use or which method we call, the value of
the object is assigned to the variable self in the called method. You should
think of self as meaning the current object—the object that the method
was called with. Whenever a method executes, it uses the set of instance
variables for the object specified in the call.

Mental Models of Objects and the Meaning of “self” 55

Figure 3-6: The program in Listing 3-3 stopped in call to oDimmer2.raiseLevel()

Summary
In this chapter, I presented two different ways of thinking about objects.
These mental models should help in developing a basic understanding of
what happens when you instantiate multiple instances of an object from a
class.

The first model showed how you can think of an object as having a set
of all the instance variables and all the methods of a class wrapped up in a
nice bundle.

The second model went into much greater detail about the implementa-
tion, explaining that the code of a class exists only in one place. An impor-
tant takeaway is that creating new objects from a class is space-efficient.
When you create a new instance of an object, Python allocates memory to
represent the instance variables defined in the class. No duplicates of the
class’s code are made or required.

The key to how methods work with multiple objects is that the first
parameter of all methods, self, is always set to the object used in a call to
that method. With this approach, every method uses the instance variables
for the current object.

4
M A N A G I N G M U L T I P L E O B J E C T S

This chapter will show you techniques for
managing any number of objects instanti-

ated from the same class. I’ll first go through
an OOP implementation of the bank account

example from Chapter 1. The OOP approach allows
the data and code of an account to be at the same
level, eliminating the need to depend on global data.
Then, I’ll split the program into main code that
provides a top-level menu and a separate Bank object
that manages accounts, in addition to any number of
Account objects. We’ll also discuss a better way of han-
dling errors using exceptions.

58 Chapter 4

Bank Account Class
Our bank account class will need, at a minimum, a name, password,
and balance as its data. For behaviors, the user must be able to create an
account, deposit and withdraw money, and check their balance.

We’ll define and initialize the variables for the name, password, and
balance, and build methods to implement each of the operations. We
should then be able to instantiate any number of Account objects. Like the
initial class from Chapter 1, this is a simplified Account class that only uses
integers for the balance and keeps the password in cleartext. While you
wouldn’t use simplifications like these in a real banking application, they
will allow us to concentrate on the OOP aspects involved.

The new code for the Account class is presented in Listing 4-1.

File: Account.py

Account class

class Account():
 1 def __init__(self, name, balance, password):
 self.name = name
 self.balance = int(balance)
 self.password = password

 2 def deposit(self, amountToDeposit, password):
 if password != self.password:
 print('Sorry, incorrect password')
 return None

 if amountToDeposit < 0:
 print('You cannot deposit a negative amount')
 return None

 self.balance = self.balance + amountToDeposit
 return self.balance

 3 def withdraw(self, amountToWithdraw, password):
 if password != self.password:
 print('Incorrect password for this account')
 return None

 if amountToWithdraw < 0:
 print('You cannot withdraw a negative amount')
 return None

 if amountToWithdraw > self.balance:
 print('You cannot withdraw more than you have in your account')
 return None

 self.balance = self.balance - amountToWithdraw
 return self.balance

Managing Multiple Objects 59

 4 def getBalance(self, password):
 if password != self.password:
 print('Sorry, incorrect password')
 return None
 return self.balance

 # Added for debugging
 5 def show(self):
 print(' Name:', self.name)
 print(' Balance:', self.balance)
 print(' Password:', self.password)
 print()

Listing 4-1: A minimal Account class

N O T E 	 The error handling in Listing 4-1 is very simple. If we find an error condition, we
print an error message and return a special value of None. Later in the chapter, I will
show a better way of handling errors.

Notice how these methods manipulate and remember data. Data is
passed into each method through parameters, which are local variables that
only exist while the method is running. Data is remembered in instance
variables, which have object scope and therefore remember their values
across calls to different methods.

First we have the __init__() method 1, with three parameters. When
an object is created from this class, three pieces of data are required: name,
balance, and password. The instantiation might look like this:

oAccount = Account('Joe Schmoe', 1000, 'magic')

When we instantiate the object, the values of the three arguments are
passed into the __init__() method, which in turn assigns these values to the
similarly named instance variables: self.name, self.balance, and self.password.
We’ll access these instance variables in the other methods.

The deposit() method 2 lets the user make a deposit into an account.
After instantiating an Account object and saving it in oAccount, we could call
the deposit() method like this:

newBalance = oAccount.deposit(500, 'magic')

This call says to deposit $500 and gives the password “magic”. The
method performs two validity checks on the deposit request. The first
ensures that the password is correct by testing the password provided in the
call against the password set when the Account object was created. This is a
good example of how the original password saved in the instance variable
self.password is used. The second validity check makes sure we aren’t depos-
iting a negative amount (which would actually be a withdrawal).

If either of those tests fails, for now we return the special value None
to show that some error occurred. If both tests pass, we increment the
instance variable self.balance by the amount of the deposit. Because the

60 Chapter 4

balance is stored in self.balance, it is remembered and is available for future
calls. Finally, we return the new balance.

The withdraw() method 3 works in a very similar way and would be
called like this:

oAccount.withdraw(250, 'magic')

The withdraw() method checks that we’ve supplied the proper password
by verifying it against the instance variable self.password. It also checks that
we’re not asking to withdraw a negative amount or more than we have in the
account, using the instance variable self.balance. Once those tests pass, the
method decrements self.balance by the amount to withdraw. It returns the
resulting balance.

To check the balance 4, we only need to supply the proper password
for the account:

currentBalance = oAccount.getBalance('magic')

If the password supplied matches the one saved in the instance variable
self.password, the method returns the value in self.balance.

Finally, for debugging, we added a show() method 5 to display the
current values of self.name, self.balance, and self.password saved for the
account.

The Account class is our first example of representing something that
is not a physical object. A bank account is not something that you can see,
feel, or touch. However, it fits perfectly into the world of computer objects
because it has data (name, balance, password) and actions that work on
that data (create, deposit, withdraw, get balance, show).

Importing Class Code
There are two ways to use a class you’ve built in your own code. As we’ve
seen in previous chapters, the simplest way is to place all the code of the
class directly in the main Python source file. But doing so makes it difficult
to reuse a class.

A second approach is to place the code of the class in a file by itself
and import it into a program that uses it. We’ve placed all the code for our
Account class in Account.py, but if we try to run Account.py by itself, nothing
happens, because it’s just the definition of a class. To use our class code, we
must instantiate one or more objects and make calls to the object’s meth-
ods. As our classes become larger and more complicated, saving each of
them as a separate file is the preferred way to work with them.

To use our Account class, we must build another .py file and import the
code from Account.py, as we do with other built-in packages like random and
time. Often, Python programmers name the main program that imports
other class files main.py or Main_<SomeName>.py. We must then ensure
that Account.py and the main program file are in the same folder. At the

Managing Multiple Objects 61

beginning of the main program, we bring in the Account code by starting
with an import statement (notice that we leave off the *.py file extension):

from Account import *

Using the import statement with an asterisk (*) brings in the entire con-
tents of the imported file. An imported file can contain multiple classes. In
this case, where possible, you should specify the specific class or classes that
you want to import, rather than importing the whole file. Here’s the syntax
for importing particular classes:

from <ExternalFile> import <ClassName1>, <ClassName2>, ...

There are two benefits to importing class code:

1.	 The module is reusable, so if we want to use Account.py in some other
project, we just need to make a copy of the file and place it into that
project’s folder. Reusing code in this way is a staple of object-oriented
programming.

2.	 If your class code is included in the main program, every time you run
the program, Python compiles all the code in your class (translates it
into a lower-level language that is more easily runnable on your com-
puter), even if you have not made any changes to the class.

However, when you run your main program with your class code
imported, Python optimizes the compile step without you having to
do anything. It creates a folder named __pycache__ in the project folder,
then compiles the code in your class file and saves the compiled code
in the __pycache__ folder with a variant of the original Python filename.
For example, for the Account.py file, Python will create a file using the
name Account.cpython-39.pyc (or similar, based on the version of Python
you are using). The .pyc extension stands for Python Compiled. Python
only recompiles your class file if the source of the class file changes. If
the source of your Account.py has not changed, Python knows it doesn't
need to recompile it and can more efficiently use the .pyc version of the
file instead.

Creating Some Test Code
We’ll test our new class with four main programs. The first will create Account
objects using separately named variables. The second stores the objects in a
list, while the third stores the account numbers and objects in a dictionary.
Finally, the fourth version will split the functionality so we have a main pro-
gram that responds to the user and a Bank object that manages the different
accounts.

In each example, the main program imports Account.py. Your project
folder should contain the main program and the Account.py file. In the

62 Chapter 4

following discussion, the different versions of the main program will be
named Main_Bank_VersionX.py, where X represents the version number.

Creating Multiple Accounts
In this first version, we’ll create two example accounts and populate them
with viable data for testing. We’ll save each account in an explicitly named
variable representing the object.

File: BankOOP1_IndividualVariables/Main_Bank_Version1.py

Test program using accounts
Version 1, using explicit variables for each Account object

Bring in all the code from the Account class file
from Account import *

Create two accounts
1 oJoesAccount = Account('Joe', 100, 'JoesPassword')
print("Created an account for Joe")

2 oMarysAccount = Account('Mary', 12345, 'MarysPassword')
print("Created an account for Mary")

3 oJoesAccount.show()
oMarysAccount.show()
print()

Call some methods on the different accounts
print('Calling methods of the two accounts ...')
4 oJoesAccount.deposit(50, 'JoesPassword')
oMarysAccount.withdraw(345, 'MarysPassword')
oMarysAccount.deposit(100, 'MarysPassword')

Show the accounts
oJoesAccount.show()
oMarysAccount.show()

Listing 4-2: A main program to test the Account class

We create an account for Joe 1 and an account for Mary 2, and we
store the results into two Account objects. We then call the show() method for
the accounts to demonstrate that they were created correctly 3. Joe depos-
its $50. Mary makes a withdrawal of $345 and then deposits $100 4. If we
run the program now, this will be our output:

Created an account for Joe
Created an account for Mary
 Name: Joe
 Balance: 100
 Password: JoesPassword

 Name: Mary

Managing Multiple Objects 63

 Balance: 12345
 Password: MarysPassword

Calling methods of the two accounts ...
 Name: Joe
 Balance: 150
 Password: JoesPassword

 Name: Mary
 Balance: 12100
 Password: MarysPassword

Now we’ll extend the test program to create a third account interac-
tively by asking for some input from the user. Listing 4-3 shows the code
for this.

Create another account with information from the user
print()
userName = input('What is the name for the new user account? ') 1
userBalance = input('What is the starting balance for this account? ')
userBalance = int(userBalance)
userPassword = input('What is the password you want to use for this account? ')
oNewAccount = Account(userName, userBalance, userPassword) 2

Show the newly created user account
oNewAccount.show() 3

Let's deposit 100 into the new account
oNewAccount.deposit(100, userPassword) 4
usersBalance = oNewAccount.getBalance(userPassword)
print()
print("After depositing 100, the user's balance is:", usersBalance)

Show the new account
oNewAccount.show()

Listing 4-3: An extension of the test program to create an account on the fly

This test code asks the user for a name, a starting balance, and a pass-
word 1. It uses these values to create a new account, and we store the newly
created object in the variable oNewAccount 2. We then call the show() method
on the new object 3. We deposit $100 into the account and retrieve the new
balance by calling the getBalance() method 4. When we run the full pro-
gram, we get the output from Listing 4-2, as well as the following output:

What is the name for the new user account? Irv
What is the starting balance for this account? 777
What is the password you want to use for this account? IrvsPassword
 Name: Irv
 Balance: 777
 Password: IrvsPassword

After depositing 100, the user's balance is: 877

64 Chapter 4

 Name: Irv
 Balance: 877
 Password: IrvsPassword

The key thing to notice here is that each Account object maintains its
own set of instance variables. Each object (oJoesAccount, oMarysAccount, and
oNewAccount) is a global variable that contains a collection of three instance
variables. If we were to expand our definition of the Account class to include
information such as address, telephone number, and date of birth, each
object would get a set of these additional instance variables.

Multiple Account Objects in a List
Representing each account in a separate global variable works, but this is not
a good approach when we need to handle a large number of objects. A bank
would need a way to handle an arbitrary number of accounts. Whenever we
need an arbitrary number of pieces of data, a list is the typical solution.

In this version of the test code, we’ll start with an empty list of Account
objects. Every time a user opens an account, we’ll instantiate an Account
object and append the resulting object onto our list. The account number
for any given account will be the index of the account in the list, starting
with 0. Again, we’ll start by creating a test account for Joe and one for Mary,
as shown in Listing 4-4.

File: BankOOP2_ListOfAccountObjects/Main_Bank_Version2.py

Test program using accounts
Version 2, using a list of accounts

Bring in all the code from the Account class file
from Account import *

Start off with an empty list of accounts
accountsList = [] 1

Create two accounts
oAccount = Account('Joe', 100, 'JoesPassword') 2
accountsList.append(oAccount)
print("Joe's account number is 0")

oAccount = Account('Mary', 12345, 'MarysPassword') 3
accountsList.append(oAccount)
print("Mary's account number is 1")

accountsList[0].show() 4
accountsList[1].show()
print()

Call some methods on the different accounts
print('Calling methods of the two accounts ...')
accountsList[0].deposit(50, 'JoesPassword') 5
accountsList[1].withdraw(345, 'MarysPassword') 6

Managing Multiple Objects 65

accountsList[1].deposit(100, 'MarysPassword') 7

Show the accounts
accountsList[0].show() 8
accountsList[1].show()

Create another account with information from the user
print()
userName = input('What is the name for the new user account? ')
userBalance = input('What is the starting balance for this account? ')
userBalance = int(userBalance)
userPassword = input('What is the password you want to use for this account? ')
oAccount = Account(userName, userBalance, userPassword)
accountsList.append(oAccount) # append to list of accounts

Show the newly created user account
print('Created new account, account number is 2')
accountsList[2].show()

Let's deposit 100 into the new account
accountsList[2].deposit(100, userPassword)
usersBalance = accountsList[2].getBalance(userPassword)
print()
print("After depositing 100, the user's balance is:", usersBalance)

Show the new account
accountsList[2].show()

Listing 4-4: Modified test code to store objects in a list

We start by creating an empty list of accounts 1. We create an account
for Joe, store the returned value into the variable oAccount, and immediately
append that object onto our list of accounts 2. Since this is the first account
in the list, Joe’s account number is 0. Like at a real bank, any time that Joe
wants to do any transactions with his account, he supplies his account num-
ber. We use his account number to show the balance of his account 4, make
a deposit 5, then show the balance again 8. We also create an account for
Mary with account number 1 3 and perform some test operations on her
account at 6 and 7.

The results are identical to the test code from Listing 4-3. However,
there is one highly significant difference between the two test programs:
now there is only the single global variable accountsList. Each account has a
unique account number, which we use to access a specific account. We have
taken an important step in reducing the number of global variables.

Another important thing to note here is that we made some fairly major
changes to the main program, but we did not touch anything in the Account
class file. OOP often allows you to hide details at different levels. If we assume
that the code of the Account class takes care of details related to an individual
account, we can concentrate on ways to make the main code better.

Notice also that we’re using the variable oAccount as a temporary variable.
That is, whenever we create a new Account object, we are assigning the result
to the variable oAccount. Right after doing that, we append oAccount to our

66 Chapter 4

list of accounts. We never use the variable oAccount in calls to any method
of a specific Account object. That way, we can reuse the variable oAccount to
receive the value of the next account that is created.

Multiple Objects with Unique Identifiers
The Account objects must be individually identifiable so each user can make
deposits and withdrawals and get the balance of their specific account.
Using a list for our bank accounts works, but there’s a serious flaw. Imagine
we have five accounts, numbered 0, 1, 2, 3, and 4. If the person who owns
account 2 decides to close their account, we’d likely use a standard pop()
operation on the list to delete account 2. This would cause a domino effect:
the account that was in position 3 is now in position 2, and the account that
was in position 4 is now in position 3. However, the users of these accounts
still have their original account numbers, 3 and 4. As a result, the customer
who owns account 3 will now get the information for the previous account
4, and account number 4 is now an invalid index.

To handle large numbers of objects with unique identifiers, we generally
use a dictionary. Unlike a list, a dictionary will allow us to delete accounts
without altering the account numbers associated with them. We build each
key/value pair with an account number as the key and an Account object as the
value. That way, if we need to eliminate a given account, no other account is
affected. A dictionary of accounts would look like this:

{0 : <object for account 0>, 1 : <object for account 1>, ... }

We can then easily get the associated Account object and call a method
like this:

oAccount = accountsDict[accountNumber]
oAccount.someMethodCall()

Alternatively, we could use the accountNumber directly to make a call to a
method of an individual Account:

accountsDict[accountNumber].someMethodCall()

Listing 4-5 shows the test code using a dictionary of Account objects.
Again, while we’re making many changes to our test code, we’re not chang-
ing a single line in the Account class. In our test code, rather than using
hardcoded account numbers, we add a counter, nextAccountNumber, that we’ll
increment after creating a new Account.

File: BankOOP3_DictionaryOfAccountObjects/Main_Bank_Version3.py

Test program using accounts
Version 3, using a dictionary of accounts

Bring in all the code from the Account class file
from Account import *

Managing Multiple Objects 67

accountsDict = {} 1
nextAccountNumber = 0 2

Create two accounts:
oAccount = Account('Joe', 100, 'JoesPassword')
joesAccountNumber = nextAccountNumber
accountsDict[joesAccountNumber] = oAccount 3
print('Account number for Joe is:', joesAccountNumber)
nextAccountNumber = nextAccountNumber + 1 4

oAccount = Account('Mary', 12345, 'MarysPassword')
marysAccountNumber = nextAccountNumber
accountsDict[marysAccountNumber] = oAccount 5
print('Account number for Mary is:', marysAccountNumber)
nextAccountNumber = nextAccountNumber + 1

accountsDict[joesAccountNumber].show()
accountsDict[marysAccountNumber].show()
print()

Call some methods on the different accounts
print('Calling methods of the two accounts ...')
accountsDict[joesAccountNumber].deposit(50, 'JoesPassword')
accountsDict[marysAccountNumber].withdraw(345, 'MarysPassword')
accountsDict[marysAccountNumber].deposit(100, 'MarysPassword')

Show the accounts
accountsDict[joesAccountNumber].show()
accountsDict[marysAccountNumber].show()

Create another account with information from the user
print()
userName = input('What is the name for the new user account? ')
userBalance = input('What is the starting balance for this account? ')
userBalance = int(userBalance)
userPassword = input('What is the password you want to use for this account? ')
oAccount = Account(userName, userBalance, userPassword)
newAccountNumber = nextAccountNumber
accountsDict[newAccountNumber] = oAccount
print('Account number for new account is:', newAccountNumber)
nextAccountNumber = nextAccountNumber + 1

Show the newly created user account
accountsDict[newAccountNumber].show()

Let's deposit 100 into the new account
accountsDict[newAccountNumber].deposit(100, userPassword)
usersBalance = accountsDict[newAccountNumber].getBalance(userPassword)
print()
print("After depositing 100, the user's balance is:", usersBalance)

Show the new account
accountsDict[newAccountNumber].show()

Listing 4-5: Modified test code to store account numbers and objects in a dictionary

68 Chapter 4

Running this code yields results almost identical to those of the previ-
ous examples. We start with an empty dictionary of accounts 1, and initial-
ize our nextAccountNumber variable to 0 2. Every time we instantiate a new
account, we add a new entry into the dictionary of accounts using the cur-
rent value of nextAccountNumber as a key and the Account object as the value 3.
We do this for each customer, as you can see for Mary 5. Every time we
create a new account, we increment nextAccountNumber to prepare for the next
account 4. With account numbers as keys in a dictionary, if a customer
closes their account, we can eliminate that key and value from the diction-
ary without affecting any other accounts.

Building an Interactive Menu
With our Account class working correctly, we’ll make the main code interac-
tive by asking the user to tell us what operation they would like to do: get
the balance, make a deposit, make a withdrawal, or open a new account. In
response, our main code will gather the needed information from the user,
starting with their account number, and call the appropriate method of the
user’s Account object.

As a shortcut, we will again prepopulate two accounts, one for Joe and
one for Mary. Listing 4-6 shows our expanded main code, which uses a dic-
tionary to keep track of all the accounts. I’ve omitted the code that creates
the accounts for Joe and Mary and adds those to the dictionary of accounts
for brevity, as it’s the same as in Listing 4-5.

File: BankOOP4_InteractiveMenu/Main_Bank_Version4.py

Interactive test program creating a dictionary of accounts
Version 4, with an interactive menu

from Account import *

accountsDict = {}
nextAccountNumber = 0

--- snip creating accounts, adding them to dictionary ---

while True:
 print()
 print('Press b to get the balance')
 print('Press d to make a deposit')
 print('Press o to open a new account')
 print('Press w to make a withdrawal')
 print('Press s to show all accounts')
 print('Press q to quit')
 print()

 action = input('What do you want to do? ') 1
 action = action.lower()
 action = action[0] # grab the first letter

Managing Multiple Objects 69

 print()

 if action == 'b':
 print('*** Get Balance ***')
 userAccountNumber = input('Please enter your account number: ')
 userAccountNumber = int(userAccountNumber)
 userAccountPassword = input('Please enter the password: ')
 oAccount = accountsDict[userAccountNumber]
 theBalance = oAccount.getBalance(userAccountPassword)
 if theBalance is not None:
 print('Your balance is:', theBalance)

 elif action == 'd': 2
 print('*** Deposit ***')
 userAccountNumber = input('Please enter the account number: ') 3
 userAccountNumber = int(userAccountNumber)
 userDepositAmount = input('Please enter amount to deposit: ')
 userDepositAmount = int(userDepositAmount)
 userPassword = input('Please enter the password: ')
 oAccount = accountsDict[userAccountNumber] 4
 theBalance = oAccount.deposit(userDepositAmount, userPassword) 5
 if theBalance is not None:
 print('Your new balance is:', theBalance)

 elif action == 'o':
 print('*** Open Account ***')
 userName = input('What is the name for the new user account? ')
 userStartingAmount = input('What is the starting balance for this account? ')
 userStartingAmount = int(userStartingAmount)
 userPassword = input('What is the password you want to use for this account? ')
 oAccount = Account(userName, userStartingAmount, userPassword)
 accountsDict[nextAccountNumber] = oAccount
 print('Your new account number is:', nextAccountNumber)
 nextAccountNumber = nextAccountNumber + 1
 print()

 elif action == 's':
 print('Show:')
 for userAccountNumber in accountsDict:
 oAccount = accountsDict[userAccountNumber]
 print(' Account number:', userAccountNumber)
 oAccount.show()

 elif action == 'q':
 break

 elif action == 'w':
 print('*** Withdraw ***')
 userAccountNumber = input('Please enter your account number: ')
 userAccountNumber = int(userAccountNumber)
 userWithdrawalAmount = input('Please enter the amount to withdraw: ')
 userWithdrawalAmount = int(userWithdrawalAmount)
 userPassword = input('Please enter the password: ')
 oAccount = accountsDict[userAccountNumber]
 theBalance = oAccount.withdraw(userWithdrawalAmount, userPassword)

70 Chapter 4

 if theBalance is not None:
 print('Withdrew:', userWithdrawalAmount)
 print('Your new balance is:', theBalance)

 else:
 print('Sorry, that was not a valid action. Please try again.')

print('Done')

Listing 4-6: Adding an interactive menu

In this version, we present the user with a menu of options. When the user
selects an action 1, the code asks questions about the intended transaction
to gather all the information we need to make the call to the user’s account.
For example, if the user wants to make a deposit 2, the program asks for the
account number, the amount to deposit, and the password for the account 3.
We use the account number as a key into the dictionary of Account objects
to get the appropriate Account object 4. With that object, we then call the
deposit() method, passing in the amount to deposit and the user’s password 5.

Once again, we have modified code at the main code level, and left our
Account class untouched.

Creating an Object Manager Object
The code in Listing 4-6 is actually doing two different things. The program
first provides a simple menu interface. Then, when an action is chosen, it
collects data and makes a call to a method of an Account object. Rather than
having one large main program that does two different tasks, we can split
this code into two smaller logical units, each with a clearly defined role.
The menuing system becomes the main code that decides what action to
take, and the rest of the code deals with the things a bank actually does.
The bank can be modeled as an object that manages other (account)
objects, known as an object manager object.

	 	 An object that maintains a list or dictionary of managed objects (typically of a single
class) and calls methods of those objects.

This split can be made easily and logically: we take all the code related
to the bank and put it into a new Bank class. Then, at the beginning of the
main program, we instantiate a single Bank object from the new Bank class.

The Bank class will manage a list or dictionary of Account objects. In this
way, the Bank object will be the only code that communicates directly with
Account objects (Figure 4-1).

To create this hierarchy, we need some main code that handles the
highest-level menuing system. In response to a choice of action, the main code
will call a method of the Bank object (for example, deposit() or withdraw()). The
Bank object will gather the information it needs (account number, password,
amount to deposit or withdraw), reach into its dictionary of accounts to find

object manager
object

Managing Multiple Objects 71

the matching user account, and call the appropriate method for that user’s
account.

Bank object

Account
object

Account
object

Account
object … Account

object

Main code

Figure 4-1: The main code manages a Bank object, which manages
many Account objects.

There are three layers in this division of labor:

1.	 The main code that creates and talks to a single Bank object

2.	 The Bank object that manages a dictionary of Account objects and calls
methods of those objects

3.	 The Account objects themselves

With this approach, we only have a single global variable, the Bank
object. In fact, the main code has no idea that Account objects even exist.
Conversely, each Account object has no clue (and does not care) what the
top-level user interface of the program is. The Bank object receives messages
from the main code and communicates with the appropriate Account object.

The key advantage of this approach is that we have broken down a
much larger program into smaller subprograms: in this case, the main code
and two classes. This makes it much easier to program each piece, since
the scope of work is smaller and the responsibilities are clearer for each.
Further, having only a single global variable ensures that lower-level code
will not accidentally affect data at the global level.

In computer literature, the construct shown in Figure 4-1 is often
known as composition or object composition.

	 composition	 A logical structure in which one object manages one or more other objects

You can think of one object as being made up of other objects. An
example is that a car object is made up of an engine object, a steering wheel
object, some number of door objects, four wheel and tire objects, and so
on. The discussion often centers around the relationships between objects.
In this example, one would say that a car “has a” steering wheel, an engine,
some number of doors, and so on. Therefore, the car object is a composite
of other objects.

72 Chapter 4

We’ll have three separate files. The main code lives in its own file.
It imports the code of our new Bank.py file that contains the Bank class
(Listing 4-7). The Bank class imports the code of the Account.py file and
uses it to instantiate Account objects as needed.

Building the Object Manager Object
Listing 4-7 shows the code of the new Bank class, which is an object manager
object.

File: BankOOP5_SeparateBankClass/Bank.py

Bank that manages a dictionary of Account objects

from Account import *

class Bank():

 def __init__(self):
 self.accountsDict = {} 1
 self.nextAccountNumber = 0

 def createAccount(self, theName, theStartingAmount, thePassword): 2
 oAccount = Account(theName, theStartingAmount, thePassword)
 newAccountNumber = self.nextAccountNumber
 self.accountsDict[newAccountNumber] = oAccount
 # Increment to prepare for next account to be created
 self.nextAccountNumber = self.nextAccountNumber + 1
 return newAccountNumber

 def openAccount(self): 3
 print('*** Open Account ***')
 userName = input('What is the name for the new user account? ')
 userStartingAmount = input('What is the starting balance for this account? ')
 userStartingAmount = int(userStartingAmount)
 userPassword = input('What is the password you want to use for this account? ')

 userAccountNumber = self.createAccount(userName, userStartingAmount, userPassword) 4
 print('Your new account number is:', userAccountNumber)
 print()

 def closeAccount(self): 5
 print('*** Close Account ***')
 userAccountNumber = input('What is your account number? ')
 userAccountNumber = int(userAccountNumber)
 userPassword = input('What is your password? ')
 oAccount = self.accountsDict[userAccountNumber]
 theBalance = oAccount.getBalance(userPassword)
 if theBalance is not None:
 print('You had', theBalance, 'in your account, which is being returned to you.')
 # Remove user's account from the dictionary of accounts
 del self.accountsDict[userAccountNumber]
 print('Your account is now closed.')

Managing Multiple Objects 73

 def balance(self):
 print('*** Get Balance ***')
 userAccountNumber = input('Please enter your account number: ')
 userAccountNumber = int(userAccountNumber)
 userAccountPassword = input('Please enter the password: ')
 oAccount = self.accountsDict[userAccountNumber]
 theBalance = oAccount.getBalance(userAccountPassword)
 if theBalance is not None:
 print('Your balance is:', theBalance)

 def deposit(self):
 print('*** Deposit ***')
 accountNum = input('Please enter the account number: ')
 accountNum = int(accountNum)
 depositAmount = input('Please enter amount to deposit: ')
 depositAmount = int(depositAmount)
 userAccountPassword = input('Please enter the password: ')
 oAccount = self.accountsDict[accountNum]
 theBalance = oAccount.deposit(depositAmount, userAccountPassword)
 if theBalance is not None:
 print('Your new balance is:', theBalance)

 def show(self):
 print('*** Show ***')
 for userAccountNumber in self.accountsDict:
 oAccount = self.accountsDict[userAccountNumber]
 print(' Account:', userAccountNumber)
 oAccount.show()

 def withdraw(self):
 print('*** Withdraw ***')
 userAccountNumber = input('Please enter your account number: ')
 userAccountNumber = int(userAccountNumber)
 userAmount = input('Please enter the amount to withdraw: ')
 userAmount = int(userAmount)
 userAccountPassword = input('Please enter the password: ')
 oAccount = self.accountsDict[userAccountNumber]
 theBalance = oAccount.withdraw(userAmount, userAccountPassword)
 if theBalance is not None:
 print('Withdrew:', userAmount)
 print('Your new balance is:', theBalance)

Listing 4-7: The Bank class with separate methods for different bank operations

I’ll focus on the most important things to notice in the Bank class.
First, in its __init__() method, Bank initializes two variables: self.accountsDict
and self.nextAccountNumber 1. The prefix self. designates these as instance vari-
ables, meaning the Bank class can refer to these variables in any of its methods.

Second, there are two methods for creating an account: createAccount()
and openAccount(). The createAccount() method instantiates a new account 2
with the user’s name, a starting amount, and a password passed in for the
new account. The openAccount() method asks the user questions to obtain
these three pieces of information 3 and calls the createAccount() method
within the same class.

74 Chapter 4

Having one method call another method in the same class is common.
But the called method doesn’t know whether it was called from inside or
outside the class; it only knows that the first argument is the object on
which it should run. Therefore, the call to the method must start with self.,
because self always refers to the current object. Generically, to call from
one method to another method in the same class we need to write:

def myMethod(self, <other optional parameters>):
 ...
 self.methodInSameClass(<any needed arguments>)

After collecting information from the user for openAccount(), we have
this line 4:

userAccountNumber = self.createAccount(userName, userStartingAmount, userPassword)

Here, openAccount() calls createAccount() from the same class to cre-
ate the account. The createAccount() method runs, instantiates an Account
object, and returns an account number to openAccount(), which returns that
account number back to the user.

Finally, the new method closeAccount() allows the user to close an
existing account 5. This is an extra piece of functionality we’ll offer from
our main code.

Our Bank class represents an abstract view of a bank rather than the
physical brick-and-mortar object. This is another good example of a class
that does not represent a physical structure.

Main Code That Creates an Object Manager Object
The main code that creates and makes calls to the Bank object is shown in
Listing 4-8.

File: BankOOP5_SeparateBankClass/Main_Bank_Version5.py

Main program for controlling a Bank made up of Accounts

Bring in all the code of the Bank class
from Bank import *

Create an instance of the Bank
oBank = Bank()

Main code
Create two test accounts
joesAccountNumber = oBank.createAccount('Joe', 100, 'JoesPassword')
print("Joe's account number is:", joesAccountNumber)

marysAccountNumber = oBank.createAccount('Mary', 12345, 'MarysPassword')
print("Mary's account number is:", marysAccountNumber)

while True:
 print()

Managing Multiple Objects 75

 print('To get an account balance, press b')
 print('To close an account, press c')
 print('To make a deposit, press d')
 print('To open a new account, press o')
 print('To quit, press q')
 print('To show all accounts, press s')
 print('To make a withdrawal, press w ')
 print()

 1 action = input('What do you want to do? ')
 action = action.lower()
 action = action[0] # grab the first letter
 print()

 2 if action == 'b':
 oBank.balance()

 3 elif action == 'c':
 oBank.closeAccount()

 elif action == 'd':
 oBank.deposit()

 elif action == 'o':
 oBank.openAccount()

 elif action == 's':
 oBank.show()

 elif action == 'q':
 break

 elif action == 'w':
 oBank.withdraw()

 else:
 print('Sorry, that was not a valid action. Please try again.')

print('Done')

Listing 4-8: The main code that creates a Bank object and makes calls to it

Notice how the code in Listing 4-8 presents the top-level menuing sys-
tem. It asks the user for an action 1, then calls an appropriate method in
the Bank object to do the work 2. You could easily extend the Bank object
to handle some additional queries, like asking for the bank’s hours, or
address, or phone number. That data could simply be kept as additional
instance variables inside the Bank object. The Bank would answer those ques-
tions without needing to communicate with any Account object.

When a close request is made 3, the main code calls the closeAccount()
method of the Bank object to close the account. The Bank object removes the
specific account from its dictionary of accounts using a line like this:

del self.accountsDict[userAccountNumber]

76 Chapter 4

Recall that our definition of an object is data, plus code that acts on
that data, over time. The ability to delete an object demonstrates the third
part of our definition of an object. We can create an object (in this case an
Account object) whenever we want, not just when a program starts. In this
program, we create a new Account object whenever a user decides to open an
account. Our code can use that object by calling its methods. We can also
delete an object at any time, in this case, when a user chooses to close their
account. This is an example of how an object (like an Account object) has a
life span, from whenever it is created it to whenever it is deleted.

Better Error Handling with Exceptions
So far in our Account class, if a method detects an error (for example, if the
user deposits a negative amount, enters an incorrect password, withdraws a
negative amount, and so on) our placeholder solution is to return None as a
signal that something went wrong. In this section, we’ll discuss a better way
of handling errors by using try/except blocks and raising exceptions.

try and except
When a runtime error or abnormal condition occurs in a function or
method from the Python Standard Library, that function or method sig-
nals the error by raising an exception (sometimes referred to as throwing or
generating an exception). We can detect and react to exceptions using the
try/except construct. Here is the general form:

try:
 # some code that may cause an error (raise an exception)
except <some exception name>: # if an exception happens
 # some code to handle the exception

If the code inside the try block works correctly and does not generate
an exception, the except clause is skipped, and execution continues after
the except block. However, if the code in the try block results in an excep-
tion, control is passed to the except statement. If the exception matches the
exception (or one of multiple exceptions) listed in the except statement,
control is transferred to the code of the except clause. This is often referred
to as catching the exception. That indented block typically contains code to
report and/or recover from the error.

Here is a simple example where we ask for a number from the user and
attempt to convert it to an integer:

age = input('Please enter your age: ')
try: # attempt to convert to integer
 age = int(age)
except ValueError: # if an exception is raised trying to convert
 print('Sorry, that was not a valid number')

Managing Multiple Objects 77

Calls to the Python Standard Library can generate standard exceptions
such as TypeError, ValueError, NameError, ZeroDivisionError, and so on. In this
example, if the user enters letters or a floating-point number, the built-in
int() function raises a ValueError exception, and control is transferred to the
code in the except block.

The raise Statement and Custom Exceptions
If your code detects a runtime error condition, you can use the raise state-
ment to signal an exception. There are many forms of the raise statement,
but the standard approach is to use this syntax:

raise <ExceptionName>('<Any string to describe the error>')

For the <ExceptionName>, you have three options. First, if there is a
standard exception that matches the error you have detected (TypeError,
ValueError, NameError, ZeroDivisionError, and so on), it’s fine to use that. You
can also add your own description string:

raise ValueError('You need to specify an integer')

Second, you can use the generic Exception exception:

raise Exception('The amount cannot be a floating-point number')

However, this is generally frowned upon because the standard practice
is to write except statements to look for exceptions by name, and this does
not provide a specific name.

A third choice, and perhaps the best, is to create your own custom
exception. This is easy to do, but involves a technique called inheritance
(which we will discuss at length in Chapter 10). Here is all you need to cre-
ate your own exception:

Define a custom exception
class <CustomExceptionName>(Exception):
 pass

You supply a unique name for your exception. You can then raise your
custom exception in your code. Creating your own exceptions means you
can explicitly check for these exceptions by name in a higher level of your
code. In the next section, we’ll rewrite the code of our bank example so
that we raise a custom exception in our Bank and Account classes and check
for and report the error in the main code. The main code will report the
error but allow the program to continue running.

In the typical case, the raise statement causes the current function or
method to exit and transfers control back to the caller. If the caller contains
an except clause that catches the exception, execution continues inside that
except clause. Otherwise, that function or method exits. This process is

78 Chapter 4

repeated until an except clause catches the exception. Control is transferred
back through the sequence of calls, and if no except clause catches the
exception, the program quits and Python displays the error.

Using Exceptions in Our Bank Program
We can now rewrite all three levels of our program (main, Bank, and Account)
to signal errors with raise statements and to handle errors using try/except
blocks.

Account Class with Exceptions
Listing 4-9 is a new version of the Account class rewritten to use exceptions
and optimized so that no code is repeated. We start by defining a custom
AbortTransaction exception, which will be raised if we discover some error
while a user is attempting to do a transaction in our bank.

File: BankOOP6_UsingExceptions/Account.py (modified to work with upcoming Bank.py)

Account class
Errors indicated by "raise" statements

Define a custom exception
class AbortTransaction(Exception): 1
 '''raise this exception to abort a bank transaction'''
 pass

class Account():
 def __init__(self, name, balance, password):
 self.name = name
 self.balance = self.validateAmount(balance) 2
 self.password = password

 def validateAmount(self, amount):
 try:
 amount = int(amount)
 except ValueError:
 raise AbortTransaction('Amount must be an integer') 3
 if amount <= 0:
 raise AbortTransaction('Amount must be positive') 4
 return amount

 def checkPasswordMatch(self, password): 5
 if password != self.password:
 raise AbortTransaction('Incorrect password for this account')

 def deposit(self, amountToDeposit): 6
 amountToDeposit = self.validateAmount(amountToDeposit)
 self.balance = self.balance + amountToDeposit
 return self.balance

 def getBalance(self):

Managing Multiple Objects 79

 return self.balance

 def withdraw(self, amountToWithdraw): 7
 amountToWithdraw = self.validateAmount(amountToWithdraw)
 if amountToWithdraw > self.balance:
 raise AbortTransaction('You cannot withdraw more than you have in your account')
 self.balance = self.balance - amountToWithdraw
 return self.balance

 # Added for debugging
 def show(self):
 print(' Name:', self.name)
 print(' Balance:', self.balance)
 print(' Password:', self.password)

Listing 4-9: A modified Account class that raises exceptions

We start by defining our custom AbortTransaction exception 1 so we can
use it in this class and in other code that imports this class.

In the __init__() method of the Account class, we ensure that the amount
provided as the starting balance is valid by calling validateAmount() 2. This
method uses a try/except block to ensure that the starting amount can
successfully be converted to an integer. If the call to int() fails, it raises a
ValueError exception, which is caught in the except clause. Rather than just
allowing the generic ValueError to be returned to the caller, the code of
this except block 3 executes a raise statement, raising our AbortTransaction
exception, and includes a more meaningful error message string. If the con-
version to an integer succeeds, we perform another test. If the user gave a
negative amount, we also raise the AbortTransaction exception 4, but with a
different error message string.

The checkPasswordMatch() method 5 is called by methods in the Bank
object to check if the password supplied by the user matches the password
saved in the Account. If not, we execute another raise statement with the
same exception, but we supply a more descriptive error message string.

This allows the code of deposit() 6 and withdraw() 7 to be simplified,
because these methods assume that the amount has been validated and
the password verified before they are invoked. There is an additional check
in withdraw() to ensure that the user is not trying to withdraw more money
than is in the account; if so, we raise the AbortTransaction exception with an
appropriate description.

Since there is no code in this class to handle an AbortTransaction excep-
tion, any time one is raised, control is passed back to the caller. If the caller
has no code to handle the exception, then control is passed back to the pre-
vious caller, and so on up the stack of calls. As we’ll see, our main code will
handle this exception.

Optimized Bank Class
The full Bank class code is available for download. In Listing 4-10 I show
some sample methods that demonstrate try/except techniques with calls to
methods in the previously updated Account class.

80 Chapter 4

File: BankOOP6_UsingExceptions/Bank.py (modified to work with previous Account.py)

Bank that manages a dictionary of Account objects

from Account import *

class Bank():
 def __init__(self, hours, address, phone): 1
 self.accountsDict = {}
 self.nextAccountNumber = 0
 self.hours = hours
 self.address = address
 self.phone = phone

 def askForValidAccountNumber(self): 2
 accountNumber = input('What is your account number? ')
 try: 3
 accountNumber = int(accountNumber)
 except ValueError:
 raise AbortTransaction('The account number must be an integer')
 if accountNumber not in self.accountsDict:
 raise AbortTransaction('There is no account ' + str(accountNumber))
 return accountNumber

 def getUsersAccount(self): 4
 accountNumber = self.askForValidAccountNumber()
 oAccount = self.accountsDict[accountNumber]
 self.askForValidPassword(oAccount)
 return oAccount

 --- snipped additional methods ---

 def deposit(self): 5
 print('*** Deposit ***')
 oAccount = self.getUsersAccount()
 depositAmount = input('Please enter amount to deposit: ')
 theBalance = oAccount.deposit(depositAmount)
 print('Deposited:', depositAmount)
 print('Your new balance is:', theBalance)

 def withdraw(self): 6
 print('*** Withdraw ***')
 oAccount = self.getUsersAccount()
 userAmount = input('Please enter the amount to withdraw: ')
 theBalance = oAccount.withdraw(userAmount)
 print('Withdrew:', userAmount)
 print('Your new balance is:', theBalance)

 def getInfo(self): 7
 print('Hours:', self.hours)
 print('Address:', self.address)
 print('Phone:', self.phone)
 print('We currently have', len(self.accountsDict), 'account(s) open.')

Managing Multiple Objects 81

 # Special method for Bank administrator only
 def show(self):
 print('*** Show ***')
 print('(This would typically require an admin password)')
 for userAccountNumber in self.accountsDict:
 oAccount = self.accountsDict[userAccountNumber]
 print('Account:', userAccountNumber)
 oAccount.show()
 print()

Listing 4-10: The modified Bank class

The Bank class starts with the __init__() method 1 that saves all relevant
information in instance variables.

The new askForValidAccountNumber()2 method is called from a number
of other methods to ask the user for an account number and attempts to
verify the given number. First it has a try/except block 3 to ensure that
the number is an integer. If it isn’t, the except block detects the error as a
ValueError exception but reports the error more clearly by raising a custom
AbortTransaction exception with a descriptive message. Next, it checks to
ensure that the given account number is one that the bank knows about. If
not, it also raises an AbortTransaction exception, but it gives a different error
message string.

The new getUsersAccount() method 4 first calls the previous askForValid
AccountNumber(), then uses the account number to find the appropriate Account
object. Notice that there is no try/except in this method. If an exception
is raised in askForValidAccountNumber() (or in a lower level), this method will
immediately return to its caller.

The deposit() 5 and withdraw() 6 methods call getUsersAccount() in the
same class. Similarly, if their call to getUsersAccount() raises an exception,
the method will exit and pass the exception up the chain to the caller. If all
tests pass, the code of deposit() and withdraw() calls similarly named meth-
ods in the specified Account object to perform the actual transaction.

The getInfo() 7 method reports information about the bank (hours,
address, phone) and doesn’t access any individual account.

Main Code That Handles Exceptions
Listing 4-11 shows the updated main code, rewritten to handle a custom
exception. This is where any errors that occur are reported to the user.

File: BankOOP6_UsingException/Main_Bank_Version6.py

Main program for controlling a Bank made up of Accounts
from Bank import *

Create an instance of the Bank
1 oBank = Bank('9 to 5', '123 Main Street, Anytown, USA', '(650) 555-1212')

Main code

82 Chapter 4

2 while True:
 print()
 print('To get an account balance, press b')
 print('To close an account, press c')
 print('To make a deposit, press d')
 print('To get bank information, press i')
 print('To open a new account, press o')
 print('To quit, press q')
 print('To show all accounts, press s')
 print('To make a withdrawal, press w')
 print()

 action = input('What do you want to do? ')
 action = action.lower()
 action = action[0] # grab the first letter
 print()

 3 try:
 if action == 'b':
 oBank.balance()
 elif action == 'c':
 oBank.closeAccount()
 elif action == 'd':
 oBank.deposit()
 elif action == 'i':
 oBank.getInfo()
 elif action == 'o':
 oBank.openAccount()
 elif action == 'q':
 break
 elif action == 's':
 oBank.show()
 elif action == 'w':
 oBank.withdraw()
 4 except AbortTransaction as error:
 # Print out the text of the error message
 print(error)

 print('Done')

Listing 4-11: The main code that handles errors with try/except

The main code starts by creating a single Bank object 1. Then, in a loop,
it presents a top-level menu to the user and asks them what action they wish
to perform 2. It calls an appropriate method for each command.

The important thing in this listing is that we have added a try block
around all the calls to methods with the oBank object 3. That way, if any
method call raises an AbortTransaction exception, control will be transferred
to the except statement 4.

Exceptions are objects. In the except clause, we handle the AbortTransaction
exception that was raised at any lower level. We assign the value of the

Managing Multiple Objects 83

exception to the variable error. When we print that variable, the user will
see the associated error message. Since the exception was handled in the
except clause, the program continues running, and the user is asked what
they wish to do.

Calling the Same Method on a List of Objects
Unlike in our bank example, in cases where individual objects do not need
to be uniquely identified, using a list of objects works extremely well. Let’s
say you’re coding a game and you need to have some number of bad guys,
spaceships, bullets, zombies, or whatever else. Each such object will typically
have some data it remembers and some actions it can perform. As long as
each object does not require a unique identifier, the standard way to handle
this is to create many instances of the object from the class and put all the
objects into a list:

objectList = [] # start off with an empty list
for i in range(nObjects):
 oNewObject = MyClass() # create a new instance
 objectList.append(oNewObject) # store the object in the list

In our game, we represent a world as a large grid, like a spreadsheet.
We want monsters placed at random locations in the grid. Listing 4-12
shows the start of a Monster class with its __init__() method and a move()
method. When a Monster is instantiated, it is told the number of rows and
columns in the grid and the maximum speed, and it chooses a random
starting location and speed.

File: MonsterExample.py

import random

class Monster()
 def __init__(self, nRows, nCols, maxSpeed):
 self.nRows = nRows # save away
 self.nCols = nCols # save away
 self.myRow = random.randrange(self.nRows) # chooses a random row
 self.myCol = random.randrange(self.nCols) # chooses a random col
 self.mySpeedX = random.randrange(-maxSpeed, maxSpeed + 1) # chooses an X speed
 self.mySpeedY = random.randrange(-maxSpeed, maxSpeed + 1) # chooses a Y speed
 # Set other instance variables like health, power, etc.

 def move(self):
 self.myRow = (self.myRow + self.mySpeedY) % self.nRows
 self.myCol = (self.myCol + self.mySpeedX) % self.nCols

Listing 4-12: A Monster class that can be used to instantiate many Monsters

84 Chapter 4

With this Monster class, we can create a list of Monster objects like this:

N_MONSTERS = 20
N_ROWS = 100 # could be any size
N_COLS = 200 # could be any size
MAX_SPEED = 4
monsterList = [] # start with an empty list
for i in range(N_MONSTERS):
 oMonster = Monster(N_ROWS, N_COLS, MAX_SPEED) # create a Monster
 monsterList.append(oMonster) # add the Monster to our list

This loop will instantiate 20 Monsters, and each will know its own start-
ing location in the grid and its individual speed. Once you have a list of
objects, later in the program when you want each object to do the same
action, you can write a simple loop where you call the same method of each
object in the list:

for objectVariable in objectVariablesList:
 objectVariable.someMethod()

 For example, if we want each of our Monster objects to move, we could
use a loop like this:

for oMonster in monsterList:
 oMonster.move()

Since each Monster object remembers its location and speed, in the
move() method, each Monster can move to and remember its new location.

This technique of building a list of objects and calling the same
method of all objects in the list is extremely useful, and it’s a standard
approach to dealing with a collection of similar objects. We will use this
approach quite often when we get to building games using pygame later.

Interface vs. Implementation
Our earlier Account class seems to have methods and instance variables that
work well. When you’re confident your code is working well, you no longer
have to be concerned with the details within the class. When a class does
what you want it to do, all you need to remember is what methods are avail-
able in the class. There are two different ways to look at a class: by focusing
on what it is capable of doing (the interface) and how it works internally (the
implementation).

	 interface	 The collection of methods a class provides (and the parameters that each method
expects). The interface shows what an object created from the class can do.

	implementation	 The actual code of the class, which shows how an object does what it does.

Managing Multiple Objects 85

If you are the creator or maintainer of a class, you need to fully under-
stand the implementation—the code of all of the methods and how they
work together to affect the instance variables. If you are purely writing code
to use a class, you only need to concern yourself with the interface—the
different methods that are available in the class, the values that need to be
passed into each, and any value(s) that are returned from the methods. If
you are coding on your own (as a “one-person team”), then you will be both
the implementer of a class and the user of its interface.

As long as the interface of a class does not change, the class’s imple-
mentation can change at any time. That is, if you find that a method can be
implemented in a faster or more efficient way, changing the relevant code
inside the class will not have any bad side effects on any other part of the
program.

Summary
An object manager object is an object that manages other objects. It does
this by having one or more instance variables that are lists or dictionaries
made up of other objects. The object manager can call methods of any spe-
cific object or of all managed objects. This technique gives full control of
all managed objects to the object manager alone.

When you encounter an error in a method or function, you can raise an
exception. The raise statement returns control to the caller. The caller can
detect a potential error by placing the call in a try block, and it can react to
any such error using an except block.

The interface of a class is the documentation of all the methods and
related parameters in the class. The implementation is the actual code
of the class. What you need to know depends on your role. The writer/
maintainer of a class needs to understand the details of the code, whereas
anyone who uses the class only needs to understand the interface that the
class provides.

PART II
G R A P H I C A L U S E R

I N T E R F A C E S W I T H P Y G A M E

These chapters introduce you to pygame, an external
package that adds functionality common to GUI pro-
grams. Pygame allows you to write Python programs
that have windows, respond to the mouse and key-
board, play sounds, and more.

Chapter 5 gives you a basic understanding of how pygame works and
provides a standard template for building pygame-based programs. We’ll
build a few simple programs first, create a program that controls an image
with the keyboard, then we’ll build a ball-bouncing program.

Chapter 6 explains how pygame can best be used as an object-oriented
framework. You’ll see how to rewrite the ball-bouncing program using
object-oriented techniques, and develop simple buttons and text input
fields.

Chapter 7 describes the pygwidgets module, which contains full imple-
mentations of many standard user interface widgets like buttons, input
and output fields, radio buttons, checkboxes, and more, all using object-
oriented programming. All the code is available for you so that you can use
it to build your own applications. I’ll provide several examples.

5
I N T R O D U C T I O N T O P Y G A M E

The Python language was designed to han-
dle text input and text output. It provides

the ability to get text from and send text to
the user, a file, and the internet. The core lan-

guage, however, has no way of dealing with more mod-
ern concepts such as windows, mouse clicks, sounds,
and so on. So, what if you want to use Python to create
something more state-of-the-art than a text-based program? In this chapter
I’ll introduce pygame, a free open source external package that was designed
to extend Python to allow programmers to build game programs. You can
also use pygame to build other kinds of interactive programs with a graphi-
cal user interface (GUI). It adds the ability to create windows, show images,
recognize mouse movements and clicks, play sounds, and more. In short, it
allows Python programmers to build the types of games and applications
that current computer users have become familiar with.

It is not my intent to turn you all into game programmers—even though
that might be a fun outcome. Rather, I’ll use the pygame environment to

90 Chapter 5

make certain object-oriented programming techniques clearer and more
visual. By working with pygame to make objects visible in a window and
dealing with a user interacting with those objects, you should gain a deeper
understanding of how to effectively use OOP techniques.

This chapter provides a general introduction to pygame, so most of the
information and examples in this chapter will use procedural coding. Starting
with the next chapter, I will explain how to use OOP effectively with pygame.

Installing Pygame
Pygame is a free downloadable package. We’ll use the package manager
pip (short for pip installs packages) to install Python packages. As mentioned
in the Introduction, I am assuming that you have installed the official ver-
sion of Python from python.org. The pip program is included as part of that
download, so you should already have it installed.

Unlike a standard application, you must run pip from the command
line. On a Mac, start the Terminal application (located in the Utilities
subfolder inside the Applications folder). On a Windows system, click the
Windows icon, type cmd, and press ENTER.

N O T E 	 This book was not tested with Linux systems. However, most, if not all, of the content
should work with minimal tweaking. To install pygame on a Linux distribution,
open a terminal in whatever way you’re used to.

Enter the following commands at the command line:

python3 -m pip install -U pip --user
python3 -m pip uninstall -U pygame --user
python3 -m pip install -U pygame-ce --user

The first command ensures that you have the latest version of the pip
program. The second line installs the most recent version of pygame.

If you have any problems installing pygame, consult the pygame docu-
mentation at https://www.pygame.org/wiki/GettingStarted. To test that pygame
has been installed correctly, open IDLE (the development environment that
is bundled with the default implementation of Python), and in the shell win-
dow enter:

import pygame

If you see a message saying something like “Hello from the pygame
community” or if you get no message at all, then pygame has been installed
correctly. The lack of an error message indicates that Python has been able
to find and load the pygame package and it’s ready to use. If you would like
to see a sample game using pygame, enter the following command (which
starts a version of Space Invaders):

python3 -m pygame.examples.aliens

Introduction to Pygame 91

Before we get into using pygame, I need to explain two important con-
cepts. First, I’ll explain how individual pixels are addressed in programs
that use a GUI. Then, I’ll discuss event-driven programs and how they dif-
fer from typical text-based programs. After that, we’ll code a few programs
that demonstrate key pygame features.

Window Details
A computer screen is made up of a large number of rows and columns of
small dots called pixels (from the words picture element). A user interacts with
a GUI program through one or more windows; each window is a rectangu-
lar portion of the screen. Programs can control the color of any individual
pixel in their window(s). If you’re running multiple GUI programs, each
program is typically displayed in its own window. In this section, I’ll discuss
how you address and alter individual pixels in a window. These concepts are
independent of Python; they are common to all computers and are used in
all programming languages.

The Window Coordinate System
You are probably familiar with Cartesian coordinates in a grid like Figure 5-1.

–6 –5 –4 –3 –2 –1 1 2 3 4 5 6

y–axis

x–axis

6

5

4

3

2

1

–1

–2

–3

–4

–5

–6

Figure 5-1: The standard Cartesian coordinate system

92 Chapter 5

Any point in a Cartesian grid can be located by specifying its x- and
y-coordinates (in that order). The origin is the point specified as (0, 0) and
is found in the center of the grid.

Computer window coordinates work in a similar way (Figure 5-2).

0 Max x

0

Max y

Figure 5-2: A computer window’s coordinate system

However, there are a few key differences:

1.	 The origin (0, 0) point is in the upper-left corner of the window.

2.	 The y-axis is reversed so that y values start at zero at the top of the win-
dow and increase as you go down.

3.	 The x and y values are always integers. Each (x, y) pair specifies a single
pixel in the window. These values are always specified as relative to the
upper-left corner of the window, not the screen. That way, the user can
move the window anywhere on the screen without affecting the coordi-
nates of the elements of the program displayed in the window.

The full computer screen has its own set of (x, y) coordinates for every
pixel and uses the same type of coordinate system, but programs rarely, if
ever, need to deal with screen coordinates.

When we write a pygame application, we need to specify the width and
height of the window we want to create. Within the window, we can address
any pixel using its x- and y-coordinates, as shown in Figure 5-3.

Figure 5-3 shows a black pixel at position (3, 5). That is an x-value of 3
(note that this is actually the fourth column, since coordinates start at 0)
and a y value of 5 (actually the sixth row). Each pixel in a window is com-
monly referred to as a point. To reference a point in a window, you would
typically use a Python tuple. For example, you might have an assignment
statement like this, with the x value first:

pixelLocation = (3, 5)

Introduction to Pygame 93

0 1 2 3 4 5 6 7 8 9 10 11 12 13 …

0

1

2

3

4

5

6

7

8

9

10

11

12

13

…

Figure 5-3: A single point (a single pixel) in a computer window

To show an image in a window, we need to specify the coordinates of its
starting point—always the upper-left corner of the image—as an (x, y) pair,
as in Figure 5-4, where we draw the image at location (3, 5).

When working with an image, you’ll often need to deal with the
bounding rectangle, which is the smallest rectangle that can be made that
completely surrounds all pixels of the image. A rectangle is represented
in pygame by a set of four values: x, y, width, height. The rectangle for
the image in Figure 5-4 has values of 3, 5, 11, 7. I’ll show you how to use
a rectangle like this in an upcoming example program. Even if your
image is not rectangular (for example, if it’s a circle or an ellipse), you
still have to consider its bounding rectangle for positioning and collision
detection.

94 Chapter 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 …

0

1

2

3

4

5

6

7

8

9

10

11

12

13

…

Figure 5-4: An image in a window

Pixel Colors
Let’s explore how colors are represented on the computer screen. If you
have experience with a graphics program like Photoshop, you probably
already know how this works, but you may want a quick refresher anyway.

Each pixel on the screen is made up of a combination of three colors:
red, green, and blue, often referred to as RGB. The color displayed in
any pixel is composed of some amount of red, green, and blue, where the
amount of each is specified as a value from 0, meaning none, to 255, mean-
ing full intensity. Therefore, there are 256 × 256 × 256 possible combina-
tions, or 16,777,216 (often referred to as just “16 million”) possible colors,
for each pixel.

Colors in pygame are given as RGB values, and we write them as Python
tuples of three numbers. Here is how we create constants for the main colors:

RED = (255, 0, 0) # full red, no green, no blue
GREEN = (0, 255, 0) # no red, full green, no blue
BLUE = (0, 0, 255) # no red, no green, full blue

Introduction to Pygame 95

Here are the definitions of a few more colors. You can create a color
using any combination of three numbers between 0 and 255:

BLACK = (0, 0, 0) # no red, no green, no blue
WHITE = (255, 255, 255) # full red, full green, full blue
DARK_GRAY = (75, 75, 75)
MEDIUM_GRAY = (128, 128, 128)
LIGHT_GRAY = (175, 175, 175)
TEAL = (0, 128, 128) # no red, half-strength green, half-strength blue
YELLOW = (255, 255, 0)
PURPLE = (128, 0, 128)

In pygame, you’ll need to specify colors when you want to fill the back-
ground of a window, draw a shape in a color, draw text in a color, and so on.
Defining colors up front as tuple constants makes them very easy to spot
later in code.

Event-Driven Programs
In most of the programs in the book so far, the main code has lived in a
while loop. The program stops at a call to the built-in input() function and
waits for some user input to work on. Program output is typically handled
using calls to print().

In interactive GUI programs, this model no longer works. GUIs intro-
duce a new model of computing known as the event-driven model. Event-
driven programs don’t rely on input() and print(); instead, the user interacts
with elements in a window at will using a keyboard and/or mouse or other
pointing device. They may be able to click various buttons or icons, make
selections from menus, provide input in text fields, or give commands via
clicks or key presses to control some avatar in the window.

N O T E 	 Calls to print() can still be highly useful for debugging, when used to write out inter-
mediate results.

Central to event-driven programming is the concept of an event. Events
are difficult to define and are best described with examples, such as a mouse
click and a key press (each of which is actually made up of two events: mouse
down and mouse up and key down and key up, respectively). Here is my
working definition.

	 event	 Something that happens while your program is running that your program wants to
or needs to respond to. Most events are generated by user actions.

An event-driven GUI program runs constantly in an infinite loop. Each
time through the loop, the program checks for any new events it needs to
react to and executes appropriate code to handle those events. Also, each
time through the loop, the program needs to redraw all the elements in the
window to update what the user sees.

96 Chapter 5

For example, say we have a simple GUI program that displays two but-
tons: Bark and Meow. When clicked, the Bark button plays a sound of a dog
barking and the Meow button plays a sound of a cat meowing (Figure 5-5).

Figure 5-5: A simple program
with two buttons

The user can click these buttons in any order and at any time. To han-
dle the user’s actions, the program runs in a loop and constantly checks to
see if either button has been clicked. When it receives a mouse down event
on a button, the program remembers that the button has been clicked and
draws the depressed image of that button. When it receives a mouse up
event on the button, it remembers the new state and redraws the button
with its original appearance, and it plays the appropriate sound. Because
the main loop runs so quickly, the user perceives that the sound plays
immediately after they click the button. Each time through the loop, the
program redraws both buttons with an image matching each button’s cur-
rent state.

Using Pygame
At first, pygame may seem like an overwhelmingly large package with many
different calls available. Although it is large, there’s actually not a lot that
you need to understand to get a small program up and running. To intro-
duce pygame, I’ll first give you a template that you can use for all pygame
programs you create. Then I’ll build on that template, adding key pieces of
functionality little by little.

In the following sections, I’ll show you how to:

•	 Bring up a blank window.

•	 Show an image.

•	 Detect a mouse click.

•	 Detect both single and continuous key presses.

•	 Create a simple animation.

•	 Play sound effects and background sounds.

•	 Draw shapes.

In the next chapter, we’ll continue the discussion of pygame and you’ll
see how to:

•	 Animate many objects.

•	 Build and react to a button.

•	 Create a text display field.

Introduction to Pygame 97

Bringing Up a Blank Window
As I said earlier, pygame programs run constantly in a loop, checking for
events. It might help to think of your program as an animation, where
each pass through the main loop is one frame. The user may click on
something during any frame, and your program must not only respond
to that input but also keep track of everything it needs to draw in the
window. For instance, in one example program later in this chapter, we’ll
move a ball across the window so in each frame the ball is drawn in a
slightly different position.

Listing 5-1 is a generic template that you can use as a starting point for
all your pygame programs. This program opens a window and paints the
entire contents black. The only thing the user can do is click the close but-
ton to quit the program.

File: PygameDemo0_WindowOnly/PygameWindowOnly.py

pygame demo 0 - window only

1 - Import packages
import pygame
from pygame.locals import *
import sys

2 - Define constants
BLACK = (0, 0, 0)
WINDOW_WIDTH = 640
WINDOW_HEIGHT = 480
FRAMES_PER_SECOND = 30

3 - Initialize the world
pygame.init()
window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))
clock = pygame.time.Clock()

4 - Load assets: image(s), sound(s), etc.

5 - Initialize variables

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 # Clicked the close button? Quit pygame and end the program
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 # 8 - Do any "per frame" actions

 # 9 - Clear the window

98 Chapter 5

 window.fill(BLACK)

 # 10 - Draw all window elements

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND)

Listing 5-1: A template for creating pygame programs

Let’s walk through the different parts of this template:

1.	 Import packages.

The template starts with the import statements. We first import the pyg-
ame package itself, then some constants defined inside pygame that
we’ll use later. The last import is the sys package, which we’ll use to quit
our program.

2.	 Define constants.

We next define any constants for our program. First we define the
RGB value for BLACK, which we will use to paint the background of
our window. Then we define constants for the width and height of our
window in pixels and a constant for the refresh rate for our program.
This number defines the maximum number of times the program will
loop (and therefore redraw the window) per second. Our value of 30
is fairly typical. If the amount of work done in our main loop is exces-
sive, the program might run slower than this value, but it will never
run faster. A refresh rate that’s too high might cause the program to
run too fast. In our ball example, this means the ball might bounce
around the window faster than intended.

3.	 Initialize the pygame environment.

In this section, we call a function that tells pygame to initialize itself.
We then ask pygame to create a window for our program with the
pygame.display.set_mode() function and pass in the desired width and
height of the window. Finally, we call another pygame function to cre-
ate a clock object, which will be used at the bottom of our main loop to
maintain our maximum frame rate.

4.	 Load assets: image(s), sound(s), and so on.

This is a placeholder section, into which we will eventually add code to
load external images, sounds, and so on from the disk for use in our
program. In this basic program we’re not using any external assets, so
this section is empty for now.

5.	 Initialize variables.

Here we will eventually initialize any variables that our program will
use. Currently we have none, so we have no code here.

Introduction to Pygame 99

6.	 Loop forever.

Here we start our main loop. This is a simple while True infinite loop.
Again, you can think of each iteration through the main loop as one
frame in an animation.

7.	 Check for and handle events; commonly referred to as the event loop.

In this section, we call pygame.event.get() to get a list of the events that
happened since the last time we checked (the last time the main loop
ran), then iterate through the list of events. Each event reported to the
program is an object, and every event object has a type. If no event has
happened, this section is skipped over.

In this minimal program, where the only action a user can take is
to close the window, the only event type we check for is the constant
pygame.QUIT, generated by pygame when the user clicks the close but-
ton. If we find this event, we tell pygame to quit, which frees up any
resources it was using. Then we quit our program.

8.	 Do any “per frame” actions.

In this section we’ll eventually put any code that needs to run in every
frame. This might involve moving things in the window or checking for
collisions between elements. In this minimal program, we have nothing
to do here.

9.	 Clear the window.

On each iteration through the main loop, our program must redraw
everything in the window, which means we need to clear it first. The
simplest approach is to just fill the window with a color, which we do here
with a call to window.fill(), specifying a black background. We could also
draw a background picture, but we’ll hold off on that for now.

10.	 Draw all window elements.

Here we’ll place code to draw everything we want to show in our win-
dow. In this sample program there is nothing to draw.

In real programs, things are drawn in the order they appear in the
code, in layers from backmost to frontmost. For example, assume we
want to draw two partially overlapping circles, A and B. If we draw A
first, A will appear behind B, and portions of A will be obscured by B.
If we draw B first and then A, the opposite happens, and we see A in
front of B. This is a natural mapping equivalent to the layers in graph-
ics programs such as Photoshop.

11.	 Update the window.

This line tells pygame to take all the drawing we’ve included and show
it in the window. Pygame actually does all the drawing in steps 8, 9, and
10 in an off-screen buffer. When you tell pygame to update, it takes the
contents of this off-screen buffer and puts them in the real window.

100 Chapter 5

12.	 Slow things down a bit.

Computers are very fast, and if the loop continued to the next iteration
right away without pausing, the program might run faster than the des-
ignated frame rate. The line in this section tells pygame to wait until a
given amount of time has elapsed in order to make the frames of our
program run at the frame rate that we specified. This is important to
ensure the program runs at a consistent rate, independent of the speed
of the computer on which it’s running.

When you run this program, the program just puts up a blank window
filled with black. To end the program, click on the close button in the
title bar.

Drawing an Image
Let’s draw something in the window. There are two parts to showing a
graphic image: first we load the image into the computer’s memory, then we
display the image in the application window.

With pygame, all images (and sounds) need to be kept in files external
to your code. Pygame supports many standard graphic file formats, includ-
ing .png, .jpg, and .gif. In this program we’ll load a picture of a ball from the
file ball.png. As a reminder, the code and assets associated with all the major
listings in this book are available for download at https://www.nostarch.com/
objectorientedpython/ and https://github.com/IrvKalb/Object-Oriented-Python-Code/.

While we only need one graphic file in this program, it’s a good idea
to use a consistent approach to handling graphic and sound files, so I’ll lay
one out for you here. First, create a project folder. Place your main program
in that folder, along with any related files containing Python classes and
functions. Then, inside the project folder, create an images folder into which
you’ll place any image files you want to use in your program. Also create
a sounds folder and place any sound files you want to use there. Figure 5-6
shows the suggested structure. All of the example programs in this book
will use this project folder layout.

Figure 5-6: Suggested project folder hierarchy

A path (also called a pathname) is a string that uniquely identifies the
location of a file or folder on a computer. To load a graphic or sound file
into your program, you must specify the path to the file. There are two
types of paths: relative and absolute.

A relative path is a relative to the current folder, often called the current
working directory. When you run a program using an IDE such as IDLE or

https://www.nostarch.com/objectorientedpython/
https://www.nostarch.com/objectorientedpython/
https://github.com/IrvKalb/Object-Oriented-Python-Code/

Introduction to Pygame 101

PyCharm, it sets the current folder to the one containing your main Python
program so you can use relative paths with ease. In this book, I will assume
you’re using an IDE and will represent all paths as relative paths.

The relative path for a graphic file (for example, ball.png) in the same
folder as your main Python file would be just the filename as a string (for
example, 'ball.png'). Using the suggested project structure, the relative
path would be 'images/ball.png'.

This says that inside the project folder will be another folder named
images, and inside that folder is a file named ball.png. In path strings, folder
names are separated by the slash character.

However, if you expect to run your program from the command line,
then you need to construct absolute paths for all files. An absolute path is
one that starts from the root of the filesystem and includes the full hierar-
chy of folders to your file. To build an absolute path to any file, you can use
code like this, which builds an absolute path string to the ball.png file in
the images folder inside the project folder:

from pathlib import Path

Place this in section #2, defining a constant
BASE_PATH = Path(__file__).resolve().parent

Build a path to the file in the images folder
pathToBall = BASE_PATH / 'images/ball.png'

Now we’ll create the code of the ball program, starting with the ear-
lier 12-step template and adding just two new lines of code, as shown in
Listing 5-2.

File: PygameDemo1_OneImage/PygameOneImage.py

pygame demo 1 – draw one image

--- snip ---
3 - Initialize the world
pygame.init()
window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))
clock = pygame.time.Clock()

4 - Load assets: image(s), sound(s), etc.
1 ballImage = pygame.image.load('images/ball.png')

5 - Initialize variables

--- snip ---

 # 10 - Draw all window elements
 # draw ball at position 100 across (x) and 200 down (y)
 2 window.blit(ballImage, (100, 200))

 # 11 - Update the window

102 Chapter 5

 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND) # make pygame wait

Listing 5-2: Load one image and draw it in every frame.

First, we tell pygame to find the file containing the image of the ball
and load that image into memory 1. The variable ballImage now refers to
the image of the ball. Notice that this assignment statement is only exe-
cuted once, before the main loop starts.

N O T E 	 In the official documentation of pygame, every image, including the application win-
dow, is known as a surface. I’ll use more specific terms: I will refer to the application
window simply as a window and to any picture loaded from an external file as an
image. I reserve the term surface for any picture drawn on the fly.

We then tell the program to draw the ball 2 every time we go through
the main loop. We specify the location representing the position to place
the upper-left corner of the image’s bounding rectangle, typically as a tuple
of x- and y-coordinates.

The function name blit() is a very old reference to the words bit block
transfer, but in this context it really just means “draw.” Since the program
loaded the ball image earlier, pygame knows how big the image is, so we
just need to tell it where to draw the ball. In Listing 5-2, we give an x value
of 100 and a y value of 200.

When you run the program, on each iteration through the loop (30
times per second) every pixel in the window is set to black, then the ball
is drawn over the background. From the user’s point of view, it looks like
nothing is happening—the ball just stays in one spot with the upper-left
corner of its bounding rectangle at location (100, 200).

Detecting a Mouse Click
Next, we’ll allow our program to detect and react to a mouse click. The user
will be able to click on the ball to make it appear somewhere else in the
window. When the program detects a mouse click on the ball, it randomly
picks new coordinates and draws the ball at that new location. Instead of
using hardcoded coordinates of (100, 200), we’ll create two variables, ballX
and ballY, and refer to the coordinates of the ball in the window as the
tuple (ballX, ballY). Listing 5-3 provides the code.

File: PygameDemo2_ImageClickAndMove/PygameImageClickAndMove.py

pygame demo 2 - one image, click and move

1 - Import packages
import pygame
from pygame.locals import *
import sys

Introduction to Pygame 103

1 import random

2 - Define constants
BLACK = (0, 0, 0)
WINDOW_WIDTH = 640
WINDOW_HEIGHT = 480
FRAMES_PER_SECOND = 30
2 BALL_WIDTH_HEIGHT = 100
MAX_WIDTH = WINDOW_WIDTH - BALL_WIDTH_HEIGHT
MAX_HEIGHT = WINDOW_HEIGHT - BALL_WIDTH_HEIGHT

3 - Initialize the world
pygame.init()
window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))
clock = pygame.time.Clock()

4 - Load assets: image(s), sound(s), etc.
ballImage = pygame.image.load('images/ball.png')

5 - Initialize variables
3 ballX = random.randrange(MAX_WIDTH)
ballY = random.randrange(MAX_HEIGHT)
4 ballRect = pygame.Rect(ballX, ballY, BALL_WIDTH_HEIGHT, BALL_WIDTH_HEIGHT)

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 # Clicked the close button? Quit pygame and end the program
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 # See if user clicked
 5 if event.type == pygame.MOUSEBUTTONUP:
 # mouseX, mouseY = event.pos # Could do this if we needed it

 # Check if the click was in the rect of the ball
 # If so, choose a random new location
 6 if ballRect.collidepoint(event.pos):
 ballX = random.randrange(MAX_WIDTH)
 ballY = random.randrange(MAX_HEIGHT)
 ballRect = pygame.Rect(ballX, ballY, BALL_WIDTH_HEIGHT,
 BALL_WIDTH_HEIGHT)

 # 8 Do any "per frame" actions

 # 9 - Clear the window
 window.fill(BLACK)

 # 10 - Draw all window elements
 # Draw the ball at the randomized location
 7 window.blit(ballImage, (ballX, ballY))

104 Chapter 5

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND) # make pygame wait

Listing 5-3: Detecting a mouse click and acting on it

Since we need to generate random numbers for the ball coordinates,
we import the random package 1.

We then add a new constant to define the height and width of our
image as 100 pixels 2. We also create two more constants to limit the maxi-
mum width and height coordinates. By using these constants rather than
the size of the window, we ensure that our ball image will always appear
fully within the window (remember that when we refer to the location of an
image, we are specifying the position of its upper-left corner). We use those
constants to choose random values for the starting x- and y-coordinates for
our ball 3.

Next, we call pygame.Rect() to create a rectangle 4. Defining a rectangle
requires four parameters—an x-coordinate, a y-coordinate, a width, and a
height, in that order:

<rectObject> = pygame.Rect(<x>, <y>, <width>, <height>)

This returns a pygame rectangle object, or rect. We’ll use the rectangle
of the ball in the processing of events.

We also add code to check if the user clicked the mouse. As mentioned,
a mouse click is actually made up of two different events: a mouse down
event and a mouse up event. Since the mouse up event is typically used to
signal activation, we’ll only look for that event here. This event is signaled
by a new event.type value of pygame.MOUSEBUTTONUP 5. When we find that a
mouse up event has occurred, we’ll then check to see if the location where
the user clicked was inside the current rectangle of the ball.

When pygame detects that an event has happened, it builds an event
object containing a lot of data. In this case, we only care about the x- and
y-coordinates where the event happened. We retrieve the (x, y) position of
the click using event.pos, which provides a tuple of two values.

N O T E 	 If we need to separate the x- and y-coordinates of the click, we can unpack the tuple
and store the values into two variables like this:

mouseX, mouseY = event.pos

Now we check to see if the event happened inside the rectangle of the
ball using collidepoint() 6, whose syntax is:

<booleanVariable> = <someRectangle>.collidepoint(<someXYLocation>)

Introduction to Pygame 105

The method returns a Boolean True if the given point is inside the rect-
angle. If the user has clicked the ball, we randomly select new values for
ballX and ballY. We use those values to create a new rectangle for the ball at
the new random location.

The only change here is that we always draw the ball at the location
given by the tuple (ballX, ballY) 7. The effect is that whenever the user
clicks inside the rectangle of the ball, the ball appears to move to some new
random spot in the window.

Handling the Keyboard
The next step is to allow the user to control some aspect of the program
through the keyboard. There are two different ways to handle user key-
board interactions: as individual key presses, and when a user holds down a
key to indicate that an action should happen for as long as that key is down
(known as continuous mode).

Recognizing Individual Key Presses

Like the mouse clicks, each key press generates two events: key down and key
up. The two events have different event types: pygame.KEYDOWN and pygame.KEYUP.

Listing 5-4 shows a small sample program that allows the user to move
the ball image in the window using the keyboard. The program also shows
a target rectangle in the window. The user’s goal is to move the ball image
so that it overlaps with the target image.

File: PygameDemo3_MoveByKeyboard/PygameMoveByKeyboardOncePerKey.py

pygame demo 3(a) - one image, move by keyboard

1 - Import packages
import pygame
from pygame.locals import *
import sys
import random

2 - Define constants
BLACK = (0, 0, 0)
WINDOW_WIDTH = 640
WINDOW_HEIGHT = 480
FRAMES_PER_SECOND = 30
BALL_WIDTH_HEIGHT = 100
MAX_WIDTH = WINDOW_WIDTH - BALL_WIDTH_HEIGHT
MAX_HEIGHT = WINDOW_HEIGHT - BALL_WIDTH_HEIGHT
1 TARGET_X = 400
TARGET_Y = 320
TARGET_WIDTH_HEIGHT = 120
N_PIXELS_TO_MOVE = 3

3 - Initialize the world
pygame.init()

106 Chapter 5

window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))
clock = pygame.time.Clock()

4 - Load assets: image(s), sound(s), etc.
ballImage = pygame.image.load('images/ball.png')
2 targetImage = pygame.image.load('images/target.jpg')

5 - Initialize variables
ballX = random.randrange(MAX_WIDTH)
ballY = random.randrange(MAX_HEIGHT)
targetRect = pygame.Rect(TARGET_X, TARGET_Y, TARGET_WIDTH_HEIGHT, TARGET_
WIDTH_HEIGHT)

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 # Clicked the close button? Quit pygame and end the program
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 # See if the user pressed a key
 3 elif event.type == pygame.KEYDOWN:
 if event.key == pygame.K_LEFT:
 ballX = ballX - N_PIXELS_TO_MOVE
 elif event.key == pygame.K_RIGHT:
 ballX = ballX + N_PIXELS_TO_MOVE
 elif event.key == pygame.K_UP:
 ballY = ballY - N_PIXELS_TO_MOVE
 elif event.key == pygame.K_DOWN:
 ballY = ballY + N_PIXELS_TO_MOVE

 # 8 Do any "per frame" actions
 # Check if the ball is colliding with the target
 4 ballRect = pygame.Rect(ballX, ballY,
 BALL_WIDTH_HEIGHT, BALL_WIDTH_HEIGHT)
 5 if ballRect.colliderect(targetRect):
 print('Ball is touching the target')

 # 9 - Clear the window
 window.fill(BLACK)

 # 10 - Draw all window elements
 6 window.blit(targetImage, (TARGET_X, TARGET_Y)) # draw the target
 window.blit(ballImage, (ballX, ballY)) # draw the ball

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND) # make pygame wait

Listing 5-4: Detecting and acting on single key presses

Introduction to Pygame 107

First we add a few new constants 1 to define the x- and y-coordinates
of the upper-left corner of the target rectangle and the width and height of
the target. We then load the image of the target rectangle 2.

In the loop where we look for for events, we add a test for a key press
by checking for an event of type pygame.KEYDOWN 3. If a key down event is
detected, we look into the event to find out what key was pressed. Each
key has an associated constant in pygame, so here we check if the user has
pressed the left, up, down, or right arrow. For each of these keys, we modify
the value of the ball’s x- or y-coordinate appropriately by a small number
of pixels.

Next we create a pygame rect object for the ball based on its x- and
y-coordinates and its height and width 4. We can check to see if two rect-
angles overlap with the following call:

<booleanVariable> = <rect1>.colliderect(<rect2>)

This call compares two rectangles and returns True if they overlap at all
or False if they don’t. We compare the ball rectangle with the target rectan-
gle 5, and if they overlap, the program prints “Ball is touching the target”
to the shell window.

The last change is where we draw both the target and the ball. The
target is drawn first so that when the two overlap, the ball appears over
the target 6.

When the program is run, if the rectangle of the ball overlaps the rect-
angle of the target, the message is written to the shell window. If you move
the ball away from the target, the message stops being written out.

Dealing with Repeating Keys in Continuous Mode

The second way to handle keyboard interactions in pygame is to poll the
keyboard. This involves asking pygame for a list representing which keys
are currently down in every frame using the following call:

<aTuple> = pygame.key.get_pressed()

This call returns a tuple of 0s and 1s representing the state of each key:
0 if the key is up, 1 if the key is down. You can then use constants defined
within pygame as an index into the returned tuple to see if a particular key
is down. For example, the following lines can be used to determine the
state of the A key:

keyPressedTuple = pygame.key.get_pressed()
Now use a constant to get the appropriate element of the tuple
aIsDown = keyPressedTuple[pygame.K_a]

The full listing of constants representing all keys defined in pygame
can be found at https://www.pygame.org/docs/ref/key.html.

https://www.pygame.org/docs/ref/key.html

108 Chapter 5

The code in Listing 5-5 shows how we can use this technique to move
an image continuously rather than once per key press. In this version, we
move the keyboard handling from section #7 to section #8. The rest of the
code is identical to the previous version in Listing 5-4.

File: PygameDemo3_MoveByKeyboard/PygameMoveByKeyboardContinuous.py

pygame demo 3(b) - one image, continuous mode, move as long as a key is down

--- snip ---
 # 7 - Check for and handle events
 for event in pygame.event.get():
 # Clicked the close button? Quit pygame and end the program
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 # 8 - Do any "per frame" actions
 # Check for user pressing keys
 1 keyPressedTuple = pygame.key.get_pressed()

 if keyPressedTuple[pygame.K_LEFT]: # moving left
 ballX = ballX - N_PIXELS_TO_MOVE

 if keyPressedTuple[pygame.K_RIGHT]: # moving right
 ballX = ballX + N_PIXELS_TO_MOVE

 if keyPressedTuple[pygame.K_UP]: # moving up
 ballY = ballY - N_PIXELS_TO_MOVE

 if keyPressedTuple[pygame.K_DOWN]: # moving down
 ballY = ballY + N_PIXELS_TO_MOVE

 # Check if the ball is colliding with the target
 ballRect = pygame.Rect(ballX, ballY,
 BALL_WIDTH_HEIGHT, BALL_WIDTH_HEIGHT)
 if ballRect.colliderect(targetRect):
 print('Ball is touching the target')
--- snip ---

Listing 5-5: Handling keys being held down

The keyboard-handling code in Listing 5-5 does not rely on events,
so we place the new code outside of the for loop that iterates through all
events returned by pygame 1.

Because we are doing this check in every frame, the movement of the
ball will appear to be continuous as long as the user holds down a key. For
example, if the user presses and holds the right arrow key, this code will
add 3 to the value of the ballX coordinate in every frame, and the user will
see the ball moving smoothly to the right. When they stop pressing the key,
the movement stops.

Introduction to Pygame 109

The other change is that this approach allows you to check for multiple
keys being down at the same time. For example, if the user presses and holds
the left and down arrow keys, the ball will move diagonally down and to the
left. You can check for as many keys being held down as you wish. However,
the number of simultaneous key presses that can be detected is limited by the
operating system, the keyboard hardware, and many other factors. The
typical limit is around four keys, but your mileage may vary.

Creating a Location-Based Animation
Next, we’ll build a location-based animation. This code will allow us to
move an image diagonally and then have it appear to bounce off the edges
of the window. This was a favorite technique of screensavers on old CRT-
based monitors, to avoid burning in a static image.

We’ll change the location of our image slightly in every frame. We’ll
also check if the result of that movement would place any part of the image
outside one of the window boundaries and, if so, reverse the movement in
that direction. For example, if the image was moving down and would cross
the bottom of the window, we would reverse the direction and make the
image start moving up.

We’ll again use the same starting template. Listing 5-6 gives the full
source code.

File: PygameDemo4_OneBallBounce/PygameOneBallBounceXY.py

pygame demo 4(a) - one image, bounce around the window using (x, y) coords

1 - Import packages
import pygame
from pygame.locals import *
import sys
import random

2 - Define constants
BLACK = (0, 0, 0)
WINDOW_WIDTH = 640
WINDOW_HEIGHT = 480
FRAMES_PER_SECOND = 30
BALL_WIDTH_HEIGHT = 100
N_PIXELS_PER_FRAME = 3

3 - Initialize the world
pygame.init()
window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))
clock = pygame.time.Clock()

4 - Load assets: image(s), sound(s), etc.
ballImage = pygame.image.load('images/ball.png')

5 - Initialize variables

110 Chapter 5

MAX_WIDTH = WINDOW_WIDTH - BALL_WIDTH_HEIGHT
MAX_HEIGHT = WINDOW_HEIGHT - BALL_WIDTH_HEIGHT
1 ballX = random.randrange(MAX_WIDTH)
ballY = random.randrange(MAX_HEIGHT)
xSpeed = N_PIXELS_PER_FRAME
ySpeed = N_PIXELS_PER_FRAME

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 # Clicked the close button? Quit pygame and end the program
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 # 8 - Do any "per frame" actions
 2 if (ballX < 0) or (ballX >= MAX_WIDTH):
 xSpeed = -xSpeed # reverse X direction

 if (ballY < 0) or (ballY >= MAX_HEIGHT):
 ySpeed = -ySpeed # reverse Y direction

 # Update the ball's location, using the speed in two directions
 3 ballX = ballX + xSpeed
 ballY = ballY + ySpeed

 # 9 - Clear the window before drawing it again
 window.fill(BLACK)

 # 10 - Draw the window elements
 window.blit(ballImage, (ballX, ballY))

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND)

Listing 5-6: A location-based animation, bouncing a ball around the window

We start by creating and initializing the two variables xSpeed and ySpeed 1,
which determine how far and in what direction the image should move in
each frame. We initialize both variables to the number of pixels to move per
frame (3), so the image will start by moving three pixels to the right (the posi-
tive x direction) and three pixels down (the positive y direction).

In the key part of the program, we handle the x- and y-coordinates
separately 2. First, we check to see if the x-coordinate of the ball is less
than zero, meaning that part of the image is off the left edge, or past the
MAX_WIDTH pixel and so effectively off the right edge. If either of these is the
case, we reverse the sign of the speed in the x direction, meaning it will go
in the opposite direction. For example, if the ball was moving to the right

Introduction to Pygame 111

and went off the right edge, we would change the value of xSpeed from 3 to
–3 to cause the ball to start moving to the left, and vice versa.

Then we do a similar check for the y-coordinate to make the ball
bounce off the top or bottom edge, as needed.

Finally, we update the position of the ball by adding the xSpeed to the
ballX coordinate and adding the ySpeed to the ballY coordinate 3. This posi-
tions the ball at a new location on both axes.

At the bottom of the main loop, we draw the ball. Since we’re updat-
ing the values of ballX and ballY in every frame, the ball appears to ani-
mate smoothly. Try it out. Whenever the ball reaches any edge, it seems to
bounce off.

Using Pygame rects
Next I’ll present a different way to achieve the same result. Rather than
keeping track of the current x- and y-coordinates of the ball in separate
variables, we’ll use the rect of the ball, update the rect every frame, and
check if performing the update would cause any part of the rect to move
outside an edge of the window. This results in fewer variables, and because
we’ll start by making a call to get the rect of an image, it will work with
images of any size.

When you create a rect object, in addition to remembering the left, top,
width, and height as attributes of the rectangle, that object also calculates
and maintains a number of other attributes for you. You can access any of
these attributes directly by name using dot syntax, as shown in Table 5-1. (I’ll
provide more detail on this in Chapter 8.)

Table 5-1: Direct Access to Attributes of a rect

Attribute Description

<rect>.x The x-coordinate of the left edge of the rect

<rect>.y The y-coordinate of the top edge of the rect

<rect>.left The x-coordinate of the left edge of the rect (same as
<rect>.x)

<rect>.top The y-coordinate of the top edge of the rect (same as
<rect>.y)

<rect>.right The x-coordinate of the right edge of the rect

<rect>.bottom The y-coordinate of the bottom edge of the rect

<rect>.topleft A two-integer tuple: the coordinates of the upper-left corner of
the rect

<rect>.bottomleft A two-integer tuple: the coordinates of the lower-left corner of
the rect

<rect>.topright A two-integer tuple: the coordinates of the upper-right corner of
the rect

<rect>.bottomright A two-integer tuple: the coordinates of the lower-right corner of
the rect

(continued)

112 Chapter 5

Attribute Description

<rect>.midtop A two-integer tuple: the coordinates of the midpoint of the top
edge of the rect

<rect>.midleft A two-integer tuple: the coordinates of the midpoint of the left
edge of the rect

<rect>.midbottom A two-integer tuple: the coordinates of the midpoint of the bot-
tom edge of the rect

<rect>.midright A two-integer tuple: the coordinates of the midpoint of the right
edge of the rect

<rect>.center A two-integer tuple: the coordinates at the center of the rect

<rect>.centerx The x-coordinate of the center of the width of the rect

<rect>.centery The y-coordinate of the center of the height of the rect

<rect>.size A two-integer tuple: the (width, height) of the rect

<rect>.width The width of the rect

<rect>.height The height of the rect

<rect>.w The width of the rect (same as <rect>.width)

<rect>.h The height of the rect (same as <rect>.height)

A pygame rect also can be thought of, and accessed as, a list of four ele-
ments. Specifically, you can use an index to get or set any individual part
of a rect. For instance, using the ballRect, the individual elements can be
accessed as:

•	 ballRect[0] is the x value (but you could also use ballRect.left)

•	 ballRect[1] is the y value (but you could also use ballRect.top)

•	 ballRect[2] is the width (but you could also use ballRect.width)

•	 ballRect[3] is the height (but you could also use ballRect.height)

Listing 5-7 is an alternative version of our bouncing ball program that
maintains all the information about the ball in a rectangle object.

File: PygameDemo4_OneBallBounce/PygameOneBallBounceRects.py

pygame demo 4(b) - one image, bounce around the window using rects

1 - Import packages
import pygame
from pygame.locals import *
import sys
import random

2 - Define constants
BLACK = (0, 0, 0)
WINDOW_WIDTH = 640
WINDOW_HEIGHT = 480

Table 5-1: Direct Access to Attributes of a rect (continued)

Introduction to Pygame 113

FRAMES_PER_SECOND = 30
N_PIXELS_PER_FRAME = 3

3 - Initialize the world
pygame.init()
window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))
clock = pygame.time.Clock()

4 - Load assets: image(s), sound(s), etc.
ballImage = pygame.image.load('images/ball.png')

5 - Initialize variables
1 ballRect = ballImage.get_rect()
MAX_WIDTH = WINDOW_WIDTH - ballRect.width
MAX_HEIGHT = WINDOW_HEIGHT - ballRect.height
ballRect.left = random.randrange(MAX_WIDTH)
ballRect.top = random.randrange(MAX_HEIGHT)
xSpeed = N_PIXELS_PER_FRAME
ySpeed = N_PIXELS_PER_FRAME

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 # Clicked the close button? Quit pygame and end the program
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 # 8 - Do any "per frame" actions
 2 if (ballRect.left < 0) or (ballRect.right >= WINDOW_WIDTH):
 xSpeed = -xSpeed # reverse X direction

 if (ballRect.top < 0) or (ballRect.bottom >= WINDOW_HEIGHT):
 ySpeed = -ySpeed # reverse Y direction

 # Update the ball's rectangle using the speed in two directions
 ballRect.left = ballRect.left + xSpeed
 ballRect.top = ballRect.top + ySpeed

 # 9 - Clear the window before drawing it again
 window.fill(BLACK)

 # 10 - Draw the window elements
 3 window.blit(ballImage, ballRect)

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND)

Listing 5-7: A location-based animation, bouncing a ball around the window, using rects

114 Chapter 5

This approach of using a rect object is neither better nor worse than
using separate variables. The resulting program works exactly the same as
the original. The important lesson here is how you can use and manipulate
attributes of a rect object.

After loading the image of the ball, we call the get_rect() method 1
to get the bounding rectangle of the image. That call returns a rect object,
which we store into a variable called ballRect. We use ballRect.width and
ballRect.height to get direct access to the width and height of the ball image.
(In the previous version, we used a constant of 100 for the width and the
height.) Getting these values from the image that was loaded makes our code
much more adaptable because it means we can use a graphic of any size.

The code also uses the attributes of the rectangle rather than using
separate variables for checking if any part of the ball’s rectangle goes over
an edge. We can use ballRect.left and ballRect.right to see if the ballRect is
off the left or right edges 2. We do a similar test with ballRect.top and ball-
Rect.bottom. Rather than updating individual x- and y-coordinate variables,
we update the left and top of the ballRect.

The other subtle but important change is in the call to draw the ball 3.
The second argument in the call to blit() can be either an (x, y) tuple or a
rect. The code inside blit() uses the left and top position in the rect as the
x- and y-coordinates.

Playing Sounds
There are two types of sounds that you might want to play in your pro-
grams: short sound effects and background music.

Playing Sound Effects
All sound effects must live in external files and must be in either .wav or
.ogg format. Playing a relatively short sound effect consists of two steps: load
the sound from an external sound file once; then at the appropriate time(s)
play your sound.

To load a sound effect into memory, you use a line like this:

<soundVariable> = pygame.mixer.Sound(<path to sound file>)

To play the sound effect, you only need to call its play() method:

<soundVariable>.play()

We’ll modify Listing 5-7 to add a “boing” sound effect whenever the
ball bounces off a side of the window. There is a sounds folder in the project
folder at the same level as the main program. Right after loading the ball
image, we load the sound file by adding this code:

4 - Load assets: image(s), sound(s), etc.
ballImage = pygame.image.load('images/ball.png')
bounceSound = pygame.mixer.Sound('sounds/boing.wav')

Introduction to Pygame 115

To play the “boing” sound effect whenever we change either the horizon-
tal or vertical direction of the ball, we modify section #8 to look like this:

8 - Do any "per frame" actions
 if (ballRect.left < 0) or (ballRect.right >= WINDOW_WIDTH):
 xSpeed = -xSpeed # reverse X direction
 bounceSound.play()

 if (ballRect.top < 0) or (ballRect.bottom >= WINDOW_HEIGHT):
 ySpeed = -ySpeed # reverse Y direction
 bounceSound.play()

When you find a condition that should play a sound effect, you add a
call to the play() method of the sound. There are many more options for
controlling sound effects; you can find details in the official documentation
at https://www.pygame.org/docs/ref/mixer.html.

Playing Background Music
Playing background music involves two lines of code using calls to the
pygame.mixer.music module. First, you need this to load the sound file into
memory:

pygame.mixer.music.load(<path to sound file>)

The <path to sound file> is a path string where the sound file can be
found. You can use .mp3 files, which seem to work best, as well as .wav or .ogg
files. When you want to start the music playing, you need to make this call:

pygame.mixer.music.play(<number of loops>, <starting position>)

To play some background music repeatedly, you can pass in a -1 for
<number of loops> to run the music forever. The <starting position> is typically
set to 0 to indicate that you want to play the sound from the beginning.

There is a downloadable, modified version of the bouncing ball pro-
gram that properly loads the sound effect and background music files and
starts the background sound playing. The only changes are in section #4, as
shown here.

File: PygameDemo4_OneBallBounce/PyGameOneBallBounceWithSound.py

4 - Load assets: image(s), sound(s), etc.
ballImage = pygame.image.load('images/ball.png')
bounceSound = pygame.mixer.Sound('sounds/boing.wav')
pygame.mixer.music.load('sounds/background.mp3')
pygame.mixer.music.play(-1, 0.0)

Pygame allows for much more intricate handling of background
sounds. You can find the full documentation at https://www.pygame.org/docs/
ref/music.html#module-pygame.mixer.music.

https://www.pygame.org/docs/ref/mixer.html
https://www.pygame.org/docs/ref/music.html#module-pygame.mixer.music
https://www.pygame.org/docs/ref/music.html#module-pygame.mixer.music

116 Chapter 5

N O T E 	 In order to make future examples more clearly focused on OOP, I’ll leave out calls to
play sound effects and background music. But adding sounds greatly enhances the
user experience of a game, and I strongly encourage including them.

Drawing Shapes
Pygame offers a number of built-in functions that allow you to draw certain
shapes known as primitives, which include lines, circles, ellipses, arcs, poly-
gons, and rectangles. Table 5-2 provides a list of these functions. Note that
there are two calls that draw anti-aliased lines. These are lines that include
blended colors at the edges to make the lines look smooth and less jagged.
There are two key advantages to using these drawing functions: they exe-
cute extremely quickly, and they allow you to draw simple shapes without
having to create or load images from external files.

Table 5-2: Functions for Drawing Shapes

Function Description

pygame.draw.aaline() Draws an anti-aliased line

pygame.draw.aalines() Draws a series of anti-aliased lines

pygame.draw.arc() Draws an arc

pygame.draw.circle() Draws a circle

pygame.draw.ellipse() Draws an ellipse

pygame.draw.line() Draws a line

pygame.draw.lines() Draws a series of lines

pygame.draw.polygon() Draws a polygon

pygame.draw.rect() Draws a rectangle

Figure 5-7 shows the output of a sample program that demonstrates
calls to these primitive drawing functions.

Listing 5-8 is the code of the sample program, using the same 12-step
template that produced the output in Figure 5-7.

File: PygameDemo5_DrawingShapes.py

pygame demo 5 - drawing

--- snip ---
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 # Clicked the close button? Quit pygame and end the program
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

Introduction to Pygame 117

 # 8 - Do any "per frame" actions

 # 9 - Clear the window
 window.fill(GRAY)

 1 # 10 - Draw all window elements
 # Draw a box
 pygame.draw.line(window, BLUE, (20, 20), (60, 20), 4) # top
 pygame.draw.line(window, BLUE, (20, 20), (20, 60), 4) # left
 pygame.draw.line(window, BLUE, (20, 60), (60, 60), 4) # right
 pygame.draw.line(window, BLUE, (60, 20), (60, 60), 4) # bottom
 # Draw an X in the box
 pygame.draw.line(window, BLUE, (20, 20), (60, 60), 1)
 pygame.draw.line(window, BLUE, (20, 60), (60, 20), 1)

 # Draw a filled circle and an empty circle
 pygame.draw.circle(window, GREEN, (250, 50), 30, 0) # filled
 pygame.draw.circle(window, GREEN, (400, 50), 30, 2) # 2 pixel edge

 # Draw a filled rectangle and an empty rectangle
 pygame.draw.rect(window, RED, (250, 150, 100, 50), 0) # filled
 pygame.draw.rect(window, RED, (400, 150, 100, 50), 1) # 1 pixel edge

 # Draw a filled ellipse and an empty ellipse
 pygame.draw.ellipse(window, YELLOW, (250, 250, 80, 40), 0) # filled
 pygame.draw.ellipse(window, YELLOW, (400, 250, 80, 40), 2) # 2 pixel edge

 # Draw a six-sided polygon
 pygame.draw.polygon(window, TEAL, ((240, 350), (350, 350),
 (410, 410), (350, 470),
 (240, 470), (170, 410)))

 # Draw an arc
 pygame.draw.arc(window, BLUE, (20, 400, 100, 100), 0, 2, 5)

 # Draw anti-aliased lines: a single line, then a list of points
 pygame.draw.aaline(window, RED, (500, 400), (570, 470))
 pygame.draw.aalines(window, BLUE, (500, 400), True,
 ((580, 480), (587, 450),
 (595, 460), (600, 444)))

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND) # make pygame wait

Listing 5-8: A program to demonstrate calls to primitive drawing functions in pygame

The drawing of all the primitives occurs in section #10 1. We make
calls to pygame’s drawing functions to draw a box with two diagonals, filled
and empty circles, filled and empty rectangles, filled and empty ovals, a six-
sided polygon, an arc, and two anti-aliased lines.

118 Chapter 5

Figure 5-7: A sample program that demonstrates using calls to draw primitive shapes

Reference for Primitive Shapes
For your reference, here is the documentation for the pygame methods to
draw these primitives. In all of the following, the color argument expects
you to pass in a tuple of RGB values:

Anti-aliased line

pygame.draw.aaline(window, color, startpos, endpos)

Draws an anti-aliased line in the window.

Anti-aliased lines

pygame.draw.aalines(window, color, closed, points)

Draws a sequence of anti-aliased lines in the window. The closed argu-
ment is a simple Boolean; if it’s True, a line will be drawn between the
first and last points to complete the shape. The points argument is a list
or tuple of (x, y) coordinates to be connected by line segments (there
must be at least two).

Introduction to Pygame 119

Arc

pygame.draw.arc(window, color, rect, angle_start, angle_stop, width=0)

Draws an arc in the window. The arc will fit inside the given rect. The
two angle arguments are the initial and final angles (in radians, with
zero on the right). The width argument is the thickness to draw the
outer edge.

Circle

pygame.draw.circle(window, color, pos, radius, width=0)

Draws a circle in the window. The pos is the center of the circle, and
radius is the radius. The width argument is the thickness to draw the
outer edge. If width is 0, then the circle will be filled.

Ellipse

pygame.draw.ellipse(window, color, rect, width=0)

Draws an ellipse in the window. The given rect is the area that the
ellipse will fill. The width argument is the thickness to draw the outer
edge. If width is 0, then the ellipse will be filled.

Line

pygame.draw.line(window, color, startpos, endpos, width=1)

Draws a line in a window. The width argument is the thickness of the line.

Lines

pygame.draw.lines(window, color, closed, points, width=1)

Draws a sequence of lines in the window. The closed argument is a simple
Boolean; if it’s True, a line will be drawn between the first and last points
to complete the shape. The points argument is a list or tuple of (x, y)
coordinates to be connected by line segments (there must be at least
two). The width argument is the thickness of the line. Note that specify-
ing a line width wider than 1 does not fill in the gaps between the lines.
Therefore, wide lines and sharp corners won’t be joined seamlessly.

Polygon

pygame.draw.polygon(window, color, pointslist, width=0)

Draws a polygon in the window. The pointslist specifies the vertices
of the polygon. The width argument is the thickness to draw the outer
edge. If width is 0, then the polygon will be filled.

120 Chapter 5

Rectangle

pygame.draw.rect(window, color, rect, width=0)

Draws a rectangle in the window. The rect is the area of the rectangle.
The width argument is the thickness to draw the outer edge. If width is 0,
then the rectangle will be filled.

N O T E For additional information, see http://www.pygame.org/docs/ref/draw.html.

The set of primitive calls allows you the flexibility to draw any shapes
you wish. Again, the order in which you make calls is important. Think of
the order of your calls as layers; elements that are drawn early can be over-
laid by later calls to any other drawing primitive function.

Summary
In this chapter I introduced the basics of pygame. You installed pygame on
your computer, then learned about the model of event-driven programming
and the use of events, which is very different from coding text-based pro-
grams. I explained the coordinate system of pixels in a window and the way
that colors are represented in code.

To start right at the beginning with pygame, I introduced a 12-section
template that does nothing but bring up a window and can be used to build
any pygame-based program. Using that framework, we then built sample
programs that showed how to draw an image in the window (using blit()),
how to detect mouse events, and how to handle keyboard input. The next
demonstration explained how to build a location-based animation.

Rectangles are highly important in pygame, so I covered how the attri-
butes of a rect object can be used. I also provided some example code to
show how to play sound effects and background music to enhance the user’s
enjoyment of your programs. Finally, I introduced how to use pygame meth-
ods to draw primitive shapes in a window.

While I have introduced many concepts within pygame, almost every-
thing I showed in this chapter has essentially been procedural. The rect
object is an example of object-oriented code built directly into pygame. In
the next chapter, I’ll show how to use OOP in code to use pygame more
effectively.

http://www.pygame.org/docs/ref/draw.html

6
O B J E C T - O R I E N T E D P Y G A M E

In this chapter I’ll demonstrate how you
can use OOP techniques effectively within

the pygame framework. We’ll start off with
an example of procedural code, then split that

code into a single class and some main code that calls
the methods of that class. After that, we’ll build two
classes, SimpleButton and SimpleText, that implement
basic user interface widgets: a button and a field for
displaying text. I’ll also introduce the concept of a
callback.

Building the Screensaver Ball with OOP Pygame
In Chapter 5, we created an old-school screensaver where a ball bounced
around inside a window (Listing 5-6, if you need to refresh your memory).

122 Chapter 6

That code works, but the data for the ball and the code to manipu-
late the ball are intertwined, meaning there’s a lot of initialization code,
and the code to update and draw the ball are embedded in the 12-step
framework.

A more modular approach is to split the code into a Ball class and a
main program that instantiates a Ball object and makes calls to its methods.
In this section we’ll make this split, and I’ll show you how to create multiple
balls from the Ball class.

Creating a Ball Class
We’ll start by extracting all code relating to the ball from the main pro-
gram and moving it into a separate Ball class. Looking at the original code,
we can see that the sections that deal with the ball are:

•	 Section #4, which loads the image of the ball

•	 Section #5, which creates and initializes all the variables that have
something to do with the ball

•	 Section #8, which includes code for moving the ball, detecting an edge
bounce, and changing speed and direction

•	 Section #10, which draws the ball

From this we can conclude that our Ball class will require the following
methods:

create()   Loads an image, sets a location, and initializes all instance
variables

update()   Changes the location of the ball in every frame, based on the
x speed and y speed of the ball

draw()   Draws the ball in the window	

The first step is to create a project folder, in which you need a Ball.py
for the new Ball class, the main code file Main_BallBounce.py, and an images
folder containing the ball.png image file.

Listing 6-1 shows the code of the new Ball class.

File: PygameDemo6_BallBounceObjectOriented/Ball.py

import pygame
from pygame.locals import *
import random

Ball class
class Ball():

 1 def __init__(self, window, windowWidth, windowHeight):
 self.window = window # remember the window, so we can draw later
 self.windowWidth = windowWidth
 self.windowHeight = windowHeight

Object-Oriented Pygame 123

 2 self.image = pygame.image.load('images/ball.png')
 # A rect is made up of [x, y, width, height]
 ballRect = self.image.get_rect()
 self.width = ballRect.width
 self.height = ballRect.height
 self.maxWidth = windowWidth - self.width
 self.maxHeight = windowHeight - self.height

 # Pick a random starting position
 3 self.x = random.randrange(0, self.maxWidth)
 self.y = random.randrange(0, self.maxHeight)

 # Choose a random speed between -4 and 4, but not zero,
 # in both the x and y directions
 4 speedsList = [-4, -3, -2, -1, 1, 2, 3, 4]
 self.xSpeed = random.choice(speedsList)
 self.ySpeed = random.choice(speedsList)

 5 def update(self):
 # Check for hitting a wall. If so, change that direction.
 if (self.x < 0) or (self.x >= self.maxWidth):
 self.xSpeed = -self.xSpeed

 if (self.y < 0) or (self.y >= self.maxHeight):
 self.ySpeed = -self.ySpeed

 # Update the Ball's x and y, using the speed in two directions
 self.x = self.x + self.xSpeed
 self.y = self.y + self.ySpeed

 6 def draw(self):
 self.window.blit(self.image, (self.x, self.y))

Listing 6-1: The new Ball class

When we instantiate a Ball object, the __init__() method receives three
pieces of data: the window to draw into, the width of the window, and the
height of the window 1. We save the window variable into the instance vari-
able self.window so that we can use it later in the draw() method, and we do
the same with the self.windowHeight and self.windowWidth instance variables.
We then load the image of the ball using the path to the file and get the
rect of that ball image 2. We need the rect to calculate the maximum val-
ues for x and y so that the ball will always fully appear in the window. Next,
we pick a randomized starting location for the ball 3. Finally, we set the
speed in the x and y directions to a random value between –4 and 4 (but
not 0), representing the number of pixels to move per frame 4. Because
of these numbers, the ball may move differently each time we run the pro-
gram. All these values are saved in instance variables to be used by other
methods.

In the main program, we’ll call the update() method in each frame of
the main loop, so this is where we place the code that checks for the ball

124 Chapter 6

hitting any border of the window 5. If it does hit an edge, we reverse the
speed in that direction and modify the x- and y-coordinates (self.x and
self.y) by the current speed in the x and y directions.

We’ll also call the draw() method, which simply calls blit() to draw the
ball at its current x- and y-coordinates 6, in every frame of the main loop.

Using the Ball Class
Now all functionality associated with a ball has been placed in the Ball
class code. All the main program needs to do is create the ball, then call
its update() and draw() methods in every frame. Listing 6-2 shows the greatly
simplified code of the main program.

File: PygameDemo6_BallBounceObjectOriented/Main_BallBounce.py

pygame demo 6(a) - using the Ball class, bounce one ball

1 - Import packages
import pygame
from pygame.locals import *
import sys
import random
1 from Ball import * # bring in the Ball class code

2 - Define constants
BLACK = (0, 0, 0)
WINDOW_WIDTH = 640
WINDOW_HEIGHT = 480
FRAMES_PER_SECOND = 30

3 - Initialize the world
pygame.init()
window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))
clock = pygame.time.Clock()

4 - Load assets: image(s), sound(s), etc.

5 - Initialize variables
2 oBall = Ball(window, WINDOW_WIDTH, WINDOW_HEIGHT)

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 # 8 - Do any "per frame" actions
 3 oBall.update() # tell the Ball to update itself

Object-Oriented Pygame 125

 # 9 - Clear the window before drawing it again
 window.fill(BLACK)

 # 10 - Draw the window elements
 4 oBall.draw() # tell the Ball to draw itself

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND)

Listing 6-2: The new main program that instantiates a Ball and makes calls to its methods

If you compare this new main program with the original code in
Listing 5-6, you’ll see that it’s much simpler and clearer. We use an import
statement to bring in the Ball class code 1. We create a Ball object, passing
in the window that we created and the width and height of that window 2,
and we save the resulting Ball object in a variable named oBall.

The responsibility of moving the ball is now in the Ball class code, so
here we only need to call the update() method of the oBall object 3. Since
the Ball object knows how big the window is, how big the image of the ball
is, and the location and the speed of the ball, it can do all the calculations it
needs to do to move the ball and bounce it off the walls.

The main code calls the draw() method of the oBall object 4, but the
actual drawing is done in the oBall object.

Creating Many Ball Objects
Now let’s make a slight but important modification to the main program to
create multiple Ball objects. This is one of the real powers of object orien-
tation: to create three balls, we only have to instantiate three Ball objects
from the Ball class. Here we’ll use a basic approach and build a list of Ball
objects. In each frame, we’ll iterate through the list of Ball objects, tell each
one to update its location, then iterate again to tell each one to draw itself.
Listing 6-3 shows a modified main program that creates and updates three
Ball objects.

File: PygameDemo6_BallBounceObjectOriented/Main_BallBounceManyBalls.py

pygame demo 6(b) - using the Ball class, bounce many balls

--- snip ---
N_BALLS = 3
--- snip ---

5 - Initialize variables
1 ballList = []
for oBall in range(0, N_BALLS):
 # Each time through the loop, create a Ball object
 oBall = Ball(window, WINDOW_WIDTH, WINDOW_HEIGHT)

126 Chapter 6

 ballList.append(oBall) # append the new Ball to the list of Balls

6 - Loop forever
while True:

 --- snip ---

 # 8 - Do any "per frame" actions
 2 for oBall in ballList:
 oBall.update() # tell each Ball to update itself

 # 9 - Clear the window before drawing it again
 window.fill(BLACK)

 # 10 - Draw the window elements
 3 for oBall in ballList:
 oBall.draw() # tell each Ball to draw itself

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND)

Listing 6-3: Creating, moving, and displaying three balls

We start with an empty list of Ball objects 1. Then we have a loop
that creates three Ball objects, each of which we append to our list of Ball
objects, ballList. Each Ball object chooses and remembers a randomized
starting location and a randomized speed in both the x and y directions.

Inside the main loop, we iterate through all the Ball objects and tell
each one to update itself 2, changing the x- and y-coordinates of each Ball
object to a new location. We then iterate through the list again, calling the
draw() method of each Ball object 3.

When we run the program, we see three balls, each starting at a ran-
domized location and each moving with a randomized x and y speed. Each
ball bounces correctly off the boundaries of the window.

Using this object-oriented approach, we made no changes to the Ball
class, but just changed our main program to now manage a list of Ball
objects instead of a single Ball object. This is a common, and very positive,
side effect of OOP code: well-written classes can often be reused without
change.

Creating Many, Many Ball Objects
We can change the value of the constant N_BALLS from 3 to some much
larger value, like 300, to quickly create that many balls (Figure 6-1). By
changing just a single constant, we make a major change to the behavior
of the program. Each ball maintains its own speed and location and draws
itself.

Object-Oriented Pygame 127

Figure 6-1: Creating, updating, and drawing 300 Ball objects

The fact that we can instantiate any number of objects from a single
script will be vital not only in defining game objects like spaceships, zom-
bies, bullets, treasures, and so on, but also in building GUI controls such as
buttons, checkboxes, text input fields, and text outputs.

Building a Reusable Object-Oriented Button
The simple button is one of the most recognizable elements of a graphical
user interface. The standard behavior of a button consists of the user using
their mouse to click down on the button image and then releasing it.

Buttons typically consist of at least two images: one to represent the up
or normal state of the button and another to represent the down or pressed
state of the button. The sequence of a click can be broken down into the
following steps:

1.	 User moves the mouse pointer over the button

2.	 User presses the mouse button down

3.	 Program reacts by changing the image to the down state

4.	 User releases the mouse button

5.	 Program reacts by showing the up image of the button

6.	 Program performs some action based on the button click

Good GUIs also allow the user to click down on a button, temporarily
roll off the button, changing the button to the up state, and then, with the

128 Chapter 6

mouse button still down, roll back over the image so the button changes
back to the down image. If the user clicks down on a button but then rolls
the mouse off and lifts up on the mouse button, that is not considered a
click. This means the program takes action only when the user presses
down and releases while the mouse is positioned over the image of a button.

Building a Button Class
The button behavior should be common and consistent for all buttons used
in a GUI, so we’ll build a class that takes care of the behavior details. Once
we’ve built a simple button class, we can instantiate any number of buttons
and they’ll all work exactly the same way.

Let’s consider what behaviors our button class must support. We’ll need
methods to:

•	 Load the images of the up and down states, then initialize any instance
variables needed to track the button’s state.

•	 Tell the button about all events that the main program has detected
and check whether there are any that the button needs to react to.

•	 Draw the current image representing the button.

Listing 6-4 presents the code of a SimpleButton class. (We’ll build a
more complicated button class in Chapter 7.) This class has three methods,
__init__(), handleEvent(), and draw(), that implement the behaviors men-
tioned. The code of the handleEvent() method does get a little tricky, but
once you have it working, it’s incredibly easy to use. Feel free to work your
way through it, but know that the implementation of the code is not that
relevant. The important thing here is to understand the purpose and usage
of the different methods.

File: PygameDemo7_SimpleButton/SimpleButton.py

SimpleButton class
#
Uses a "state machine" approach
#

import pygame
from pygame.locals import *

class SimpleButton():
 # Used to track the state of the button
 STATE_IDLE = 'idle' # button is up, mouse not over button
 STATE_ARMED = 'armed' # button is down, mouse over button
 STATE_DISARMED = 'disarmed' # clicked down on button, rolled off

 def __init__(self, window, loc, up, down): 1
 self.window = window
 self.loc = loc
 self.surfaceUp = pygame.image.load(up)

Object-Oriented Pygame 129

 self.surfaceDown = pygame.image.load(down)

 # Get the rect of the button (used to see if the mouse is over the button)
 self.rect = self.surfaceUp.get_rect()
 self.rect[0] = loc[0]
 self.rect[1] = loc[1]

 self.state = SimpleButton.STATE_IDLE

 def handleEvent(self, eventObj): 2
 # This method will return True if user clicks the button.
 # Normally returns False.

 if eventObj.type not in (MOUSEMOTION, MOUSEBUTTONUP, MOUSEBUTTONDOWN): 3
 # The button only cares about mouse-related events
 return False

 eventPointInButtonRect = self.rect.collidepoint(eventObj.pos)

 if self.state == SimpleButton.STATE_IDLE:
 if (eventObj.type == MOUSEBUTTONDOWN) and eventPointInButtonRect:
 self.state = SimpleButton.STATE_ARMED

 elif self.state == SimpleButton.STATE_ARMED:
 if (eventObj.type == MOUSEBUTTONUP) and eventPointInButtonRect:
 self.state = SimpleButton.STATE_IDLE
 return True # clicked!

 if (eventObj.type == MOUSEMOTION) and (not eventPointInButtonRect):
 self.state = SimpleButton.STATE_DISARMED

 elif self.state == SimpleButton.STATE_DISARMED:
 if eventPointInButtonRect:
 self.state = SimpleButton.STATE_ARMED
 elif eventObj.type == MOUSEBUTTONUP:
 self.state = SimpleButton.STATE_IDLE

 return False

 def draw(self): 4
 # Draw the button's current appearance to the window
 if self.state == SimpleButton.STATE_ARMED:
 self.window.blit(self.surfaceDown, self.loc)

 else: # IDLE or DISARMED
 self.window.blit(self.surfaceUp, self.loc)

Listing 6-4: The SimpleButton class

The __init__() method begins by saving all values passed in into
instance variables 1 to use in other methods. It then initializes a few
more instance variables.

Whenever the main program detects any event, it calls the handleEvent()
method 2. This method first checks that the event is one of MOUSEMOTION,

130 Chapter 6

MOUSEBUTTONUP, or MOUSEBUTTONDOWN 3. The rest of the method is implemented
as a state machine, a technique that I will go into more detail about in
Chapter 15. The code is a little complicated, and you should feel free
to study how it works, but for now note that it uses the instance variable
self.state (over the course of multiple calls) to detect if the user has
clicked on the button. The handleEvent() method returns True when the
user completes a mouse click by pressing down on the button, then later
releasing on the same button. In all other cases, handleEvent() returns
False.

Finally, the draw() method uses the state of the object’s instance variable
self.state to decide which image (up or down) to draw 4.

Main Code Using a SimpleButton
To use a SimpleButton in the main code, we first instantiate one from the
SimpleButton class before the main loop starts with a line like this:

oButton = SimpleButton(window, (150, 30),
 'images/buttonUp.png',
 'images/buttonDown.png')

This line creates a SimpleButton object, specifying a location to draw
it (as usual, the coordinates are for the top-left corner of the bounding
rectangle) and providing the paths to both the up and down images of the
button. In the main loop, any time any event happens we need to call the
handleEvent() method to see if the user has clicked the button. If the user
clicks the button, the program should perform some action. Also in the
main loop, we need to call the draw() method to make the button show in
the window.

We’ll build a small test program, which will generate a user interface
like Figure 6-2, to incorporate one instance of a SimpleButton.

Figure 6-2: The user interface of a program with a single instance of a SimpleButton

Whenever the user completes a click on the button, the program
outputs a line of text in the shell saying that the button has been clicked.
Listing 6-5 contains the main program code.

File: PygameDemo7_SimpleButton/Main_SimpleButton.py

Pygame demo 7 - SimpleButton test

--- snip ---
5 - Initialize variables
Create an instance of a SimpleButton

Object-Oriented Pygame 131

1 oButton = SimpleButton(window, (150, 30),
 'images/buttonUp.png',
 'images/buttonDown.png')

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 # Pass the event to the button, see if it has been clicked on
 2 if oButton.handleEvent(event):
 3 print('User has clicked the button')

 # 8 - Do any "per frame" actions

 # 9 - Clear the window
 window.fill(GRAY)

 # 10 - Draw all window elements
 4 oButton.draw() # draw the button

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND)

Listing 6-5: The main program that creates and reacts to a SimpleButton

Again, we start with the standard pygame template from Chapter 5.
Before the main loop, we create an instance of our SimpleButton 1, specify-
ing a window to draw into, a location, a path to the up image, and a path to
the down image.

Every time through the main loop, we need to react to events detected
in the main program. To implement this, we call the SimpleButton class’s
handleEvent() method 2 and pass in the event from the main program.

The handleEvent() method tracks all of the user’s actions on the button
(pressing down, releasing, rolling off, rolling back on). When handleEvent()
returns True, indicating that a click has occurred, we perform the action
associated with clicking that button. Here, we just print a message 3.

Finally we call the button’s draw() method 4 to draw an image to repre-
sent the appropriate state of the button (up or down).

Creating a Program with Multiple Buttons
With our SimpleButton class, we can instantiate as many buttons as we wish.
For example, we can modify our main program to incorporate three
SimpleButton instances, as shown in Figure 6-3.

132 Chapter 6

Figure 6-3: The main program with three SimpleButton objects

We don’t need to make any changes to the SimpleButton class file to
do this. We simply modify our main code to instantiate three SimpleButton
objects instead of one.

File: PygameDemo7_SimpleButton/Main_SimpleButton3Buttons.py

oButtonA = SimpleButton(window, (25, 30),
 'images/buttonAUp.png',
 'images/buttonADown.png')
oButtonB = SimpleButton(window, (150, 30),
 'images/buttonBUp.png',
 'images/buttonBDown.png')
oButtonC = SimpleButton(window, (275, 30),
 'images/buttonCUp.png',
 'images/buttonCDown.png')

We now need to call the handleEvent() method of all three buttons:

 # Pass the event to each button, see if one has been clicked
 if oButtonA.handleEvent(event):
 print('User clicked button A.')
 elif oButtonB.handleEvent(event):
 print('User clicked button B.')
 elif oButtonC.handleEvent(event):
 print('User clicked button C.')

Finally, we tell each button to draw itself:

 oButtonA.draw()
 oButtonB.draw()
 oButtonC.draw()

When you run the program, you’ll see a window with three buttons.
Clicking any of the buttons prints a message showing the name of the but-
ton that was clicked.

The key idea here is that since we are using three instances of the
same SimpleButton class, the behavior of each button will be identical. An
important benefit of this approach is that any change to the code in the
SimpleButton class will affect all buttons instantiated from the class. The
main program does not need to worry about any details of the inner work-
ings of the button code, needing only to call the handleEvent() method of
each button in the main loop. Each button will return True or False to say
that it has or has not been clicked.

Object-Oriented Pygame 133

Building a Reusable Object-Oriented Text Display
There are two different types of text in a pygame program: display text and
input text. Display text is output from your program, equivalent to a call to the
print() function, except it’s displayed in a pygame window. Input text is string
input from the user, equivalent to a call to input(). In this section, I’ll discuss
display text. We’ll look at how to deal with input text in the next chapter.

Steps to Display Text
Displaying text in a window is a fairly complicated process in pygame
because it’s not simply displayed as a string in the shell, but requires you to
choose a location, fonts and sizes, and other attributes. For example, you
might use code like the following:

pygame.font.init()

myFont = pygame.font.SysFont('Comic Sans MS', 30)
textSurface = myfont.render('Some text', True, (0, 0, 0))
window.blit(textSurface, (10, 10))

We start by initializing the font system within pygame; we do this before
the main loop starts. Then we tell pygame to load a particular font from the
system by name. Here, we request Comic Sans with a font size of 30.

The next step is the key one: we use that font to render our text, which
creates a graphical image of the text, called a surface in pygame. We supply
the text we want to output, a Boolean that says whether we want our text to
be anti-aliased, and a color in RGB format. Here, (0, 0, 0) indicates that
we want our text to be black. Finally, using blit(), we draw the image of the
text into the window at some (x, y) location.

This code works well to show the provided text in the window at the
given location. However, if the text doesn’t change, there will be a lot of
wasted work done re-creating the textSurface on each iteration through the
main loop. There are also a lot of details to remember, and you must get
them all correct to draw the text properly. We can hide most of this com-
plexity by building a class.

Creating a SimpleText Class
The idea is to build a set of methods that take care of font loading and text
rendering in pygame, meaning we no longer have to remember the details
of the implementation. Listing 6-6 contains a new class called SimpleText
that does this work.

File: PygameDemo8_SimpleTextDisplay/SimpleText.py

SimpleText class

import pygame
from pygame.locals import *

134 Chapter 6

class SimpleText():

 1 def __init__(self, window, loc, value, textColor):
 2 pygame.font.init()
 self.window = window
 self.loc = loc
 3 self.font = pygame.font.SysFont(None, 30)
 self.textColor = textColor
 self.text = None # so that the call to setText below will
 # force the creation of the text image
 self.setValue(value) # set the initial text for drawing

 4 def setValue(self, newText):
 if self.text == newText:
 return # nothing to change

 self.text = newText # save the new text
 self.textSurface = self.font.render(self.text, True, self.textColor)

 5 def draw(self):
 self.window.blit(self.textSurface, self.loc)

Listing 6-6: The SimpleText class for displaying text

 You can think of a SimpleText object as a field in the window where you
want text to be displayed. You can use one to display unchanging label text
or to display text that changes throughout a program.

The SimpleText class has only three methods. The __init__() method 1
expects the window to draw into, the location at which to draw the text in
the window, any initial text you want to see displayed in the field, and a text
color. Calling pygame.font.init() 2 starts up pygame’s font system. The call
in the first instantiated SimpleText object actually does the initialization; any
additional SimpleText objects will also make this call, but since fonts have
already been initialized, the call returns immediately. We create a new Font
object with pygame.font.SysFont() 3. Rather than providing a specific font
name, None indicates that we will use whatever the standard system font is.

The setValue() method renders an image of the text to display and saves
that image in the self.textSurface instance variable 4. As the program runs,
any time you want to change the text that’s displayed, you call the setValue()
method, passing in the new text to display. The setValue() method has an opti-
mization, too: it remembers the last text that it rendered, and before doing
anything else, it checks if the new text is the same as the previous text. If the
text has not changed, there is nothing to do and the method just returns. If
there is new text, it renders the new text into a surface to be drawn.

The draw() method 5 draws the image contained in the self.textSurface
instance variable into the window at the given location. This method should
be called in every frame.

There are multiple advantages to this approach:

•	 The class hides all the details of pygame’s rendering of text, so the user
of this class never needs to know what pygame-specific calls are needed
to show text.

Object-Oriented Pygame 135

•	 Each SimpleText object remembers the window that it draws into, the
location where the text should be placed, and the text color. Therefore,
you only need to specify these values once, when you instantiate a
SimpleText object, typically before the main loop starts.

•	 Each SimpleText object is also optimized to remember both the text that
it was last told to draw and the image (self.textSurface) that it made
from the current text. It only needs to render a new surface when the
text changes.

•	 To show multiple pieces of text in a window, you only need to instanti-
ate multiple SimpleText objects. This is a key concept of object-oriented
programming.

Demo Ball with SimpleText and SimpleButton
To cap this off, we’ll modify Listing 6-2 to use the SimpleText and SimpleButton
classes. The updated program in Listing 6-7 keeps track of the number of
times it goes through the main loop and reports that information at the top
of the window. Clicking the Restart button resets the counter.

File: PygameDemo8_SimpleTextDisplay/Main_BallTextAndButton.py

pygame demo 8 - SimpleText, SimpleButton, and Ball

1 - Import packages
import pygame
from pygame.locals import *
import sys
import random
1 from Ball import * # bring in the Ball class code
from SimpleText import *
from SimpleButton import *

2 - Define constants
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
WINDOW_WIDTH = 640
WINDOW_HEIGHT = 480
FRAMES_PER_SECOND = 30

3 - Initialize the world
pygame.init()
window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))
clock = pygame.time.Clock()

4 - Load assets: image(s), sound(s), etc.

5 - Initialize variables
2 oBall = Ball(window, WINDOW_WIDTH, WINDOW_HEIGHT)
oFrameCountLabel = SimpleText(window, (60, 20),
 'Program has run through this many loops: ', WHITE)

136 Chapter 6

oFrameCountDisplay = SimpleText(window, (500, 20), '', WHITE)
oRestartButton = SimpleButton(window, (280, 60),
 'images/restartUp.png', 'images/restartDown.png')
frameCounter = 0

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 3 if oRestartButton.handleEvent(event):
 frameCounter = 0 # clicked button, reset counter

 # 8 - Do any "per frame" actions
 4 oBall.update() # tell the ball to update itself
 frameCounter = frameCounter + 1 # increment each frame
 5 oFrameCountDisplay.setValue(str(frameCounter))

 # 9 - Clear the window before drawing it again
 window.fill(BLACK)

 # 10 - Draw the window elements
 6 oBall.draw() # tell the ball to draw itself
 oFrameCountLabel.draw()
 oFrameCountDisplay.draw()
 oRestartButton.draw()

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND)

Listing 6-7: An example main program to show Ball, SimpleText, and SimpleButton

At the top of the program, we import the code of the Ball, SimpleText,
and SimpleButton classes 1. Before our main loop starts, we create an instance
of the Ball 2, two instances of the SimpleText class (oFrameCountLabel for the
unchanging message label and oFrameCountDisplay for the changing dis-
play of frames), and an instance of the SimpleButton class that we store in
oRestartButton. We also initialize a variable frameCounter to zero, which we will
increment every time through the main loop.

In the main loop, we check if the user pressed the Restart button 3. If
True, we reset the frame counter.

We tell the ball to update its position 4. We increment the frame coun-
ter, then call the setValue() method of the text field to show the new count
of frames 5. Finally, we tell the ball to draw itself tell the text fields to draw
themselves, and tell the Restart button to draw itself, by calling the draw()
method of each object 6.

Object-Oriented Pygame 137

In the instantiation of the SimpleText objects, the last argument is a
text color, and we specified that the objects should be rendered in WHITE so
they can be seen against a BLACK background. In the next chapter, I’ll show
how to expand the SimpleText class to incorporate more attributes, without
complicating the interface of the class. We’ll build a more full-featured text
object that has reasonable default values for each of these attributes, but
allows you to override those defaults.

Interface vs. Implementation
The SimpleButton and SimpleText examples bring up the important topic of
interface versus implementation. As mentioned in Chapter 4, the interface
refers to how something is used, while the implementation refers to how
something works (internally).

In an OOP environment, the interface is the set of methods in a class and
their related parameters—also known as the application programming interface
(API). The implementation is the actual code of all the methods in the class.

An external package such as pygame will most likely come with docu-
mentation of the API that explains the calls that are available and the
arguments you are expected to pass with each call. The full pygame API
documentation is available at https://www.pygame.org/docs/.

When you write code that makes calls to pygame, you don’t need to worry
about the implementation of the methods you are using. For example,
when you make a call to blit() to draw image, you really don’t care how
blit() does what it does; you just need to know what the call does and what
arguments need to be passed in. On the other side, you can trust that the
implementer(s) who wrote the blit() method have thought extensively
about how to make blit() work most efficiently.

In the programming world, we often wear two hats as both the imple-
menter and the application developer, so we need to make an effort to design
APIs that not only make sense in the current situation, but also are general
enough to be used by future programs of our own and by programs written
by other people. Our SimpleButton and SimpleText classes are good examples,
as they are written in a general way so that they can be reused easily. I’ll talk
more about interface versus implementation in Chapter 8, when we look at
encapsulation.

Callbacks
When using a SimpleButton object, we handle checking for and reacting to a
button click like this:

if oButton.handleEvent(event):
 print('The button was clicked')

https://www.pygame.org/docs/

138 Chapter 6

This approach to handling events works well with the SimpleButton class.
However, some other Python packages and many other programming lan-
guages handle events in a different way: with a callback.

	 callback	 A function or method of an object that is called when a particular action, event, or
condition happens.

An easy way to understand this is to think about the 1984 hit movie
Ghostbusters. The tagline for the movie is “Who you gonna call?” In the
movie, the Ghostbusters ran an ad on TV that told people that if they saw
a ghost (that’s the event to look for), they should call the Ghostbusters (the
callback) to get rid of it. Upon receiving the call, the Ghostbusters take the
appropriate actions to eliminate the ghost.

As an example, consider a button object that is initialized to have a
callback. When the user clicks the button, the button will call the callback
function or method. That function or method executes whatever code is
needed to react to the button click.

Creating a Callback
To set up a callback, when you create an object or call one of an object’s
methods, you pass the name of a function or a method of an object to be
called. As an example, there is a standard GUI package for Python called
tkinter. The code needed to create a button with this package is very differ-
ent from what I have shown—here’s an example:

 import tkinter

 def myFunction():
 print('myCallBackFunction was called')

 oButton = tkinter.Button(text='Click me', command=myFunction)

When you create a button with tkinter, you must pass in a function (or
a method of an object), which will be called back when the user clicks the
button. Here, we are passing myFunction as the function to be called back.
(This call is using keyword parameters, which will be discussed at length
in Chapter 7.) The tkinter button remembers that function as the call-
back, and when the user clicks the resulting button, it calls the function
myFunction().

You can also use a callback when you initiate some action that may
take some time. Instead of waiting for the action to finish and causing the
program appear to freeze for a period of time, you provide a callback to be
called when the action is completed. For example, imagine that you want to
make a request across the internet. Rather than making a call and waiting
for that call to return data, which may take a long time, there are packages
that allow you to use the approach of making the call and setting a callback.
That way, the program can continue running, and the user is not locked

Object-Oriented Pygame 139

out of it. This often involves multiple Python threads and is beyond the
scope of this book, but the technique of using a callback is the general way
that it is done.

Using a Callback with SimpleButton
To demonstrate this concept, we’ll make a minor modification to the
SimpleButton class to allow it to accept a callback. As an additional optional
parameter, the caller can provide a function or method of an object to be
called back when a click on a SimpleButton object happens. Each instance of
SimpleButton remembers the callback in an instance variable. When the user
completes a click, the instance of SimpleButton calls the callback.

The main program in Listing 6-8 creates three instances of the
SimpleButton class, each of which handles the button click in a different way.
The first button, oButtonA, provides no callback; oButtonB provides a callback
to a function; and oButtonC specifies a callback to a method of an object.

File: PygameDemo9_SimpleButtonWithCallback/Main_SimpleButtonCallback.py

pygame demo 9 - 3-button test with callbacks

1 - Import packages
import pygame
from pygame.locals import *
from SimpleButton import *
import sys

#2 - Define constants
GRAY = (200, 200, 200)
WINDOW_WIDTH = 400
WINDOW_HEIGHT = 100
FRAMES_PER_SECOND = 30

Define a function to be used as a "callback"
def myCallBackFunction(): 1
 print('User pressed Button B, called myCallBackFunction')

Define a class with a method to be used as a "callback"
class CallBackTest(): 2
--- snipped any other methods in this class ---

 def myMethod(self):
 print('User pressed ButtonC, called myMethod of the CallBackTest object')

3 - Initialize the world
pygame.init()
window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))
clock = pygame.time.Clock()

4 - Load assets: image(s), sound(s), etc.

5 - Initialize variables

140 Chapter 6

oCallBackTest = CallBackTest() 3
Create instances of SimpleButton
No call back
oButtonA = SimpleButton(window, (25, 30), 4
 'images/buttonAUp.png',
 'images/buttonADown.png')
Specifying a function to call back
oButtonB = SimpleButton(window, (150, 30),
 'images/buttonBUp.png',
 'images/buttonBDown.png',
 callBack=myCallBackFunction)
Specifying a method of an object to call back
oButtonC = SimpleButton(window, (275, 30),
 'images/buttonCUp.png',
 'images/buttonCDown.png',
 callBack=oCallBackTest.myMethod)
counter = 0

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 # Pass the event to the button, see if it has been clicked on
 if oButtonA.handleEvent(event): 5
 print('User pressed button A, handled in the main loop')

 # oButtonB and oButtonC have callbacks,
 # no need to check result of these calls
 oButtonB.handleEvent(event) 6

 oButtonC.handleEvent(event) 7

 # 8 - Do any "per frame" actions
 counter = counter + 1

 # 9 - Clear the window
 window.fill(GRAY)

 # 10 - Draw all window elements
 oButtonA.draw()
 oButtonB.draw()
 oButtonC.draw()

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND) # make pygame wait

Listing 6-8: A version of the main program that handles button clicks three different ways

Object-Oriented Pygame 141

We start with a simple function, myCallBackFunction() 1, that just prints
a message to announce that it has been called. Next, we have a CallBackTest
class that contains the method myMethod() 2, which prints its own message
to announce that it’s been called. We create an oCallBackTest object from
the CallBackTest class 3. We need this object so we can set up a callback to
oCallBack.myMethod().

Then we create three SimpleButton objects, each using a different
approach 4. The first, oButtonA, has no callback. The second, oButtonB, sets
its callback to the function myCallBackFunction(). The third, oButtonC, sets its
callback to oCallBack.myMethod().

In the main loop, we check for the user clicking on any of the three
buttons by calling the handleEvent() method of each button. Since oButtonA
has no callback, we must check if the value returned is True 5 and, if so,
perform an action. When oButtonB is clicked 6, the myCallBackFunction()
function will be called and will print its message. When oButtonC is clicked 7,
the myMethod() method of the oCallBackTest object will be called and will
print its message.

Some programmers prefer using a callback approach, because the tar-
get to be called is set up when you create the object. It’s important to under-
stand this technique, especially if you are using a package that requires
it. However, I will use the original approach of checking for the value
returned by a call to handleEvent() in all my demonstration code.

Summary
In this chapter, I showed how you can start with a procedural program and
extract related code to build a class. We created a Ball class to demonstrate
this, then modified the main code of our demo program from the previous
chapter to call methods of the class to tell the Ball object what to do, with-
out worrying about how it achieves the outcome. With all the related code in
a separate class, it’s easy to create a list of objects and instantiate and man-
age as many objects as we want to.

We then built a SimpleButton class and a SimpleText class that hide com-
plexity inside their implementation and create highly reusable code. In the
next chapter, I’ll build on these classes to develop “professional-strength”
button and text display classes.

Finally, I introduced the concept of a callback, where you pass in a func-
tion or method in a call to an object. The callback is later called back when
an event happens or an action completes.

7
P Y G A M E G U I W I D G E T S

Pygame allows programmers to take the
text-based language of Python and use it

to build GUI-based programs. Windows,
pointing devices, clicking, dragging, and

sounds have all become standard parts of our expe-
rience using computers. Unfortunately, the pygame
package doesn’t come with built-in basic user inter-
face elements, so we need to build them ourselves.
We’ll do so with pygwidgets, a library of GUI widgets.

This chapter explains how standard widgets such as images, buttons,
and input or output fields can be built as classes and how client code uses
them. Building each element as a class allows programmers to incorporate
multiple instances of each element when creating a GUI. Before we get
started building these GUI widgets, however, I first need to discuss one
more Python feature: passing data in a call to a function or method.

144 Chapter 7

Passing Arguments into a Function or Method
The arguments in a call to a function and the parameters defined in the
function have a one-to-one relationship, so that the value of the first argu-
ment is given to the first parameter, the value of the second argument is
given to the second parameter, and so on.

Figure 7-1, duplicated from Chapter 3, shows that the same is true when
you make a call to a method of an object. We can see that the first param-
eter, which is always self, is set to the object in the call.

def someMethod(self, <any other parameters>):

oSomeObject.someMethod(<any other arguments>)

Figure 7-1: How arguments passed into a method match up with its parameters

However, Python (and some other languages) allows you to make some
of the arguments optional. If an optional argument isn’t provided in a call,
we can provide a default value to use in the function or method instead. I’ll
explain by means of a real-world analogy.

If you order a hamburger at a Burger King restaurant, your burger will
come with ketchup, mustard, and pickles. But Burger King is famous for
saying, “You can have it your way.” If you want some other combination of
condiments, you must say what you want (or don’t want) when you make
your order.

We’ll start by writing an orderBurgers() function that simulates making
a burger order in the regular way we’ve been defining functions, without
implementing default values:

def orderBurgers(nBurgers, ketchup, mustard, pickles):

You must specify the number of hamburgers you want to order, but
ideally, if you want the defaults of True for adding ketchup, mustard, and
pickles, you shouldn’t need to pass in any more arguments. So, to order two
hamburgers with the standard defaults, you might think your call should
look like this:

orderBurgers(2) # with ketchup, mustard, and pickles

However, in Python, this will trigger an error because there is a mis-
match between the number of arguments in the call and the number of
parameters specified in the function:

TypeError: orderBurgers() missing 3 required positional arguments: 'ketchup',
'mustard', and 'pickles'

Let’s see how Python allows us to set up optional parameters that can
be given default values if nothing is specified.

Pygame GUI Widgets 145

Positional and Keyword Parameters
Python has two different types of parameters: positional parameters and
keyword parameters. Positional parameters are the type that we’re already
familiar with, where each argument in a call has a matching parameter in
the function or method definition.

A keyword parameter allows you to specify a default value. You write a key-
word parameter as a variable name, an equal sign, and a default value, like this:

def someFunction(<keywordParameter>=<default value>):

You can have multiple keyword parameters, each with a name and a
default value.

A function or method can have both positional parameters and key-
word parameters, in which case you must specify all positional parameters
before any keyword parameters:

def someOtherFunction(positionalParam1, positionalParam2, ...
 <keywordParameter1>=<default value 1>,
 <keywordParameter2>=<default value 2>, ...):

Let’s rewrite orderBurgers() to use one positional parameter and three
keyword parameters with default values, like this:

def orderBurgers(nBurgers, ketchup=True, mustard=True, pickles=True):

When we make a call to this function, nBurgers is a positional parameter
and therefore must be specified as an argument in every call. The other three
are keyword parameters. If no values are passed for ketchup, mustard, and pick-
les, the function will use the default value of True for each of those parameter
variables. Now we can order two burgers with all the condiments like this:

orderBurgers(2)

If we want something other than a default value, we can specify the name
of the keyword parameter and a different value in our call. For example, if we
only want ketchup on our two burgers, we can make the call this way:

orderBurgers(2, mustard=False, pickles=False)

When the function runs, the values of the mustard and pickles variables
are set to False. Since we did not specify a value for ketchup, it is given the
default of True.

You can also make the call specifying all arguments positionally, includ-
ing those written as keyword parameters. Python will use the ordering of
your arguments to assign each parameter the correct value:

orderBurgers(2, True, False, False)

In this call, we are again specifying two burgers with ketchup, no mus-
tard, and no pickles.

146 Chapter 7

Additional Notes on Keyword Parameters
Let’s quickly go over a few conventions and tips for using keyword param-
eters. As a Python convention, when you use keyword parameters and key-
words with arguments, the equal sign between the keyword and the value
should not have spaces around it, to show that these are not typical assign-
ment statements. These lines are properly formatted:

def orderBurgers(nBurgers, ketchup=True, mustard=True, pickles=True):

orderBurgers(2, mustard=False)

These lines will also work fine, but they don’t follow the formatting con-
vention and are less readable:

def orderBurgers(nBurgers, ketchup = True, mustard = True, pickles = True):

orderBurgers(2, mustard = False)

When calling a function that has both positional parameters and key-
word parameters, you must provide values for all the positional parameters
first, before any optional keyword parameters.

Keyword arguments in calls can be specified in any order. Calls to our
orderBurgers() function could be made in various ways, such as:

orderBurgers(2, mustard=False, pickles=False) # only ketchup

or:

orderBurgers(2, pickles=False, mustard=False, ketchup=False) # plain

All keyword parameters will be given the appropriate values, indepen-
dent of the order of the arguments.

While all the default values in the orderBurgers() example were Boolean
values, a keyword parameter can have a default value of any data type. For
example, we could write a function to allow a customer to make an ice
cream order like this:

def orderIceCream(flavor, nScoops=1, coneOrCup='cone', sprinkles=False):

The caller must specify a flavor, but by default will get one scoop in a
cone with no sprinkles. The caller could override these defaults with differ-
ent keyword values.

Using None as a Default Value
It’s sometimes helpful to know whether the caller passed in a value for a
keyword parameter or not. For this example, the caller orders a pizza. At
a minimum, the caller must specify a size. The second parameter will be a
style that defaults to 'regular' but could be 'deepdish'. As a third parameter,

Pygame GUI Widgets 147

the caller can optionally pass in a single desired topping. If the caller wants
a topping, we must charge them extra.

In Listing 7-1, we’ll use a positional parameter for the size and key-
word parameters for the style and topping. The default for style is the string
'regular'. Since the topping choice is optional, we’ll use the special Python
value of None as the default, but the caller may pass in the topping of their
choice.

File: OrderPizzaWithNone.py

def orderPizza(size, style='regular', topping=None):
 # Do some calculations based on the size and style
 # Check if a topping was specified
 PRICE_OF_TOPPING = 1.50 # price for any topping

 if size == 'small':
 price = 10.00
 elif size == 'medium':
 price = 14.00
 else: # large
 price = 18.00

 if style == 'deepdish':
 price = price + 2.00 # charge extra for deepdish

 line = 'You have ordered a ' + size + ' ' + style + ' pizza with '
 1 if topping is None: # check if no topping was passed in
 print(line + 'no topping')
 else:
 print(line + topping)
 price = price + PRICE_OF_TOPPING
	
 print('The price is $', price)
 print()

You could order a pizza in the following ways:
2 orderPizza('large') # large, defaults to regular, no topping

orderPizza('large', style='regular') # same as above

3 orderPizza('medium', style='deepdish', topping='mushrooms')

orderPizza('small', topping='mushrooms') # style defaults to regular

Listing 7-1: A function with a keyword parameter defaulting to None

The first and second calls would be seen as the same, with the value of
the variable topping set to None 2. In the third and fourth calls, the value of
topping is set to 'mushrooms' 3. Because 'mushrooms' is not None, in these calls
the code would add in an extra charge for a topping on the pizzas 1.

Using None as a default value for a keyword parameter gives you a way to
see if the caller provided a value in the call. This may be a very subtle use of
keyword parameters, but it will be very useful in our upcoming discussion.

148 Chapter 7

Choosing Keywords and Default Values
Using default values makes calling functions and methods simpler, but
there is a downside. Your choice of each keyword for keyword parameters
is very important. Once programmers start making calls that override
default values, it’s very difficult to change the name of a keyword parameter
because that name must be changed in all calls to the function or method
in lockstep. Otherwise, code that was working will break. For more widely
distributed code, this can potentially cause a great deal of pain to program-
mers using your code. Bottom line, don’t change the name of a keyword
parameter unless it is absolutely necessary. So, choose wisely!

It’s also very important to use default values that should suit the widest
possible range of users. (On a personal note, I hate mustard! Whenever I go to
Burger King, I have to remember to specify no mustard or I’ll get what I con-
sider to be an inedible hamburger. I think they made a bad default choice.)

Default Values in GUI Widgets
In the next section, I’ll present a collection of classes that you can use to
easily create GUI elements such as buttons and text fields within pygame.
These classes will each be initialized using a few positional parameters but
will also have assorted optional keyword parameters, all with reasonable
defaults to allow programmers to create GUI widgets by specifying only a
few positional arguments. More precise control can be obtained by specify-
ing values to overwrite the default values of keyword parameters.

For an in-depth example, we’ll look at a widget to display text in the
application’s window. Text can be shown in a variety of fonts, font sizes, col-
ors, background colors, and so on. We’ll build a DisplayText class that will
have default values for all of these attributes but will give client code the
option of specifying different values.

The pygwidgets Package
The rest of this chapter will focus on the pygwidgets (pronounced “pig
wijits”) package, which was written with two goals in mind:

1.	 To demonstrate many different object-oriented programming techniques

2.	 To allow programmers to easily create and use GUI widgets in pygame
programs

The pygwidgets package contains the following classes:

TextButton

Button built with standard art, using a text string

CustomButton

Button with custom artwork

Pygame GUI Widgets 149

TextCheckBox

Checkbox with standard art, built from a text string

CustomCheckBox

Checkbox with custom artwork

TextRadioButton

Radio buttons with standard art, built from a text string

CustomRadioButton

Radio buttons with custom artwork

DisplayText

Field used to display output text

InputText

Field where the user can type text

Dragger

Allows the user to drag an image

Image

Displays an image at a location

ImageCollection

Displays one of a collection of images at a location

Animation

Displays a sequence of images

SpriteSheetAnimation

Displays a sequence of images from a single larger image

Setting Up
To install pygwidgets, open the command line and enter the following:

python3 -m pip install -U pip --user
python3 -m pip install -U pygwidgets --user

These commands download and install the latest version of pygwidgets
from the Python Package Index (PyPI). It is placed into a folder (named
site-packages) that is available to all your Python programs. Once installed,
you can use pygwidgets by including the following statement at the begin-
ning of your programs:

import pygwidgets

This imports the entire package. After importing, you can instantiate
objects from its classes and call the methods of those objects.

150 Chapter 7

The most current documentation of pygwidgets is at https://pygwidgets
.readthedocs.io/en/latest/. If you’d like to view the source code for the package,
it’s available via my GitHub repository at https://github.com/IrvKalb/pygwidgets/.

Overall Design Approach
As shown in Chapter 5, one of the first things you do in every pygame pro-
gram is to define the window of the application. The following line creates
an application window and saves a reference to it in a variable named window:

window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))

As we will soon see, whenever we instantiate any widget, we will need to
pass in the window variable so the widget can draw itself in the application’s
window.

Most widgets in pygwidgets work in a similar way, typically involving
these three steps:

1.	 Before the main while loop starts, create an instance of the widget, pass-
ing in any initialization arguments.

2.	 In the main loop, whenever any event happens, call the handleEvent()
method of the widget (passing in the event object).

3.	 At the bottom of the main loop, call the draw() method of the widget.

Step 1 in using any widget is to instantiate one with a line like this:

oWidget = pygwidgets.<SomeWidgetClass>(window, loc, <other arguments as needed>)

The first argument is always the window of the application. The second
argument is always the location in the window at which to display the wid-
get, given as a tuple: (x, y).

Step 2 is to handle any event that could affect the widget by calling the
object’s handleEvent() method inside the event loop. If any event (like a mouse
click or button press) happens and the widget handles the event, this call will
return True. The code at the top of the main while loop generally looks like this:

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 if oWidget.handleEvent(event):
 # The user has done something to oWidget that we should respond to
 # Add code here

Step 3 is to add a line near the bottom of the while loop to call the
draw() method of the widget, to make it appear it in the window:

oWidget.draw()

https://pygwidgets.readthedocs.io/en/latest/
https://pygwidgets.readthedocs.io/en/latest/
https://github.com/IrvKalb/pygwidgets/

Pygame GUI Widgets 151

Since we specified the window to draw into, the location, and any
details that affect the appearance of the widget in step 1, we don’t pass any-
thing in the call to draw().

Adding an Image
Our first example will be the simplest widget: we’ll use the Image class to dis-
play an image in a window. When you instantiate an Image object, the only
required arguments are the window, the location in the window to draw
the image, and the path to the image file. Create the Image object before the
main loop starts, like so:

oImage = pygwidgets.Image(window, (100, 200), 'images/SomeImage.png')

The path used here assumes that the project folder containing the
main program also contains a folder named images, inside which is the
SomeImage.png file. Then, in the main loop you just need to call the object’s
draw() method:

oImage.draw()

The draw() method of the Image class contains a call to blit() to actu-
ally draw the image, so you never need to call blit() directly. To move the
image, you can call its setLoc() method (short for set location), specifying
the new x- and y-coordinates as a tuple:

oImage.setLoc((newX, newY))

The next time the image is drawn, it will show up at the new coordi-
nates. The documentation lists many additional methods that you can call
to flip, rotate, scale, get the image’s location and rectangle, and so on.

T HE SPR IT E MODUL E

Pygame has a built-in module to show images in a window, called the sprite
module. Such images are called sprites. The sprite module provides a Sprite
class for handling individual sprites and a Group class for handling multiple
Sprite objects. Together, these classes provide excellent functionality, and if
you intend to do heavy-duty pygame programming, it is probably worth your
time to look into them. However, in order to explain the underlying OOP con-
cepts, I have chosen not to use those classes. Instead, I will proceed with gen-
eral GUI elements so that they can be used in any environment and language.
If you want to learn more about the sprite module, see the tutorial at https://
www.pygame.org/docs/tut/SpriteIntro.html.

https://www.pygame.org/docs/tut/SpriteIntro.html
https://www.pygame.org/docs/tut/SpriteIntro.html

152 Chapter 7

Adding Buttons, Checkboxes, and Radio Buttons
When you instantiate a button, checkbox, or radio button widget in pygwidgets,
you have two options: instantiate a text version that draws its own art and
adds a text label based on a string you pass in, or instantiate a custom ver-
sion where you supply the art. Table 7-1 shows the different button classes
that are available.

Table 7-1: Text and Custom Button Classes in pygwidgets

Text version (builds art on
the fly)

Custom version (uses
your artwork)

Button TextButton CustomButton

Checkbox TextCheckBox CustomCheckBox

Radio button TextRadioButton CustomRadioButton

The differences between the text and custom versions of these classes
are only relevant during instantiation. Once you create an object from
a text or custom button class, all the remaining methods of the pair of
classes are identical. To make this clear, let’s take a look at the TextButton
and CustomButton classes.

TextButtons

Here is the actual definition of the __init__() method of the TextButton class
in pygwidgets:

def __init__(self, window, loc, text,
 width=None,
 height=40,
 textColor=PYGWIDGETS_BLACK,
 upColor=PYGWIDGETS_NORMAL_GRAY,
 overColor=PYGWIDGETS_OVER_GRAY,
 downColor=PYGWIDGETS_DOWN_GRAY,
 fontName=DEFAULT_FONT_NAME,
 fontSize=DEFAULT_FONT_SIZE,
 soundOnClick=None,
 enterToActivate=False,
 callback=None
 nickname=None):

However, rather than reading through the code of a class, a programmer
will typically refer to its documentation. As mentioned earlier, you can find
the complete documentation for pygwidgets at https://pygwidgets.readthedocs.io/
en/latest/.

You can also view documentation of a class by calling the built-in help()
function in the Python shell like so:

>>> help(pygwidgets.TextButton)

https://pygwidgets.readthedocs.io/en/latest/
https://pygwidgets.readthedocs.io/en/latest/

Pygame GUI Widgets 153

When you create an instance of a TextButton, you are only required to pass
in the window, the location in the window, and the text to be shown on the
button. If you only specify these positional parameters, your button will use
reasonable defaults for the width and height, the background colors for the
four states of the button (different shades of gray), the font, and the font size.
By default, no sound effect will be played when the user clicks on the button.

The code to create a TextButton using all the defaults looks like this:

oButton = pygwidgets.TextButton(window, (50, 50), 'Text Button')

The code in the __init__() method of the TextButton class uses the
pygame drawing methods to construct its own art for all four states (up,
down, over, and disabled). The preceding line creates an “up” version of a
button that looks like Figure 7-2.

Figure 7-2: A TextButton
using defaults

You can override any or all of the default parameters with keyword val-
ues like so:

oButton = pygwidgets.TextButton(window, (50, 50), 'Text Button',
 width=200,
 height=30,
 textColor=(255, 255, 128),
 upColor=(128, 0, 0),
 fontName='Courier',
 fontSize=14,
 soundOnClick='sounds/blip.wav',
 enterToActivate=True)

This instantiation will create a button that looks like Figure 7-3.

Figure 7-3: A TextButton using keyword
arguments for font, size, colors, and so on

The image-switching behavior of these two buttons would work exactly
the same way; the only differences would be in the appearance of the images.

CustomButtons

The CustomButton class allows you to use your own art for a button. To instan-
tiate a CustomButton, you need only pass in a window, a location, and a path
to the image of the up state of the button. Here is an example:

restartButton = pygwidgets.CustomButton(window, (100, 430),
 'images/RestartButtonUp.png')

154 Chapter 7

The down, over, and disabled states are optional keyword arguments, and
for any of these where no value is passed in, CustomButton will use a copy of
the up image. It’s more typical (and strongly suggested) to pass in paths for
the optional images, like so:

restartButton = pygwidgets.CustomButton(window, (100, 430),
 'images/RestartButtonUp.png',
 down='images/RestartButtonDown.png',
 over='images/RestartButtonOver.png',
 disabled='images/RestartButtonDisabled.png',
 soundOnClick='sounds/blip.wav',
 nickname='restart')

Here we also specified a sound effect that should be played when
the user clicks the button, and we provided an internal nickname we can
use later.

Using Buttons

After instantiation, here’s some typical code to use a button object, oButton,
independent of it being a TextButton or a CustomButton:

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 if oButton.handleEvent(event):
 # User has clicked this button
 <Any code you want to run here when the button is clicked>
--- snip ---
 oButton.draw() # at the bottom of the while loop, tell it to draw

Every time we detect an event, we need to call the handleEvent() method
of the button to allow it to react to the user’s actions. This call normally
returns False but will return True when the user completes a click on the
button. At the bottom of the main while loop, we need to call the draw()
method of the button to allow it to draw itself.

Text Output and Input
As we saw in Chapter 6, handling text input and output in pygame is tricky,
but here I’ll introduce new classes for a text display field and an input text
field. Both of these classes have minimal required (positional) parameters,
and they have reasonable defaults for other attributes (font, font size,
color, and so on) that are easily overridden.

Text Output

The pygwidgets package contains a DisplayText class for showing text that is a
more full-featured version of the SimpleText class from Chapter 6. When you

Pygame GUI Widgets 155

instantiate a DisplayText field, the only required arguments are the window
and the location. The first keyword parameter is value, which may be speci-
fied with a string as starting text to be shown in the field. This is typically
used for a default end user value or for text that never changes, like a label
or instructions. Since value is the first keyword parameter, it can be given as
either a positional or a keyword argument. For example, this:

oTextField = pygwidgets.DisplayText(window, (10, 400), 'Hello World')

will work the same way as this:

oTextField = pygwidgets.DisplayText(window, (10, 400), value='Hello World')

You can also customize the look of the output text by specifying any or
all of the optional keyword parameters. For example:

oTextField = pygwidgets.DisplayText(window, (10, 400),
 value='Some title text',
 fontName='Courier',
 fontSize=40,
 width=150,
 justified='center',
 textColor=(255, 255, 0))

The DisplayText class has a number of additional methods, the most
important of which is setValue(), which you call to change the text drawn
in the field:

oTextField.setValue('Any new text you want to see')

At the bottom of the main while loop, you need to call the object’s
draw() method:

oTextField.draw()

And of course, you can create as many DisplayText objects as you wish,
each displaying different text and each with its own font, size, color, and so on.

Text Input

In a typical text-based Python program, to get input from the user you
would make a call to the input() function, which stops the program until
the user enters text in the shell window. But in the world of event-driven
GUI programs, the main loop never stops. Therefore, we must use a differ-
ent approach.

For text input from the user, a GUI program typically presents a field
that the user can type in. An input field must deal with all keyboard keys,
some of which show while others are used for editing or cursor movement
within the field. It must also allow for the user holding down a key to repeat
it. The pygwidgets InputText class provides all this functionality.

156 Chapter 7

The only required arguments to instantiate an InputText object are the
window and a location:

oInputField = pygwidgets.InputText(window, (10, 100))

However, you can customize the text attributes of an InputText object by
specifying optional keyword arguments:

oInputField = pygwidgets.InputText(window, (10, 400),
 value='Starting Text',
 fontName='Helvetica',
 fontSize=40,
 width=150,
 textColor=(255, 255, 0))

After instantiating an InputText field, the typical code in the main loop
would look like this:

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 if oInputField.handleEvent(event):
 # User has pressed Enter or Return
 userText = oInputField.getValue() # get the text the user entered
 <Any code you want to run using the user's input>
--- snip ---
 oInputField.draw() # at the bottom of the main while loop

For every event, we need to call the handleEvent() method of the InputText
field to allow it to react to keystrokes and mouse clicks. This call normally
returns False, but when the user presses ENTER or RETURN, it returns True.
We can then retrieve the text that the user entered by calling the getValue()
method of the object.

At the bottom of the main while loop, we need to call the draw() method
to allow the field to draw itself.

If a window contains multiple input fields, key presses are handled by
the field with current keyboard focus, which is changed when a user clicks
in a different field. If you want to allow a field to have initial keyboard focus,
then you can set the initialFocus keyword parameter to True in the InputText
object of your choice when you create that object. Further, if you have mul-
tiple InputText fields in a window, a typical user interface design approach is
to include an OK or Submit button. When this button is clicked, you could
then call the getValue() method of each field.

Pygame GUI Widgets 157

N O T E 	 At the time of writing, the InputText class does not handle highlighting multiple
characters by dragging the mouse. If this functionality is added in a later version,
no change will be required to programs that use InputText because the code will be
entirely within that class. Any new behavior will be supported automatically in all
InputText objects.

Other pygwidgets Classes
As you saw at the beginning of this section, pygwidgets contains a number of
other classes.

The ImageCollection class allows you to show any single image from a
collection of images. For example, suppose you have images of a character
facing front, left, back, and right. To represent all the potential images, you
can build a dictionary like this:

imageDict = {'front':'images/front.png', 'left':'images/left.png',
 'back':'images/back.png', 'right':'images/right.png'}

You can then create an ImageCollection object, specifying this dictionary
and the key of the image you want to start with. To change to a different
image, you call the replace() method and pass in a different key. Calling the
draw() method at the bottom of the loop always shows the current image.

The Dragger class displays a single image but allows the user to drag the
image anywhere in the window. You must call its handleEvent() method in
the event loop. When the user finishes dragging, handleEvent() returns True,
and you can call the Dragger object’s getMouseUpLoc() method to get the loca-
tion where the user released the mouse button.

The Animation and SpriteSheetAnimation classes handle building and
showing an animation. Both require a set of images to iterate through.
The Animation class gets the images from individual files, while the
SpriteSheetAnimation class requires a single image with evenly spaced internal
images. We’ll explore these classes more fully in Chapter 14.

pygwidgets Example Program
Figure 7-4 shows a screenshot of a sample program that demonstrates
objects instantiated from many of the classes in pygwidgets, including Image,
DisplayText, InputText, TextButton, CustomButton, TextRadioButton, CustomRadioButton,
TextCheckBox, CustomCheckBox, ImageCollection, and Dragger.

The source of this example program can be found in the pygwidgets_test
folder in my GitHub repository, https://github.com/IrvKalb/pygwidgets/.

https://github.com/IrvKalb/pygwidgets/

158 Chapter 7

Figure 7-4: The window of a program that demonstrates objects instantiated
from a variety of pygwidgets classes

The Importance of a Consistent API
One final note about building an API for a set of classes: whenever possible,
it’s a very good idea to build consistency into the parameters of methods in
different, but similar, classes. As a good example, the first two parameters
to the __init__() method of every class in pygwidgets are window and loc, in
that order. If these had been in a different order in some calls, using the
package as a whole would be much more difficult.

Additionally, if different classes implement the same functionality, it’s a
good idea to use the same method names. For example, many of the classes
in pygwidgets have a method named setValue() and another named getValue().
I’ll talk more about why this type of consistency is so important in the next
two chapters.

Summary
This chapter provided an introduction to the object-oriented pygwidgets
package of graphical user interface widgets. We began by discussing default
values for parameters in methods, and I explained that a keyword param-
eter allows for a default value to be used if no matching argument value is
specified in a call.

Pygame GUI Widgets 159

I then introduced you to the pygwidgets module, which contains a num-
ber of prebuilt GUI widget classes, and showed you how to use several of
these. Finally, I showed a sample program that provides examples of most of
these widgets.

There are two key advantages to writing classes like those in pygwidgets.
First, classes can hide complexity in methods. Once you have your class
working correctly, you never have to worry about the internal details again.
Second, you can reuse the code by creating as many instances of a class as
you need. Your classes can provide basic functionality by including keyword
parameters with well-chosen default values. However, the default values can
easily be overwritten to allow for customization.

You can publish the interfaces of your classes for other programmers
(and yourself) to take advantage of in different projects. Good documen-
tation and consistency go a long way toward making these types of classes
highly usable.

PART III
E N C A P S U L A T I O N ,

P O LY M O R P H I S M , A N D
I N H E R I T A N C E

The three main tenets of object-oriented program-
ming are encapsulation, polymorphism, and inheri-
tance. The next three chapters will explain each of
these in turn, describing the underlying concepts and
showing examples of how they are implemented in
Python. In order for a programming language to call
itself an OOP language, it must support all three of
these central requirements. (If you’re ever asked in an
interview about the requirements for a language to be
object-oriented, here’s an easy way to remember them:
it’s as easy as PIE!)

Chapter 8 explains encapsulation: hiding the details and keeping every-
thing in one place.

Chapter 9 discusses polymorphism: how multiple classes can have meth-
ods with the same names.

Chapter 10 covers inheritance: building on code that already exists.
Finally, Chapter 11 goes into detail on a number of topics (mostly deal-

ing with memory management) that do not logically fit into the previous
three chapters but are useful and important to OOP.

8
E N C A P S U L A T I O N

The first of the three main tenets of object-
oriented programming is encapsulation. This

word might conjure up an image of a space
capsule, a cell wall, or a medicine gelcap, where

the precious cargo inside is protected from the outside
environment. In programming, encapsulation has a
similar but even more detailed meaning: hiding inter-
nal details of state and behavior from any external
code and having all code in one place.

In this chapter, we’ll see how encapsulation works with functions, then
with methods of objects. I’ll discuss different interpretations of encapsu-
lation: using direct access versus using getters and setters. I’ll show how
Python allows you to mark an instance variable as private, indicating that
it should not be accessed by code external to a class, and I’ll touch on the
Python property decorator. Finally, I’ll discuss the concept of abstraction in
the design of classes.

164 Chapter 8

Encapsulation with Functions
Functions are a prime example of encapsulation because when you call a
function, you generally don’t care how the function works internally. A well-
written function contains a series of steps that make up a larger single task,
which you do care about. The name of the function should describe the
action that its code embodies. Consider the built-in len() function from the
Python Standard Library, used to find the number of characters in a string
or elements in a list. You pass in a string or list, and it returns the count.
When you write code that calls this function, you don’t care how len() does
what it does. You don’t stop to think about whether the code of the function
contains two lines or two thousand lines, whether it uses one local variable
or a hundred. You just need to know what argument to pass in and how to
use the result that’s returned.

The same is true of functions that you write, like this function that cal-
culates and returns the average of a list of numbers:

def calculateAverage(numbersList):
 total = 0.0
 for number in numbersList:
 total = total + number
 nElements = len(numbersList)
 average = total / nElements
 return average

Once you’ve tested a function like this and found that it works, you
no longer have to worry about the details of the implementation. You
only need to know what argument(s) to send into the function and what it
returns.

However, if one day you find that there is a much simpler or faster algo-
rithm to calculate an average, you could rewrite the function in a new way.
As long as the interface (the inputs and outputs) does not change, there is
no need to change any calls to the function. This type of modularization
makes the code more maintainable.

Encapsulation with Objects
Unlike variables used in regular functions, instance variables in objects per-
sist across different method calls. To keep the remaining discussion clear,
I’ll introduce a new term: client. (I don’t want to use the term user here since
that typically refers to the human user of the final program.)

	 client	 Any software that creates an object from a class and makes calls to the methods of
that object.

We must also consider the duality of inside versus outside an object or
class. When you’re working inside a class (writing the code of the methods
in a class), you need to concern yourself with how the different methods of

Encapsulation 165

the class share the instance variables. You consider the efficiency of your
algorithms. You think about what the interface should look like: what meth-
ods you should provide, what the parameters for each are, and what should
be used as default values. In short, you are concerned with the design and
implementation of the methods.

From the outside, as a client programmer, you need to know the inter-
face of the class. You’re concerned with what the class methods do, what
arguments should be passed in, and what data is passed back from each
method.

A class therefore provides encapsulation by:

•	 Hiding all details of implementation in its methods and instance
variables

•	 Providing all the functionality a client needs from an object through its
interface (the methods defined in the class)

Objects Own Their Data
In object-oriented programming, we say that the data inside an object is
owned by the object. OOP programmers generally agree that, as a good
design principle, client code should only be concerned with the interface
of a class and should not care about the implementation of the methods.
Consider the example of a simple Person class in Listing 8-1.

class Person():

 def __init__(self, name, salary):
 self.name = name
 self.salary = salary

Listing 8-1: Data ownership in the Person class

The values of the instance variables self.name and self.salary are set
whenever we instantiate new Person objects, like this:

oPerson1 = Person('Joe Schmoe', 90000)
oPerson2 = Person('Jane Smith', 99000)

Each Person object owns its own set of the two instance variables.

Interpretations of Encapsulation
Here is where things get a little controversial. Different programmers
have different views about the accessibility of an instance variable. Python
provides for a loose interpretation of encapsulation by allowing direct
access to instance variables using simple dot syntax. Client code can
legally access an instance variable of an object by name using the syntax
<object>.<instanceVariableName>.

166 Chapter 8

However, a strict interpretation of encapsulation says that client software
should never be able to retrieve or change the value of an instance variable
directly. Instead, the only way that a client can retrieve or change a value
held in an object is to use a method provided by the class for this purpose.

Let’s look at both approaches.

Direct Access and Why You Should Avoid It
As mentioned, Python does allow direct access to instance variables. Listing 8-2
instantiates the same two objects from the Person class in Listing 8-1 as in the
previous section, but then accesses their self.salary instance variables directly.

File: PersonGettersSettersAndDirectAccess/Main_PersonDirectAccess.py

Person example main program using direct access

from Person import *

oPerson1 = Person('Joe Schmoe', 90000)
oPerson2 = Person('Jane Smith', 99000)

Get the values of the salary variable directly
1 print(oPerson1.salary)
print(oPerson2.salary)

Change the salary variable directly
2 oPerson1.salary = 100000
oPerson2.salary = 111111

Get the updated salaries and print again
print(oPerson1.salary)
print(oPerson2.salary)

Listing 8-2: Example main code using direct access to an instance variable

Python allows you to write code like this that reaches into an object to
directly get 1 and set 2 any instance variable using standard dot syntax.
Most Python programmers feel that this technique is perfectly acceptable.
In fact, Guido van Rossum (the creator of Python) famously said in refer-
ence to this issue, “We are all adults here,” meaning that programmers
should know what they are doing, and the risks involved, when they attempt
to access instance variables directly.

However, I strongly believe that directly accessing an instance variable
of an object is an extremely dangerous practice, as it breaks the core idea
of encapsulation. To illustrate why this is the case, let’s take a look at a few
example scenarios where direct access can be problematic.

Changing the Name of an Instance Variable

The first problem with direct access is that changing the name of an
instance variable will break any client code that uses the original name

Encapsulation 167

directly. This can happen when the developer of a class decides that the ini-
tial choice of the name of the variable was not optimal, for reasons such as
the following:

•	 The name doesn’t describe the data it represents clearly enough.

•	 The variable is a Boolean, and they want to swap what True and False
represent by renaming the variable (for example, closed to open, allowed
to disallowed, active to disabled).

•	 There was a spelling or capitalization mistake in the original name.

•	 The variable was originally a Boolean, but they later realize that they
need to represent more than two values.

In any of these cases, if the developer changes the name of an instance
variable in the class from self.<originalName> to self.<newName>, then any cli-
ent software that uses the original name directly will break.

Changing an Instance Variable into a Calculation

A second situation where direct access is problematic is when the code of
a class needs to change to meet new requirements. Suppose that when
writing a class, you use an instance variable to represent a piece of data,
but the functionality changes so that you need an algorithm to compute a
value instead. Take our Account class from Chapter 4, for example. To make
our bank accounts more realistic, we might want to add an interest rate.
You might think this is a simple matter of adding an instance variable for
the interest rate named self.interestRate. Then, using the direct access
approach, client software could access this value of an Account object using:

oAccount.interestRate

This would work, for a while. But later the bank might decide on a new
policy—say that the interest rate will depend on the amount of money in
the account. The interest rate might be calculated like this:

def calculateInterestRate(self):
 # Assuming self.balance has been set in another method
 if self.balance < 1000:
 self.interestRate = 1.0
 elif self.balance < 5000:
 self.interestRate = 1.5
 else:
 self.interestRate = 2.0

Rather than just relying on a single interest rate value in self.interestRate,
the calculateInterestRate() method determines the current rate based on the
account balance.

Any client software that directly accesses oAccount.interestRate and
uses the value of the instance variable might then get an outdated value,
depending on the last time calculateInterestRate() was called. And any

168 Chapter 8

client software that sets a new interestRate may find that the new value is
mysteriously changed by some other code that calls calculateInterestRate()
or when the bank account owner makes a deposit or withdrawal.

If, however, the interest calculation method was named getInterestRate()
and client software called that instead, the interest rate would always be cal-
culated on the fly and there would be no potential error.

Validating Data

The third reason to avoid direct access when setting a value is that client
code can too easily set an instance variable to an invalid value. A better
approach is to call a method in the class, whose job is to set the value. As
the developer, you can include validation code in that method to ensure
that the value being set is appropriate. Consider the code in Listing 8-3,
whose purpose is to manage the members of a club.

File: ValidatingData_ClubExample/Club.py

Club class

class Club():

 def __init__(self, clubName, maxMembers):
 self.clubName = clubName 1
 self.maxMembers = maxMembers
 self.membersList = []

 def addMember(self, name): 2
 # Make sure that there is enough room left
 if len(self.membersList) < self.maxMembers:
 self.membersList.append(name)
 print('OK.', name, 'has been added to the', self.clubName, 'club')
 else:
 print('Sorry, but we cannot add', name, 'to the', self.clubName, 'club.')
 print('This club already has the maximum of', self.maxMembers, 'members.')

 def report(self): 3
 print()
 print('Here are the', len(self.membersList), 'members of the', self.clubName,
 'club:')
 for name in self.membersList:
 print(' ' + name)
 print()

Listing 8-3: An example of a Club class

The Club code keeps track of the name of the club, the maximum num-
ber of members, and the list of members, all in instance variables 1. Once
instantiated, you can call methods to add a member to the club 2 and to
report the members of the club 3. (We could easily add more methods to

Encapsulation 169

remove members, change names, and so on, but these two are good enough
the make the point.)

Here is some test code that uses the Club class.

File: ValidatingData_ClubExample/Main_Club.py

Club example main program

from Club import *

Create a club with at most 5 members
oProgrammingClub = Club('Programming', 5)

oProgrammingClub.addMember('Joe Schmoe')
oProgrammingClub.addMember('Cindy Lou Hoo')
oProgrammingClub.addMember('Dino Richmond')
oProgrammingClub.addMember('Susie Sweetness')
oProgrammingClub.addMember('Fred Farkle')
oProgrammingClub.report()

We create a Programming club that allows a maximum of five members
and then we add five members. The code runs well and reports the mem-
bers added to the club:

OK. Joe Schmoe has been added to the Programming club
OK. Cindy Lou Hoo has been added to the Programming club
OK. Dino Richmond has been added to the Programming club
OK. Susie Sweetness has been added to the Programming club
OK. Fred Farkle has been added to the Programming club

Now let’s try to add a sixth member:

Attempt to add additional member
oProgrammingClub.addMember('Iwanna Join')

This attempt to add a member is rejected, and we see an appropriate
error message:

Sorry, but we cannot add Iwanna Join to the Programming club.
This club already has the maximum of 5 members.

The code of addMember() does all the validation needed to ensure that
a call to add a new member works correctly or generates an error message.
However, with direct access, a client could change the fundamental nature
of the Club class. For example, a client could maliciously or accidentally
change the maximum number of members:

oProgrammingClub.maxMembers = 300

Further, suppose you know that the Club class represents the members
as a list, and you know the name of the instance variable that represents the

170 Chapter 8

members. In that case you can write client code to add to the list of mem-
bers directly, without making the method call, like so:

oProgrammingClub.memberList.append('Iwanna Join')

This line would push the membership over the intended limit because
it avoids the code that ensures that the request to add the member is valid.

Client code using direct access could even cause an error inside the
Club object. For example, the instance variable self.maxMembers is intended
to be an integer. Using direct access, client code could change its value to a
string. Any subsequent call to addMember() would crash at the first line of that
method, where it attempts to compare the length of the list of members
against the maximum number of members, because Python cannot com-
pare an integer to a string.

Allowing direct access to instance variables from outside an object can
be dangerous, bypassing safeguards that were designed to protect the data
of an object.

Strict Interpretation with Getters and Setters
The strict approach to encapsulation says that client code never accesses an
instance variable directly. If a class wants to allow client software to access
the information held inside an object, the standard approach is to include a
getter and a setter method in the class.

	 getter	 A method that retrieves data from an object instantiated from a class.

	 setter	 A method that assigns data into an object instantiated from a class.

Getter and setter methods are designed to allow writers of client soft-
ware to get data from and set data in an object, without needing explicit
knowledge of the implementation of a class—specifically, without having
to know or use the name of any instance variable. The Person class code
in Listing 8-1 has an instance variable self.salary. In Listing 8-4 we add a
getter and a setter to the Person class to allow the caller to get and set the
salary, without providing direct access to the Person’s self.salary instance
variable.

File: PersonGettersSettersAndDirectAccess/Person.py

class Person():
 def __init__(self, name, salary):
 self.name = name
 self.salary = salary

 # Allow the caller to retrieve the salary
 1 def getSalary(self):

Encapsulation 171

 return self.salary

 # Allow the caller to set a new salary
 2 def setSalary(self, salary):
 self.salary = salary

Listing 8-4: An example of a Person class with a getter and a setter

The get 1 and set 2 portions of these method names are not required
but are used by convention. You generally follow these words with a descrip-
tion of the data being accessed, in this case Salary. While it is typical to
use the name of the instance variable being accessed, this is also not a
requirement.

Listing 8-5 shows some test code that instantiates two Person objects,
then gets and sets their salaries using these getter and setter methods.

File: PersonGettersSettersAndDirectAccess/Main_PersonGetterSetter.py

Person example main program using getters and setters

from Person import *

1 oPerson1 = Person('Joe Schmoe', 90000)
oPerson2 = Person('Jane Smith', 99000)

Get the salaries using getter and print
2 print(oPerson1.getSalary())
print(oPerson2.getSalary())

Change the salaries using setter
3 oPerson1.setSalary(100000)
oPerson2.setSalary(111111)

Get the salaries and print again
print(oPerson1.getSalary())
print(oPerson2.getSalary())

Listing 8-5: Example main code using getter and setter methods

First we create two Person objects from the Person class 1. Then we use
the getter and setter methods to retrieve 2 and change 3 the salaries in
the Person objects.

Getters and setters provide a formal way to get and set values in an
object. They enforce a layer of protection that only allows access to instance
variables if the class writer wants to allow it.

N O T E 	 Some Python literature uses the terms accessor for a getter method and mutator for
the setter method. These are just different names for the same things. I will use the
more generic terms getter and setter.

172 Chapter 8

Safe Direct Access
There are certain circumstances where it seems reasonable to access
instance variables directly: when it is absolutely clear what the instance vari-
able means, little or no validation of the data is needed, and there is no
chance that the name will ever change. A good example of this is the Rect
(rectangle) class in the pygame package. A rectangle in pygame is defined
using four values—x, y, width, and height—like this:

oRectangle = pygame.Rect(10, 20, 300, 300)

After creating that rectangle object, using oRectangle.x, oRectangle.y,
oRectangle.width, and oRectangle.height directly as variables seems acceptable.

Making Instance Variables More Private
In Python, all instance variables are public (that is, can be accessed by code
external to the class). But what if you want to allow access to some of your
class’s instance variables, but not all of them? Some OOP languages allow
you to explicitly mark certain instance variables as public or private, but
Python doesn’t have those keywords. However, there are two ways that pro-
grammers who develop classes in Python can indicate that their instance
variables and methods are intended to be private.

Implicitly Private
To mark an instance variable as one that should never be accessed exter-
nally, by convention you start the name of your instance variable with one
leading underscore:

self._name
self._socialSecurityNumber
self._dontTouchThis

Instance variables with names like these are intended to represent pri-
vate data, and client software should never attempt to access them directly.
The code may still work if the instance variables are accessed, but it is not
guaranteed.

The same convention is used for method names:

def _internalMethod(self):

def _dontCallMeFromClientSoftware(self):

Again, this is only a convention; there is no enforcement. If any client
software makes a call to a method with a name beginning with an under-
score, Python will allow it, but there is a good chance that doing so will
lead to unexpected errors.

Encapsulation 173

More Explicitly Private
Python does allow for a more explicit level of privatization. To disallow client
software from directly accessing your data, you create an instance variable
name that starts with two underscores.

Suppose we create a class named PrivatePerson with an instance variable
self.__privateData that should never be accessed from outside an object:

PrivatePerson class

class PrivatePerson():

 def __init__(self, name, privateData):
 self.name = name
 1 self.__privateData = privateData

 def getName(self):
 return self.name

 def setName(self, name):
 self.name = name

We can then create a PrivatePerson object, passing in some data that we
wish to keep private 1. Attempting to access the __privateData instance vari-
able directly from client software, like this:

usersPrivateData = oPrivatePerson.__privateData

will generate an error:

AttributeError: 'PrivatePerson' object has no attribute '__privateData'

Similarly, if you create a method name that starts with two underscores,
any attempt by client software to call the method will generate an error.

Python provides this ability by performing name mangling. Behind
the scenes, Python changes any name that starts with two underscores by
prepending it with an underscore and the name of the class, so __<name>
becomes _<className>__<name>. For example, in the PrivatePerson class, Python
will change self.__privateData to self._PrivatePerson__privateData. Therefore,
if a client tries to use the name oPrivatePerson.__privateData, that name won’t
be recognized.

This is a subtle change designed as a deterrent to using direct
access, but you should note that it doesn’t absolutely guarantee privacy.
If the client programmer knows how this works, they can still access the
instance variable with <object>._<className>__<name> (or, in our example,
oPrivatePerson._PrivatePerson__privateData).

174 Chapter 8

Decorators and @property
At a high level, a decorator is a method that takes another method as an
argument and extends the way the original method works. (Decorators can
also be functions that decorate functions or methods, but I’ll concentrate
on methods.) Decorators are an advanced topic and are generally beyond
the scope of this book. However, there is a set of built-in decorators that
provide a compromise between direct access and the use of getters and set-
ters in a class.

A decorator is written as a line that starts with the @ symbol followed
by a decorator name and is placed directly before the def statement of a
method. This applies the decorator to a method to add to its behavior:

@<decorator>
def <someMethod>(self, <parameters>)

We’ll use two built-in decorators and apply them to two methods in a
class to implement a property.

	 property	 An attribute of a class that appears to client code to be an instance variable, but
instead causes a method to be called when it is accessed.

A property allows class developers to use indirection, the way that
a magician uses misdirection—the audience thinks they are seeing one
thing, while behind the scenes something very different is happening.
When writing a class to use property decorators, the developer writes a get-
ter and a setter method and adds a distinct built-in decorator to each one.
The first method is a getter and is preceded with the built-in @property deco-
rator. The name of the method defines a name of a property to be used by
client code. The second method is a setter and is preceded with the @<name
of the property>.setter decorator. Here is a minimal sample class:

class Example():
 def __init__(self, startingValue):
 self._x = startingValue

 @property
 def x(self): # this is the decorated getter method
 return self._x

 @x.setter
 def x(self, value): # this is the decorated setter method
 self._x = value

In the Example class, x is the name of the property. After the standard
__init__() method, the unusual thing is that we have two methods that both
have the same name: the name of the property. The first method is a get-
ter, while the second is a setter. The setter method is optional, and if it’s not
present, the property will be read-only.

Encapsulation 175

Given the Example class, here is some sample client code:

oExample = Example(10)
print(oExample.x)
oExample.x = 20

In this code we create an instance of the Example class, make a call to
print(), and execute a simple assignment. From the client’s point of view,
this code is highly readable. When we write oExample.x, it looks like we are
using direct access to an instance variable. However, when client code
accesses the value of an object’s property (on the right side of an assign-
ment statement or as an argument in a call to a function or method),
Python translates it into a call to the getter method of the object. When an
object dot property appears on the left side of an assignment statement,
Python calls the setter method. The getter and setter methods affect the
real instance variable, self._x.

Here is a more realistic example that should help make this clear.
Listing 8-6 shows a Student class that includes a property grade, properly dec-
orated getter and setter methods, and a private instance variable __grade.

File: PropertyDecorator/Student.py

Using a property to (indirectly) access data in an object

class Student():

 def __init__(self, name, startingGrade=0):
 self.__name = name
 self.grade = startingGrade 1

 @property 2
 def grade(self): 3
 return self.__grade

 @grade.setter 4
 def grade(self, newGrade): 5
 try:
 newGrade = int(newGrade)
 except (TypeError, ValueError) as e:
 raise type(e)('New grade: ' + str(newGrade) + ', is an invalid type.')
 if (newGrade < 0) or (newGrade > 100):
 raise ValueError('New grade: ' + str(newGrade) + ', must be between 0 and 100.')
 self.__grade = newGrade

Listing 8-6: The Student class with property decorators

The __init__() method has a little trick to it, so let’s examine the
other methods first. Notice we have two methods with the name grade().
Preceding the definition of the first grade() method, we add an @property
decorator 2. This defines the name grade as a property of any object cre-
ated from this class. The first method 3 is a getter that just returns the

176 Chapter 8

value of the current grade, kept in the private self.__grade instance variable,
but could include any code that might be needed to calculate a value and
return it.

Preceding the second grade() method is an @grade.setter decorator 4.
This second method 5 accepts a new value as a parameter, does a num-
ber of checks to ensure that value is valid, then sets the new value into
self.__grade.

The __init__() method first stores the student’s name in an instance
variable. The next line 1 seems straightforward but is a little unusual. As
we have seen, we typically store the values of parameters into instance vari-
ables. Therefore, we might be tempted to write this line as:

self.__grade = startingGrade

But instead, we are storing the starting grade into the property grade.
Since grade is a property, Python translates this assignment statement into a
call to the setter method 5, which has the advantage of validating the input
before storing the value in the instance variable self.__grade.

Listing 8-7 provides some test code that uses the Student class.

File: PropertyDecorator/Main_Property.py

Main Student property example
1 oStudent1= Student('Joe Schmoe')
oStudent2= Student ('Jane Smith')

Get the students' grades using the 'grade' property and print
2 print(oStudent1.grade)
print(oStudent2.grade)
print()

Set new values using the 'grade' property
3 oStudent1.grade = 85
oStudent2.grade = 92

4 print(oStudent1.grade)
print(oStudent2.grade)

Listing 8-7: The main code that creates Student objects and accesses a property

In the test code, we first create two Student objects 1 and print the
grade of each 2. It looks like we’re reaching into each object directly to get
the grade values, but since grade is a property Python turns these lines into
calls to the getter method and returns the value of the private instance vari-
able self.__grade for each object.

We then set new grade values for each Student object 3. Here it looks
like we’re setting values directly into each object’s data, but again, because
grade is a property, Python turns these lines into calls to the setter method.
That method validates each value before doing the assignment. The test
code ends by printing the new values of the grades 4.

Encapsulation 177

When we run the test code, we get this output, as we expect:

0
0

85
92

Using the @property and @<property_name>.setter decorators gives you the
best of both the direct access and getter-and-setter worlds. Client software
can be written in a way that appears to access instance variables directly, but
as the class programmer, your decorated methods get and set the actual
instance variables owned by the object and even allow for validation of
inputs. This approach supports encapsulation because the client code is not
accessing an instance variable directly.

While this technique is used by many professional Python developers,
I personally find it a little ambiguous, because when I read other develop-
ers’ code that uses this approach, it is not immediately apparent whether it’s
using direct accesses to instance variables or using properties that Python
translates into calls to decorated methods. I prefer to use standard getter
and setter methods and will use them in the rest of this book.

Encapsulation in pygwidgets Classes
The definition of encapsulation at the start of this chapter focused on two
areas: hiding internal details and having all related code in one place. All
the classes in pygwidgets were designed with these considerations in mind.
As examples, consider the TextButton and CustomButton classes.

The methods of these two classes encapsulate all the functionality of
GUI buttons. While the source code of these classes is available, there is no
need for a client programmer to look at it to use them effectively. There’s
also no need for client code to attempt to access any of their instance vari-
ables: all button functionality is available through calling the methods of
these classes. This adheres to the strict interpretation of encapsulation,
meaning that the only way that client software should access an object’s data
is by calling that object’s methods. A client programmer can think of these
classes as black boxes, since there is no reason to look at how they accom-
plish their tasks.

N O T E 	 A whole black box testing industry has developed around the idea of a test pro-
grammer being given a class to test without being allowed to see the code of the class.
The tester is only supplied with documentation of the interfaces, and with that writes
code that tests all the interfaces under many different cases to ensure that all methods
work as described. The set of tests not only ensures that the code and documentation
match, but is used again whenever code is added or modified in the class to ensure
that the changes have not broken anything.

178 Chapter 8

A Story from the Real World
A number of years ago, I was involved in the design and development of
a very large educational project that was built in an environment called
Director from Macromedia (later Adobe), using the object-oriented Lingo
language. Director was designed to be extended through XTRAs that could
add functionality, similar to the way plug-ins are added to browsers. These
XTRAs were developed and sold by a number of third-party vendors. In the
design, we planned on storing navigational and other course-related infor-
mation in a database. I looked at all the different database XTRAs that
were available and purchased a particular XTRA, which I’ll call XTRA1.

Each XTRA came with documentation of its API, which showed how to
make queries to the database using Structured Query Language (SQL). I
decided to create a Database class that incorporated all the functionality of
accessing the database using XTRA1’s API. That way, all code that commu-
nicated with the XTRA directly was in the Database class. Figure 8-1 shows
the overall architecture.

Database

Main
program

Database
object

Database
XTRA

Accesses
database

Returns
resultsReturns

resultsReturns
results

Requests
info Builds

SQL

Figure 8-1: The architecture of accessing a database using an object and an XTRA

When the program started, it created a single instance of the Database
class. The main code was a client of the Database object. Whenever the main
code wanted information from the database, rather than formatting a SQL
query itself, it called a method of the Database object, supplying details about
what information it wanted. The methods in the Database object translated
each request into a SQL query made to XTRA1 to get data from the data-
base. That way, only the code of the Database object knew how to access the
XTRA using its API.

The program worked well, and the customers enjoyed using the prod-
uct. But every once in a while, we would run into errors in the data we got
back from the database. I contacted the XTRA1 developer and gave many
easily reproducible examples of the problems. Unfortunately, the developer
never addressed these issues.

Because of the lack of response, we eventually decided to purchase a
different database XTRA, XTRA2, to serve this purpose. XTRA2 worked in

Encapsulation 179

a similar way but had some subtle differences in how it was initialized and
required some minor changes in the way that SQL queries were built.

Because the Database class encapsulated all the details of communicat-
ing with the XTRA, we were able to make all the necessary changes to work
with XTRA2 only in the Database class. We did not change a single line in
the main program (the client code).

 In this case, I was both the Database class developer and the client soft-
ware developer. If my client code had used the names of instance variables
in the class, I would have had to crawl through the program, modifying
each line of relevant code. Using encapsulation with a class saved me from
countless hours of reworking and testing.

As a follow-up to the story, while XTRA2 worked well, that company
eventually went out of business and I had to go through the same process
again. Once again, because of encapsulation, only the code of the Database
class was modified to work with XTRA3.

Abstraction
Abstraction is another OOP concept closely related to encapsulation; many
developers consider it to be the fourth tenet of OOP.

Whereas encapsulation is about implementation, hiding the details of
the code and data that make up a class, abstraction is about the client’s view
of a class. It’s about the perception of a class from the outside.

	 abstraction	 Handling complexity by hiding unnecessary details.

Essentially, abstraction is a reminder to make sure that the user’s view
of a system is as simple as possible.

Abstraction is extremely common in consumer products. Many people
use TVs, computers, microwave ovens, cars, and so on every day. We become
comfortable with the user interface that these products extend to us. Through
their controls, they provide an abstraction of their functionality. You press
the accelerator pedal in a car to make it go forward. With a microwave, you
set an amount of time and press Start to heat up some food. But few of us
really know how these products work internally.

Here’s an example of abstraction from the world of computer science.
In programming, a stack is a mechanism for remembering data in a last in,
first out (LIFO) order. Think of a pile of plates, where clean plates are added
to the top and users take one from the top when they need a plate. A stack
has two standard operations: push adds an item to the top of the stack, and
pop removes the topmost item from the stack.

A stack is particularly useful whenever your program does any naviga-
tion because it can be used to leave a trail of breadcrumbs for finding your
way back. This is how programming languages keep track of the execution
of function and method calls in code: when you call a function or method,
the return point is pushed onto a stack, and when the function or method

180 Chapter 8

returns, the place to return to is discovered by popping the most recent
information off the top of the stack. In this way, code can make as many
levels of calls as you need, and it always unwinds correctly.

As an abstraction, suppose a client program required the functional-
ity of a stack that would be simple to create and would provide the ability
to push and pop information. If this were written as a class, the client code
would create a stack like this:

oStack = Stack()

A client would add information by calling a push() method like this:

oStack.push(<someData>)

And it would retrieve the most recent data by calling a pop() method
like this:

<someVariable> = oStack.pop()

The client would not need to know or care how these methods were
implemented or how the data was stored. The implementation of the Stack
would be handled completely by the methods of the Stack.

While the client code could view a Stack class as a black box, writing
such a class in Python is fairly trivial. Listing 8-8 shows how it could be
implemented.

File: Stack/Stack.py

Stack class

class Stack():
 ''' Stack class implements a last in first out LIFO algorithm'''
 def __init__(self, startingStackAsList=None):
 if startingStackAsList is None:
 1 self.dataList = []
 else:
 self.dataList = startingStackAsList[:] # make a copy

 2 def push(self, item):
 self.dataList.append(item)

 3 def pop(self):
 if len(self.dataList) == 0:
 raise IndexError
 element = self.dataList.pop()
 return element

Encapsulation 181

 4 def peek(self):
 # Retrieve the top item, without removing it
 item = self.dataList[-1]
 return item

 5 def getSize(self):
 nElements = len(self.dataList)
 return nElements

 6 def show(self):
 # Show the stack in a vertical orientation
 print('Stack is:')
 for value in reversed(self.dataList):
 print(' ', value)

Listing 8-8: A stack as a Python class

The Stack class keeps track of all the data using a list instance variable
named self.dataList 1. The client doesn’t need to know this level of detail,
but push() 2 just adds an item to the internal list using the Python append()
operation, while pop() 3 pops the last element from the internal list. Because
it is easy to do, this implementation of the Stack class also implements three
additional methods:

•	 peek() 4 allows the caller to obtain the data at the top of the stack with-
out removing it from the stack.

•	 getSize() 5 returns the number of items on the stack.

•	 show() 6 prints the contents of the stack in the way that the client
thinks of a stack: the data is displayed vertically, with the most recent
data pushed shown at the top. This can be helpful in debugging client
code that involves multiple calls to push() and pop().

This was an extremely simple example, but as you gain more experience
writing classes, your classes will typically become more complex. Along the
way, you may find cleaner and more efficient ways of writing some methods
and perhaps rewrite them. Because objects provide both encapsulation and
abstraction, as the writer of a class, you should feel free to modify its code
and data, as long as the published interfaces do not change. Changes to the
implementation of methods should have no ill effects on client software but
rather should allow you to make improvements without affecting any client
code. In fact, if you find ways to make your code more efficient and publish a
new version, client code may appear to speed up, with zero changes required
to that code.

A property is an excellent example of abstraction. As you saw earlier,
with properties the client programmer can use a syntax that makes their
intent clear (to get and set a value in an object). The implementation in the
methods that are called as a result can be much more complicated, but is
totally hidden from the client code.

182 Chapter 8

Summary
Encapsulation is the first major tenet of object-oriented programming,
allowing classes to hide their implementation and data from client code
and ensuring that a class provides all the functionality that a client needs
in a single place.

A key concept of OOP is that objects own their data, and that’s why
I recommend that you provide getter and setter methods if you want cli-
ent code to access the data held in an instance variable. Python does
allow direct access to instance variables using dot syntax, but I strongly
encourage you to stay away from this syntax for the reasons laid out in
this chapter.

There are conventions for marking instance variables and methods as
private, using a leading underscore or double underscore depending on the
level of privatization you require. As a compromise, Python also allows the
use of the @property decorator. This makes it appear as if the client code is
able to access an instance variable directly, while behind the scenes Python
turns such references into calls to the decorated getter and setter methods
in the class.

The pygwidgets package provides many good examples of encapsulation.
As a client programmer, you see a class from the outside and work with the
interfaces that the class provides. As a class designer, abstraction—handling
complexity by hiding details—helps you design a good interface by consid-
ering the interface of the class from the client’s point of view. However, in
Python, you often have the source code available so that you can look at the
implementation if you wish.

9
P O LY M O R P H I S M

This chapter is about the second major
tenet of OOP: polymorphism. Its component

parts are from the Greek: the prefix poly
means “much” or “many,” and morphism means

“shape,” “form,” or “structure.”
So, polymorphism essentially means many forms. I’m not talking about a

Star Trek–style shape-shifting alien—in fact, it’s quite the opposite. Rather
than one thing taking on many shapes, polymorphism in OOP is about
how multiple classes can have methods with the exact same names. This
will eventually give us a highly intuitive way to act on a collection of objects,
independent of what class each came from.

OOP programmers often use the term “send a message” when we talk
about client code calling a method of an object. What the object should do
when it receives the message is up to the object. With polymorphism, we can
send the same message to multiple objects, and each object will react differ-
ently depending on what it’s designed to do and the data available to it.

In this chapter, I’ll discuss how this ability allows you to build pack-
ages of classes that are easily extensible and predictable. We’ll also use

184 Chapter 9

polymorphism with operators to make the same operators perform differ-
ent operations depending on the data types they are working with. Finally,
I’ll show you how to use the print() function to get valuable debugging
information from objects.

Sending Messages to Real-World Objects
Let’s look at polymorphism in the real world, using cars as an example. All
cars have an accelerator pedal. When the driver presses that pedal, they’re
sending the “accelerate” message to the car. The car they’re driving could
have an internal combustion engine or an electric motor, or be a hybrid.
Each of these types of cars has its own implementation of what happens
when it receives the accelerate message, and each behaves accordingly.

Polymorphism allows for easier adoption of new technology. If some-
one were to develop a nuclear-powered car, the user interface of the car
would remain the same—the driver would still press the accelerator pedal
to send the same message—but a very different mechanism would make the
nuclear-powered car go faster.

As another real-world example, imagine you enter a large room with a
bank of light switches that control a variety of different lights. Some of the
bulbs are old-style incandescent bulbs, some are fluorescent, and some are
newer LED bulbs. When you flip all the switches up, you are sending the
“turn on” message to all the bulbs. The underlying mechanisms that cause
incandescent, fluorescent, and LED bulbs to emit light are wildly different,
but each achieves the user’s intended goal.

A Classic Example of Polymorphism in Programming
In terms of OOP, polymorphism is about how client code can call a method
with the exact same name in different objects, and each object will do what-
ever it needs to do to implement the meaning of that method for that object.

The classic example of polymorphism is to consider code that repre-
sents different types of pets. Let’s say you have a collection of dogs, cats, and
birds, and each understands some basic commands. If you ask these pets
to speak (that is, you send the “speak” message to each), the dogs will say
“bark,” the cats will say “meow,” and the birds will say “tweet.” Listing 9-1
shows how we might implement this in code.

File: PetsPolymorphism.py

Pets polymorphism
Three classes, all with a different "speak" method

class Dog():
 def __init__(self, name):
 self.name = name

Polymorphism 185

 1 def speak(self):
 print(self.name, 'says bark, bark, bark!')

class Cat():
 def __init__(self, name):
 self.name = name

 2 def speak(self):
 print(self.name, 'says meeeoooow')

class Bird():
 def __init__(self, name):
 self.name = name

 3 def speak(self):
 print(self.name, 'says tweet')

oDog1 = Dog('Rover')
oDog2 = Dog('Fido')
oCat1 = Cat('Fluffy')
oCat2 = Cat('Spike')
oBird = Bird('Big Bird')

4 petsList = [oDog1, oDog2, oCat1, oCat2, oBird]

Send the same message (call the same method) of all pets
for oPet in petsList:
 5 oPet.speak()

Listing 9-1: Sending the “speak” message to objects instantiated from different classes

Each class has a speak() method, but the content of each method
is different 1 2 3. Each class does whatever it needs to do in its ver-
sion of this method; the method name is the same, but it has different
implementations.

To make things easy to deal with, we put all the pet objects into a list 4.
To make them all speak, we then loop through all the objects and send
the same message by calling a method with the exact same name in each
object 5, without worrying about the type of the object.

Example Using Pygame Shapes
Next, we’ll look at a demonstration of polymorphism using pygame. In
Chapter 5 we used pygame to draw primitive shapes such as rectangles,
circles, polygons, ellipses, and lines. Here we’ll build a demonstration
program that will randomly create and draw different shapes in a window.
The user can then click on any shape, and the program will report the
type and area of the shape that was clicked. Because the shapes are ran-
domly created, each time the program runs, the size, location, number,
and position of the shapes will be different. Figure 9-1 shows some sample
output from the demonstration program.

186 Chapter 9

Figure 9-1: A pygame-based example of using polymorphism to draw different shapes

We’ll implement the program with a class for each of three differ-
ent shapes: Square, Circle, and Triangle. The key thing to note here is that
all three shape classes contain methods with the same names, __init__(),
draw(), getType(), getArea(), and clickedInside(), that perform the same tasks.
However, the implementation of each method is different because each
class deals with a different shape.

The Square Shape Class
I’ll start with the simplest shape. Listing 9-2 shows the code of the Square
class.

File: Shapes/Square.py

Square class

import pygame
import random

Set up the colors
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)

class Square():

Polymorphism 187

 1 def __init__(self, window, maxWidth, maxHeight):
 self.window = window
 self.widthAndHeight = random.randrange(10, 100)
 self.color = random.choice((RED, GREEN, BLUE))
 self.x = random.randrange(1, maxWidth - 100)
 self.y = random.randrange(25, maxHeight - 100)
 self.rect = pygame.Rect(self.x, self.y, self.widthAndHeight,
 self.widthAndHeight)
 self.shapeType = 'Square'

 2 def clickedInside(self, mousePoint):
 clicked = self.rect.collidepoint(mousePoint)
 return clicked

 3 def getType(self):
 return self.shapeType

 4 def getArea(self):
 theArea = self.widthAndHeight * self.widthAndHeight
 return theArea

 5 def draw(self):
 pygame.draw.rect(self.window, self.color,
 (self.x, self.y, self.widthAndHeight,
 self.widthAndHeight))

Listing 9-2: The Square class

In the __init__() method 1, we set up a number of instance variables to
use in the methods of the class. That lets us keep the code of the methods
very simple. Since the __init__() method saved the rectangle of the Square,
the clickedInside() method 2 just checks if the location of a mouse click was
inside that rectangle, returning True or False.

The getType() method 3 simply returns the information that the item
clicked is a square. The getArea() method 4 multiplies the width by the
height and returns the resulting area. The draw() method 5 uses pygame’s
draw.rect() to draw the shape in the randomly chosen color.

The Circle and Triangle Shape Classes
Next, let’s take a look at the code of the Circle and the Triangle classes.
The important thing to notice is that these classes have methods with the
same names as the Square class, but the code in these methods (especially
clickedInside() and getArea()) is very different. Listing 9-3 shows the Circle
class. Listing 9-4 shows the Triangle class that creates randomly sized right
triangles whose edges are parallel to the x- and y-axes, with the right angle
in the upper-left corner.

188 Chapter 9

File: Shapes/Circle.py

Circle class

import pygame
import random
import math

Set up the colors
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)

class Circle():

 def __init__(self, window, maxWidth, maxHeight):
 self.window = window

 self.color = random.choice((RED, GREEN, BLUE))
 self.x = random.randrange(1, maxWidth - 100)
 self.y = random.randrange(25, maxHeight - 100)
 self.radius = random.randrange(10, 50)
 self.centerX = self.x + self.radius
 self.centerY = self.y + self.radius
 self.rect = pygame.Rect(self.x, self.y,
 self.radius * 2, self.radius * 2)
 self.shapeType = 'Circle'

 1 def clickedInside(self, mousePoint):
 distance = math.sqrt(((mousePoint[0] - self.centerX) ** 2) +
 ((mousePoint[1] - self.centerY) ** 2))
 if distance <= self.radius:
 return True
 else:
 return False

 2 def getArea(self):
 theArea = math.pi * (self.radius ** 2) squared
 return theArea

 def getType(self):
 return self.shapeType

 3 def draw(self):
 pygame.draw.circle(self.window, self.color,
 (self.centerX, self.centerY),
 self.radius, 0)

Listing 9-3: The Circle class

Polymorphism 189

File: Shapes/Triangle.py

Triangle class

import pygame
import random

Set up the colors
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)

class Triangle():

 def __init__(self, window, maxWidth, maxHeight):
 self.window = window
 self.width = random.randrange(10, 100)
 self.height = random.randrange(10, 100)
 self.triangleSlope = -1 * (self.height / self.width)

 self.color = random.choice((RED, GREEN, BLUE))
 self.x = random.randrange(1, maxWidth - 100)
 self.y = random.randrange(25, maxHeight - 100)
 self.rect = pygame.Rect(self.x, self.y,
 self.width, self.height)
 self.shapeType = 'Triangle'

 4 def clickedInside(self, mousePoint):
 inRect = self.rect.collidepoint(mousePoint)
 if not inRect:
 return False

 # Do some math to see if the point is inside the triangle
 xOffset = mousePoint[0] - self.x
 yOffset = mousePoint[1] - self.y
 if xOffset == 0:
 return True

 # Calculate the slope (rise over run)
 pointSlopeFromYIntercept = (yOffset - self.height) / xOffset
 if pointSlopeFromYIntercept < self.triangleSlope:
 return True
 else:
 return False

 def getType(self):
 return self.shapeType

 5 def getArea(self):
 theArea = .5 * self.width * self.height
 return theArea

190 Chapter 9

 6 def draw(self):
 pygame.draw.polygon(self.window, self.color,
 ((self.x, self.y + self.height),
 (self.x, self.y),
 (self.x + self.width, self.y)))

Listing 9-4: The Triangle class

To understand the polymorphism at work here, let’s look at the
codeof the clickedInside() method for each shape. The clickedInside()
method of the Square class was very simple: a check to see if the mouse
click occurred inside the rectangle of the Square. The details of the cal-
culations for clickedInside() in the Circle and Triangle classes are not par-
ticularly important, but they clearly are doing different calculations. The
clickedInside() method of the Circle class 1 only reports a click if the user
clicks on a colored pixel of the shape. That is, it detects a click that is within
the bounding rectangle of the circle, but the click must also be within the
radius of the circle for it to count as a click. The clickedInside() method of
the Triangle class 4 must determine if the user has clicked on a pixel inside
the colored triangular portion of the rectangle. The methods in all three
classes accept a mouse click as a parameter and return either True or False
as a result.

The getArea() 2 5 and draw() methods 3 6 of these classes have names
that are identical to methods of the Square class, but they do different work
internally. There’s a different calculation for area, and they draw different
shapes.

The Main Program Creating Shapes
Listing 9-5 shows the source of the main program, which creates a list of
randomly chosen shape objects.

File: Shapes/Main_ShapesExample.py

import pygame
import sys
from pygame.locals import *
from Square import *
from Circle import *
from Triangle import *
import pygwidgets

Set up the constants
WHITE = (255, 255, 255)
WINDOW_WIDTH = 640
WINDOW_HEIGHT = 480
FRAMES_PER_SECOND = 30
N_SHAPES = 10

Set up the window
pygame.init()

Polymorphism 191

window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT), 0, 32)
clock = pygame.time.Clock()

shapesList = []
shapeClassesTuple = (Square, Circle, Triangle)
for i in range(0, N_SHAPES): 1
 randomlyChosenClass = random.choice(shapeClassesTuple)
 oShape = randomlyChosenClass (window, WINDOW_WIDTH, WINDOW_HEIGHT)
 shapesList.append(oShape)

oStatusLine = pygwidgets.DisplayText(window, (4,4),
 'Click on shapes', fontSize=28)

Main loop
while True:
 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

 if event.type == MOUSEBUTTONDOWN: 2
 # Reverse order to check last drawn shape first
 for oShape in reversed(shapesList): 3
 if oShape.clickedInside(event.pos): 4
 area = oShape.getArea() 5
 area = str(area)
 theType = oShape.getType()
 newText = 'Clicked on a ' + theType + ' whose area is ' + area
 oStatusLine.setValue(newText)
 break # only deal with topmost shape

 # Tell each shape to draw itself
 window.fill(WHITE)
 for oShape in shapesList:
 oShape.draw()
 oStatusLine.draw()

 pygame.display.update()
 clock.tick(FRAMES_PER_SECOND)

Listing 9-5: The main program that creates random shapes from three classes

As we saw in Chapter 4, whenever we have a large number of objects
to manage, the typical approach is to build a list of objects. So, before the
main loop starts, the program first builds a list of shapes 1 by randomly
choosing among a circle, a square, and a triangle; creating an object of that
type; and appending it to the list. Using this approach, we can then iterate
over the list and call methods of the same name in every object in the list.

Inside the main loop, the program checks for the mouse down event 2
that happens when the user clicks. Whenever the event is detected, the code
iterates through the shapesList 3 and calls the clickedInside() 4 method
for each shape. Because of polymorphism, it doesn’t matter which class the
object was instantiated from. Again, the key is that the implementation of
the clickedInside() method can be different for different classes.

192 Chapter 9

When any clickedInside() method returns True 5, we call the getArea()
then getType() methods of that object, without worrying about which type of
object was clicked on.

Here is the output of a typical run, after clicking on a few of the differ-
ent shapes:

Clicked on a Circle whose area is 5026.544
Clicked on a Square whose area is 1600
Clicked on a Triangle whose area is 1982.5
Clicked on a Square whose area is 1600
Clicked on a Square whose area is 100
Clicked on a Triangle whose area is 576.0
Clicked on a Circle whose area is 3019.06799

Extending a Pattern
Building classes with commonly named methods creates a consistent pat-
tern that allows us to easily extend the program. For example, to add the
ability for our program to include ellipses, we would build an Ellipse class
that implements the getArea(), clickedInside(), draw(), and getType() meth-
ods. (The code of the clickedInside() method might be mathematically com-
plicated for an ellipse!)

Once we’ve written the code of the Ellipse class, the only change we
need to make to the setup code is to add Ellipse to the tuple of shape classes
to choose from. The code in the main loop that does the checking for clicks,
gets the area of the shape, and so on will not need to change at all.

This example demonstrates two important features of polymorphism:

•	 Polymorphism extends the concept of abstraction discussed in
Chapter 8 to a collection of classes. If multiple classes have the same
interfaces for their methods, the client programmer can ignore the
implementation of those methods in all the classes.

•	 Polymorphism can make client programming easier. If a client pro-
grammer is already familiar with the interfaces provided by one or
more classes, then calling the methods of another polymorphic class
should as be simple as following the pattern.

pygwidgets Exhibits Polymorphism
All the classes in pygwidgets were designed to use polymorphism, and they
all implement two common methods. The first is the handleEvent() method
we first used in Chapter 6, which takes an event object as a parameter.
Each class must contain its own code in this method to handle any event
that pygame may generate. Each time through the main loop, client pro-
grams need to call the handleEvent() method for every instance of every
object instantiated from pygwidgets.

Polymorphism 193

Second is the draw() method, which draws images to the window. A typi-
cal drawing portion of a program that uses pygwidgets might look like this:

inputTextA.draw()
inputTextB.draw()
displayTextA.draw()
displayTextB.draw()
restartButton.draw()
checkBoxA.draw()
checkBoxB.draw()
radioCustom1.draw()
radioCustom2.draw()
radioCustom3.draw()
checkBoxC.draw()
radioDefault1.draw()
radioDefault2.draw()
radioDefault3.draw()
statusButton.draw()

From the client’s point of view, each line just calls the draw() method and
passes in nothing. From an internal point of view, the code to implement
each of these methods is very different. The draw() method of the TextButton
class is completely different from that of the InputText class, for instance.

Additionally, all widgets that manage a value contain a setValue() and
optionally a getValue() method. For example, to get the text the user enters
into an InputText widget, you call the getValue() getter method. Radio button
and checkbox widgets also have a getValue() method to get their current val-
ues. To put new text into a DisplayText widget, you call the setValue() setter
method, passing in the new text. Radio button and checkbox widgets can
be set with a call to their setValue() method.

Polymorphism allows client programmers to feel comfortable with a
collection of classes. When clients see a pattern, like using methods named
handleEvent() and draw(), it makes it easy for them to predict how to use a
new class in the same collection.

As of this writing, the pygwidgets package does not provide either a hori-
zontal or a vertical Slider class widget to allow a user to easily select from a
range of numbers. If I were to add these widgets, they would certainly con-
tain the following: a handleEvent() method, where all user interaction would
take place; a getValue() and a setValue() method to get and set a current
value for the Slider; and a draw() method.

Polymorphism for Operators
Python also exhibits polymorphism with operators. Consider the following
example with the + operator:

value1 = 4
value2 = 5
result = value1 + value2
print(result)

194 Chapter 9

which prints:

9

The + operator here clearly means “add” in a mathematic sense
because both variables contain integer values. But now consider this second
example:

value1 = 'Joe'
value2 = 'Schmoe'
result = value1 + value2
print(result)

which prints:

JoeSchmoe

The line result = value1 + value2 is exactly the same as in the first exam-
ple, but it performs a completely different operation. With string values, the
+ operator performs a string concatenation. The same operator was used,
but a different action was performed.

This technique of having multiple meanings for an operator is com-
monly known as operator overloading. For some classes, the ability to overload
operators adds highly useful features and greatly improves the readability
of client code.

Magic Methods
Python reserves method names with the unusual form of two underscores,
some name, and two underscores for a particular purpose:

__<someName>__()

These are officially called special methods but are more commonly
referred to by Python programmers as magic methods. Many of these are
already defined, such as __init__(), which is called whenever you instanti-
ate an object from a class, but all other names in this style are available for
future expansion. These are known as “magic” methods because Python
calls them behind the scenes whenever it detects an operator, a special
function call, or some other special circumstance. They are not intended to
be called by client code directly.

N O T E 	 Because the names of these magic methods are difficult to pronounce—for example,
__init__() is read as “underscore underscore init underscore underscore”—Python
programmers often refer to these as dunder methods (a shortened version of double
underscore). This method would be referred to as “dunder init.”

Polymorphism 195

Continuing with the previous examples, we’ll look at how this works
with the + operator. The built-in data types (integer, float, string, Boolean,
and so on) are actually implemented as classes in Python. We can see this
by testing with the built-in isinstance() function, which takes an object and
a class and returns True if the object was instantiated from the class or False
if not. These lines will both report True:

print(isinstance(123, int))
print(isinstance('some string', str))

The classes for the built-in data types contain a set of magic methods,
including ones for the basic math operators. When Python detects the +
operator with integers, it calls the magic method named __add__() in the
built-in integer class, which performs integer addition. When Python sees
the same operator used with strings, it calls the __add__() method in the
string class, which performs string concatenation.

This mechanism is generalized so that when Python encounters a +
operator when working with objects instantiated from your class, it will call
the __add__() method if one is present in your class. Therefore, as the class
developer, you can write code to invent a new meaning for this operator.

Each operator maps to a specific magic method name. While there are
many types of magic methods, let’s start with those related to the compari-
son operators.

Comparison Operator Magic Methods
Consider our Square class from Listing 9-2. You want client software to be
able to compare two Square objects to see if they are equal. It is up to you
to decide what “equal” means when comparing objects. For instance, you
might define it as two objects being the same color and at the same location
and with the same size. As a simple example, we’ll define two Square objects
as equal if they just have the same side length. This is easily implemented by
comparing the self.heightAndWidth instance variables of the two objects and
returning a Boolean. You could write your own equals() method, and client
software could then call it like this:

if oSquare1.equals(oSquare2):

This would work fine. However, it would be more natural for client soft-
ware to use the standard == comparison operator:

if oSquare1 == oSquare2:

Written this way, Python translates the == operator into a call to a magic
method of the first object. In this case, Python will attempt to call a magic
method named __eq__() in the Square class. Table 9-1 shows the magic meth-
ods for all the comparison operators.

196 Chapter 9

Table 9-1: Comparison Operator Symbols, Meanings, and Magic Method Names

Symbol Meaning Magic method name

== Equal to __eq__()

!= Not equal to __ne__()

< Less than __lt__()

> Greater than __gt__()

<= Less than or equal to __le__()

>= Greater than or equal to __ge__()

To allow the == comparison operator to check for equality between two
Square objects, you would write a method like this in the Square class:

def __eq__(self, oOtherSquare):
 if not isinstance(oOtherSquare, Square):
 raise TypeError('Second object was not a Square')
 if self.heightAndWidth == oOtherSquare.heightAndWidth:
 return True # match
 else:
 return False # not a match

When Python detects an == comparison where the first object is a Square,
it calls this method in the Square class. Since Python is a loosely typed lan-
guage (it doesn’t require you to define variable types), the second parame-
ter could be of any data type. However, in order for the comparison to work
correctly, the second parameter must also be a Square object. We perform
a check using the isinstance() function, which works with programmer-
defined classes the same way it works with built-in classes. If the second
object is not a Square, we raise an exception.

We then compare the heightAndWidth of the current object (self) with
the heightAndWidth of a second object (oOtherSquare). This is a case where
using direct access to the instance variables of two objects is perfectly
acceptable, because both objects are of the same type, and therefore they
must contain the same instance variables.

A Rectangle Class with Magic Methods
To expand, we’ll build a program that draws a number of rectangle
shapes using a Rectangle class. The user will be able to click on any two
rectangles, and the program will report if the rectangles have the same
area or if the area of the first one is larger or smaller than the area of the
second rectangle. We’ll use the ==, <, and > operators and expect the result
to be a Boolean True or False for each comparison. Listing 9-6 contains
the code of the Rectangle class, which implements magic methods for these
operators.

Polymorphism 197

File: MagicMethods/Rectangle/Rectangle.py

Rectangle class

import pygame
import random

Set up the colors
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)

class Rectangle():

 def __init__(self, window):
 self.window = window
 self.width = random.choice((20, 30, 40))
 self.height = random.choice((20, 30, 40))
 self.color = random.choice((RED, GREEN, BLUE))
 self.x = random.randrange(0, 400)
 self.y = random.randrange(0, 400)
 self.rect = pygame.Rect(self.x, self.y, self.width, self.height)
 self.area = self.width * self.height

 def clickedInside(self, mousePoint):
 clicked = self.rect.collidepoint(mousePoint)
 return clicked

 # Magic method called when you compare
 # two Rectangle objects with the == operator
 def __eq__ (self, oOtherRectangle): 1
 if not isinstance(oOtherRectangle, Rectangle):
 raise TypeError('Second object was not a Rectangle')
 if self.area == oOtherRectangle.area:
 return True
 else:
 return False

 # Magic method called when you compare
 # two Rectangle objects with the < operator
 def __lt__(self, oOtherRectangle): 2
 if not isinstance(oOtherRectangle, Rectangle):
 raise TypeError('Second object was not a Rectangle')
 if self.area < oOtherRectangle.area:
 return True
 else:
 return False

 # Magic method called when you compare
 # two Rectangle objects with the > operator
 def __gt__(self, oOtherRectangle): 3
 if not isinstance(oOtherRectangle, Rectangle):
 raise TypeError('Second object was not a Rectangle')

198 Chapter 9

 if self.area > oOtherRectangle.area:
 return True
 else:
 return False

 def getArea(self):
 return self.area

 def draw(self):
 pygame.draw.rect(self.window, self.color, (self.x, self.y, self.width, self.height))

Listing 9-6: The Rectangle class

The methods __eq__() 1, __lt__() 2, and __gt__() 3 allow client code
to use standard comparison operators between Rectangle objects. To com-
pare two rectangles for equality, you would write:

 if oRectangle1 == oRectangle2:

When this line runs, the __eq__() method of the first object is called,
and the second object is passed in as the second parameter. The function
returns either True or False. Similarly, to compare for less than, you would
write a line like this:

 if oRectangle1 < oRectangle2:

The __lt__() method then checks for the area of the first rectangle
being less than the area of the second rectangle. If client code used the >
operator to compare two rectangles, the __gt__() method would be called.

Main Program Using Magic Methods
Listing 9-7 shows the code of the main program that tests the magic methods.

File: MagicMethods/Rectangle/Main_RectangleExample.py

import pygame
import sys
from pygame.locals import *
from Rectangle import *

Set up the constants
WHITE = (255, 255, 255)
WINDOW_WIDTH = 640
WINDOW_HEIGHT = 480
FRAMES_PER_SECOND = 30
N_RECTANGLES = 10
FIRST_RECTANGLE = 'first'
SECOND_RECTANGLE = 'second'

Set up the window
pygame.init()

Polymorphism 199

window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT), 0, 32)
clock = pygame.time.Clock()

rectanglesList = []
for i in range(0, N_RECTANGLES):
 oRectangle = Rectangle(window)
 rectanglesList.append(oRectangle)

whichRectangle = FIRST_RECTANGLE

Main loop
while True:
 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

 if event.type == MOUSEBUTTONDOWN:
 for oRectangle in rectanglesList:
 if oRectangle.clickedInside(event.pos):
 print('Clicked on', whichRectangle, 'rectangle.')

 if whichRectangle == FIRST_RECTANGLE:
 oFirstRectangle = oRectangle 1
 whichRectangle = SECOND_RECTANGLE

 elif whichRectangle == SECOND_RECTANGLE:
 oSecondRectangle = oRectangle 2
 # User has chosen 2 rectangles, let's compare
 if oFirstRectangle == oSecondRectangle: 3
 print('Rectangles are the same size.')
 elif oFirstRectangle < oSecondRectangle: 4
 print('First rectangle is smaller than second rectangle.')
 else: # must be larger 5
 print('First rectangle is larger than second rectangle.')
 whichRectangle = FIRST_RECTANGLE

 # Clear the window and draw all rectangles
 window.fill(WHITE)
 for oRectangle in rectanglesList: 6
 oRectangle.draw()

 pygame.display.update()

 clock.tick(FRAMES_PER_SECOND)

Listing 9-7: The main program that draws and then compares Rectangle objects

The user of the program clicks on pairs of rectangles to compare their
sizes. We store the selected rectangles in two variables 1 2.

We check for equality using the == operator 3, which resolves to calling
the __eq__() method of the Rectangle class. If the rectangles are the same
size, we print out an appropriate message. If not, we check if the first rect-
angle is smaller than the second using the < operator 4, which results in

200 Chapter 9

a call to the __lt__() method. If this comparison is also not True, we print
the message for the first being larger than the second 5. We didn’t need to
use the > operator in this program; however, since other client code might
implement size comparisons differently, we’ve included the __gt__() method
for completeness.

Finally, we draw all the rectangles in our list 6.
Because we included the magic methods __eq__(), __lt__(), and __gt__()

in the Rectangle class, we were able to use the standard comparison opera-
tors in a highly intuitive and readable way.

Here is the output from clicking on a number of different rectangles:

Clicked on first rectangle.
Clicked on second rectangle.
Rectangles are the same size.
Clicked on first rectangle.
Clicked on second rectangle.
First rectangle is smaller than second rectangle.
Clicked on first rectangle.
Clicked on second rectangle.
First rectangle is larger than second rectangle.

Math Operator Magic Methods
You can write additional magic methods to define what happens when cli-
ent code uses the other arithmetic operators between objects instantiated
from your class.

Table 9-2 shows the methods that are called for the basic arithmetic
operators.

Table 9-2: Math Operator Symbols, Meanings, and Magic Method Names

Symbol Meaning Magic method name

+ Addition __add__()

- Subtraction __sub__()

* Multiplication __mul__()

/ Division (floating-point
result)

__truediv__()

// Integer division __floordiv__()

% Modulo __mod__()

abs Absolute value __abs__()

For example, to handle the + operator, you would implement a method
in your class like this:

 def __add__(self, oOther):
 # Your code here to determine what happens when code
 # attempts to add two of these objects.

Polymorphism 201

A full list of all the magic or dunder methods can be found in the offi-
cial documentation at https://docs.python.org/3/reference/datamodel.html.

Vector Example
In math, a vector is an ordered pair of x and y values that is often repre-
sented on a graph as a directed line segment. In this section, we’ll build
a class that uses math operator magic methods to operate on vectors.
There are a number of math operations that can be performed on vectors.
Figure 9-2 shows an example of adding two vectors.

–6 –5 –4 –3 –2 –1 1 2 3 4 5 6

y–axis

x–axis

6

5

4

3

2

1

–1

–2

–3

–4

–5

–6

=Vector 4, 5

Vector 1, 3

Vector 3, 2

plus

Figure 9-2: Vector addition in Cartesian coordinates

Adding two vectors results in a new vector whose x value is the sum of
the x values of the two added vectors and whose y value is the sum of the y
values of the two added vectors. In Figure 9-2, we add the vector (3, 2) and
the vector (1, 3) to create a vector (4, 5).

Two vectors are considered equal if their x values are the same and
their y values are the same. A vector’s size is computed to be the hypotenuse
of the right triangle with one side of length x and the second side of length
y. We can use the Pythagorean theorem to compute the length and use the
lengths to compare two vectors’ sizes.

https://docs.python.org/3/reference/datamodel.html

202 Chapter 9

Listing 9-8 is a Vector class that illustrates the appropriate magic meth-
ods for doing math and comparisons between two Vector objects. (Each of
these methods has additional code using a call to isinstance() to ensure that
the second object is a Vector. These checks are included in the download-
able file, but I have omitted them here to save space.)

File: MagicMethods/Vectors/Vector.py

Vector class

import math

class Vector():
 '''The Vector class represents two values as a vector,
 allows for many math calculations'''
 def __init__(self, x, y):
 self.x = x
 self.y = y

 1 def __add__(self, oOther): # called for + operator
 return Vector(self.x + oOther.x, self.y + oOther.y)

 def __sub__(self, oOther): # called for - operator
 return Vector(self.x - oOther.x, self.y - oOther.y)

 2 def __mul__(self, oOther): # called for * operator
 # Special code to allow for multiplying by a vector or a scalar
 if isinstance(oOther, Vector): # multiply two vectors
 return Vector((self.x * oOther.x), (self.y * oOther.y))
 elif isinstance(oOther, (int, float)): # multiply by a scalar
 return Vector((self.x * oOther), (self.y * oOther))
 else:
 raise TypeError('Second value must be a vector or scalar')

 def __abs__(self):
 return math.sqrt((self.x ** 2) + (self.y ** 2))

 def __eq__(self, oOther): # called for == operator
 return (self.x == oOther.x) and (self.y == oOther.y)

 def __ne__(self, oOther): # called for != operator
 return not (self == oOther) # calls __eq__ method

 def __lt__(self, oOther): # called for < operator
 if abs(self) < abs(oOther): # calls __abs__ method
 return True
 else:
 return False

 def __gt__(self, oOther): # called for > operator
 if abs(self) > abs(oOther): # calls __abs__ method

Polymorphism 203

 return True
 else:
 return False

Listing 9-8: The Vector class that implements a number of magic methods

This class implements arithmetic and comparison operators as magic
methods. Client code would use standard symbols for math and compari-
son between two Vector objects. For example, the addition of vectors in
Figure 9-2 could be handled like this:

oVector1 = Vector(3, 2)
oVector2 = Vector(1, 3)
oNewVector = oVector1 + oVector2 # use the + operator to add vectors

When the third line runs, the __add__() method 1is called to add the
two Vector objects, resulting in the creation of a new Vector object. There is a
special check in the __mul__() method 2 that allows the * operator to either
multiply two Vectors or multiply one Vector by a scalar value, depending on
the type of the second value.

Creating a String Representation of Values in an Object
A standard approach to debugging is to add calls to print() to write out the
values of variables at certain points in your program:

print('My variable is', myVariable)

However, if you try to use print() to help you debug the contents of an
object, the results are not particularly helpful. For example, here we create
a Vector object and print it:

oVector = Vector(3, 4)
print('My vector is', oVector)

 This is what is printed:

<Vector object at 0x10361b518>

This tells us that we have an object instantiated from the Vector class
and shows the memory address of that object. However, in most cases, what
we really want to know are the values of the instance variables in the object
at that moment. Luckily, we can use magic methods for that.

There are two magic methods that can be useful in getting information
(as strings) from an object:

•	 The __str__() method is used to create a string representation of an
object that can be read easily by humans. If client code makes a call to
the str() built-in function and passes in an object, Python will call the
magic method __str__() if it is present in that class.

204 Chapter 9

•	 The __repr__() method is used to create an unambiguous, possibly
machine-readable string representation of the object. If client code
makes a call to the repr() built-in function and passes in an object,
Python will attempt to call the magic method __repr__() in that class,
if present.

I’ll show the __str__() method, as it’s more generally used for simple
debugging. When you call the print() function, Python calls the built-in
str() function to convert each argument into a string. For any argument
that does not have a __str__() method, this function formats a string that
contains the type of the object, the words “object at,” and the memory
address, then returns the resulting string. That’s why we see the earlier out-
put containing the memory address.

Instead, you can write your own version of __str__() and have it produce
whatever string you want to help debug the code of your class. The general
approach is to build a string that contains the values of any instance vari-
ables that you want to see and return that string to be printed. For example,
we can add the following method to the Vector class from Listing 9-8 to get
information about any Vector object:

class Vector():
 --- snipped all previous methods ---
 def __str__(self):
 return 'This vector has the value (' + str(self.x) + ', ' + str(self.y) + ')'

If you instantiate a Vector, you can then call the print() function and
pass in a Vector object:

oVector = Vector(10, 7)
print(oVector)

Rather than just printing the memory address of the Vector object, you
will get a nicely formatted report of the values of the two instance variables
contained in the object:

This vector has the value (10, 7)

The main code in Listing 9-9 creates a few Vector objects, does some
vector math, and prints out the results of some Vector calculations.

File: Vectors/Main_Vectors.py

Vector test code

from Vector import *

v1 = Vector(3, 4)
v2 = Vector(2, 2)
v3 = Vector(3, 4)

Polymorphism 205

These lines print Boolean or numeric values
print(v1 == v2)
print(v1 == v3)
print(v1 < v2)
print(v1 > v2)
print(abs(v1))
print(abs(v2))
print()

These lines print Vectors (calls the __str__() method)
print('Vector 1:', v1)
print('Vector 2:', v2)
print('Vector 1 + Vector 2:', v1 + v2)
print('Vector 1 - Vector 2:', v1 - v2)
print('Vector 1 times Vector 2:', v1 * v2)
print('Vector 1 times 5:', v1 * 5)

Listing 9-9: Sample main code that creates and compares Vectors, does math, and prints
Vectors

This generates the following output:

False
True
False
True
5.0
2.8284271247461903

Vector 1: This vector has the value (3, 4)
Vector 2: This vector has the value (2, 2)
Vector 1 + Vector 2: This vector has the value (5, 6)
Vector 1 - Vector 2: This vector has the value (1, 2)
Vector 1 times Vector 2: This vector has the value (6, 8)
Vector 1 times 5: This vector has the value (15, 20)

The first set of calls to print() output Boolean and numeric values,
which result from calling math and comparison operator magic methods.
In the second set, we print two Vector objects, then compute and print
some new Vectors. Internally, the print() function first calls Python’s str()
function for each item to be printed; that results in a call to the Vector’s
__str__() magic method, which creates a formatted string with the relevant
information.

A Fraction Class with Magic Methods
Let’s put some of these magic methods together in a more complex exam-
ple. Listing 9-10 shows the code of a Fraction class. Each Fraction object is
made up of a numerator (top part) and a denominator (bottom part). The
class keeps track of a fraction by storing the separate parts in instance vari-
ables, along with the fraction’s approximate decimal value. The methods

206 Chapter 9

allow the caller to get the reduced value of the fraction, print the fraction
along with its floating-point value, compare two fractions for equality, and
add two Fraction objects. (This code works with Python 3.9 and above.)

File: MagicMethods/Fraction.py

Fraction class

import math

class Fraction():
 def __init__(self, numerator, denominator): 1
 if not isinstance(numerator, int):
 raise TypeError('Numerator', numerator, 'must be an integer')
 if not isinstance(denominator, int):
 raise TypeError('Denominator', denominator, 'must be an integer')
 self.numerator = numerator
 self.denominator = denominator

 # Use the math package to find the greatest common divisor
 greatestCommonDivisor = math.gcd(self.numerator, self.denominator)
 if greatestCommonDivisor > 1:
 self.numerator = self.numerator // greatestCommonDivisor
 self.denominator = self.denominator // greatestCommonDivisor
 self.value = self.numerator / self.denominator

 # Normalize the sign of the numerator and denominator
 self.numerator = int(math.copysign(1.0, self.value)) * abs(self.numerator)
 self.denominator = abs(self.denominator)

 def getValue(self): 2
 return self.value

 def __str__(self): 3
 '''Create a string representation of the fraction'''
 output = ' Fraction: ' + str(self.numerator) + '/' + \
 str(self.denominator) + '\n' + \
 ' Value: ' + str(self.value) + '\n'
 return output

 def __add__(self, oOtherFraction): 4
 ''' Add two Fraction objects'''
 if not isinstance(oOtherFraction, Fraction):
 raise TypeError('Second value in attempt to add is not a Fraction')
 # Use the math package to find the least common multiple
 newDenominator = math.lcm(self.denominator, oOtherFraction.denominator)

 multiplicationFactor = newDenominator // self.denominator
 equivalentNumerator = self.numerator * multiplicationFactor

 otherMultiplicationFactor = newDenominator // oOtherFraction.denominator
 oOtherFractionEquivalentNumerator =
 oOtherFraction.numerator * otherMultiplicationFactor

Polymorphism 207

 newNumerator = equivalentNumerator + oOtherFractionEquivalentNumerator

 oAddedFraction = Fraction(newNumerator, newDenominator)
 return oAddedFraction

 def __eq__(self, oOtherFraction): 5
 '''Test for equality '''
 if not isinstance(oOtherFraction, Fraction):
 return False # not comparing to a fraction
 if (self.numerator == oOtherFraction.numerator) and \
 (self.denominator == oOtherFraction.denominator):
 return True
 else:
 return False

Listing 9-10: The Fraction class that implements a number of magic methods

When you create a Fraction object, you pass in a numerator and a
denominator 1, and the __init__() method immediately calculates the
reduced fraction and its floating-point value. At any time, client code can
call the getValue() method to retrieve that value 2. Client code can also call
print() to print out the object, and Python will call the __str__() method to
format a string to be printed 3.

The client can add two different Fraction objects together with the
+ operator. When this happens, the __add__() method is called 4. That
method uses the math.lcd() (least common denominator) method to ensure
that the resulting Fraction object has the smallest common denominator.

Finally, client code can use the == operator to check if two Fraction
objects are equal. When you use this operator, the __eq__() method is
called 5, which checks the values of the two Fractions and returns True or
False.

Here is some code that instantiates Fraction objects and tests the various
magic methods:

Test code

oFraction1 = Fraction(1, 3) # create a Fraction object
oFraction2 = Fraction(2, 5)
print('Fraction1\n', oFraction1) # print the object ... calls __str__
print('Fraction2\n', oFraction2)

oSumFraction = oFraction1 + oFraction2 # calls __add__
print('Sum is\n', oSumFraction)

print('Are fractions 1 and 2 equal?', (oFraction1 == oFraction2)) # expect False
print()

oFraction3 = Fraction(-20, 80)
oFraction4 = Fraction(4, -16)
print('Fraction3\n', oFraction3)
print('Fraction4\n', oFraction4)
print('Are fractions 3 and 4 equal?', (oFraction3 == oFraction4)) # expect True
print()

208 Chapter 9

oFraction5 = Fraction(5, 2)
oFraction6 = Fraction(500, 200)
print('Sum of 5/2 and 500/200\n', oFraction5 + oFraction6)

When run, this code produces:

Fraction1
 Fraction: 1/3
 Value: 0.3333333333333333

Fraction2
 Fraction: 2/5
 Value: 0.4

Sum is
 Fraction: 11/15
 Value: 0.7333333333333333

Are fractions 1 and 2 equal? False

Fraction3
 Fraction: -1/4
 Value: -0.25

Fraction4
 Fraction: -1/4
 Value: -0.25

Are fractions 3 and 4 equal? True

Sum of 5/2 and 500/200
 Fraction: 5/1
 Value: 5.0

Summary
This chapter was about the key OOP concept of polymorphism. Stated
simply, polymorphism is the ability for multiple classes to implement meth-
ods with the same names. Each class contains specific code to do whatever
needs to be done for objects instantiated from that class. As a demonstra-
tion program, I showed how you could create a number of different shape
classes, each of which had an __init__(), getArea(), clickedInside(), and
draw() method. The code of each version of these methods was specific to
the type of the shape.

As you saw, there are two key advantages to using polymorphism. First,
it extends the concept of abstraction to a collection of classes, allowing the
client programmer to ignore the implementation. Second, it allows for a
system of classes that work in similar ways, making a system predictable to
client programmers.

Polymorphism 209

I also discussed the idea of polymorphism in operators, explaining
how the same operator could do different operations with different types
of data. I showed how Python’s magic methods are used to make this hap-
pen and how you can build methods to implement these operators in your
own classes. To demonstrate the use of arithmetic and comparison operator
magic methods, I showed a Vector class and a Fraction class. I also showed
how you can use the __str__() method to help in debugging the content of
an object.

10
I N H E R I T A N C E

The third tenet of OOP is inheritance, which
is a mechanism for deriving a new class

from an existing class. Rather than starting
from scratch and potentially duplicating code,

inheritance allows a programmer to write code for
a new class that extends or differentiates it from an
existing class.

Let’s begin with a real-world example that demonstrates what inheri-
tance is basically about. You’re attending culinary school. One of your les-
sons involves an exhaustive demonstration of making hamburgers. You learn
everything that there is to know about the different cuts of meat, the grind-
ing of the meat, the best types of buns, the best lettuce, tomato, and condi-
ments—just about everything you could imagine. You also learn about the
best way to cook the hamburger, how long to cook it, when and how often to
flip it over, and so on.

The next lesson in the curriculum is about cheeseburgers. The instructor
could start from scratch and go through all the material about hamburgers

212 Chapter 10

again. But instead, they assume that you’ve retained the knowledge from the
previous lesson and so already know everything there is to know about creat-
ing a great hamburger. This lesson therefore focuses on what types of cheese
to use, when to add it, how much to use, and so on.

The point of the story is that there is no need to “reinvent the wheel”;
instead, you can simply add on to what you already know.

Inheritance in Object-Oriented Programming
Inheritance in OOP is the ability to create a class that builds on (extends) an
existing class. When creating large programs, you will often use classes that
provide very useful general capabilities. You’ll sometimes want to build a
class that’s similar to a class that already exists, but does some things slightly
differently. Inheritance allows you to do just that, creating a new class that
includes all the methods and instance variables of an existing class, but adds
new and different functionality.

Inheritance is an extremely powerful concept. When classes are set up
correctly, using inheritance can seem simple. However, being able to design
classes to use it in a clear manner is a skill that’s difficult to master. As an
implementer, inheritance takes a great deal of practice to use properly and
efficiently.

With inheritance, we talk about the relationship between two classes,
typically referred to as the base class and subclass.

	 Base class	 The class that is inherited from; it serves as a starting point for the subclass.

	 Subclass	 The class that is doing the inheriting; it enhances the base class.

While these are the most common terms used to describe the two
classes in Python, you may also hear them referred to in other ways, such as:

•	 Superclass and subclass

•	 Base class and derived class

•	 Parent class and child class

Figure 10-1 is a standard diagram that shows this relationship.

Inherits from

Base class

Subclass

Figure 10-1: A subclass inherits
from a base class.

Inheritance 213

A subclass inherits all of the methods and instance variables defined in
a base class.

Figure 10-2 provides a different, perhaps more accurate, way to think of
the relationship between the two classes.

Subclass

Base class

Figure 10-2: A base class is
incorporated into a subclass.

As the implementer, you can think of the base class as being incorpo-
rated into the subclass. That is, the base class actually becomes part of the
larger subclass. As a client of a subclass, you think about the subclass as a
single unit and do not need to know that the base class is there at all.

When discussing inheritance, we often say there is an is a relationship
between a subclass and a base class. For example, a student is a person, an
orange is a fruit, a car is a vehicle, and so on. The subclass is a specialized
version of the base class that inherits all the properties and behavior of the
base class, but also provides additional details and functionality.

Most importantly, a subclass extends a base class in either or both of
the following ways (which will be explained soon):

•	 A subclass can redefine a method that’s defined in the base class. That
is, a subclass can provide a method with same name as one in the base
class but with different functionality. This is called overriding a method.
When client code makes a call to an overridden method, the method in
the subclass is called. (However, the code of the method in the subclass
can still call the method of the same name in the base class.)

•	 A subclass can add new methods and instance variables that do not
appear in the base class.

One way to think of a subclass is with the phrase coding by difference.
Since the subclass inherits all the instance variables and methods of the
base class, it does not need to repeat all of that code; the subclass only
needs to contain code that differentiates it from the base class. The code
of the subclass therefore only contains new instance variables (and their
initialization), overriding methods, and/or new methods not found in the
base class.

Implementing Inheritance
The syntax of inheritance in Python is simple and elegant. The base class
does not need to know that it is being used as a base class. Only the subclass

214 Chapter 10

needs to indicate that it wants to inherit from a base class. Here is the gen-
eral syntax:

class <BaseClassName>():
 # BaseClass methods

class <SubClassName>(<BaseClassName>):
 # SubClass methods

In the class statement of the subclass, within the parentheses you spec-
ify the name of the base class it should inherit from. In this case, we want
the subclass <SubClassName> to inherit from the base class <BaseClassName>.
(Programmers will often use the word subclass as a verb, as in “Let’s subclass
ClassA to build ClassB.”) Here’s an example with real class names:

class Widget():
 # Widget's methods

class WidgetWithFrills(Widget):
 # WidgetWithFrills's methods

The Widget class will provide general functionality. The WidgetWithFrills
class will include everything from the Widget class and define any additional
methods and instance variables it wants with more specific capabilities.

Employee and Manager Example
I’ll start with an extremely simple example to make the key concepts clear,
then move on to some more practical examples.

Base Class: Employee
Listing 10-1 defines a base class called Employee.

File: EmployeeManagerInheritance/EmployeeManagerInheritance.py

Employee Manager inheritance
#
Define the Employee class, which we will use as a base class

class Employee():
 def __init__(self, name, title, ratePerHour=None):
 self.name = name
 self.title = title
 if ratePerHour is not None:
 ratePerHour = float(ratePerHour)
 self.ratePerHour = ratePerHour

 def getName(self):
 return self.name

 def getTitle(self):

Inheritance 215

 return self.title

 def payPerYear(self):
 # 52 weeks * 5 days a week * 8 hours per day
 pay = 52 * 5 * 8 * self.ratePerHour
 return pay

Listing 10-1: The Employee class, which will be used as a base class

The Employee class has the methods __init__(), getName(), getTitle(), and
payPerYear(). It also has three instance variables, self.name, self.title, and
self.ratePerHour, which are set in the __init__() method. We retrieve the
name and title using getter methods. These employees are paid per hour, so
self.payPerYear() does a calculation to determine the annual pay based on the
hourly rate. Everything in this class should be familiar to you; there is noth-
ing new here. You can instantiate an Employee object by itself, and it will work
fine.

Subclass: Manager
For the Manager class, we consider the differences between a manager and an
employee: the manager is a salaried employee who has a number of direct
reports. If this manager does a good job, they get a 10 percent bonus for the
year. The Manager class can extend the Employee class, since the manager is an
employee but has additional capabilities and responsibilities.

Listing 10-2 shows the code of our Manager class. It only needs to contain
code that is different from the Employee class, so you’ll see that it doesn’t
have a getName() or getTitle() method. Any calls to those methods with a
Manager object will be handled by the methods in the Employee class.

File: EmployeeManagerInheritance/EmployeeManagerInheritance.py

Define a Manager subclass that inherits from Employee

1 class Manager(Employee):
 def __init__(self, name, title, salary, reportsList=None):
 2 self.salary = float(salary)
 if reportsList is None:
 reportsList = []
 self.reportsList = reportsList
 3 super().__init__(name, title)

 4 def getReports(self):
 return self.reportsList

 5 def payPerYear(self, giveBonus=False):
 pay = self.salary
 if giveBonus:
 pay = pay + (.10 * self.salary) # add a bonus of 10%
 6 print(self.name, 'gets a bonus for good work')
 return pay

Listing 10-2: The Manager class, implemented as a subclass of the Employee class

216 Chapter 10

In the class statement 1, you can see that this class inherits from the
Employee class because Employee is inside the parentheses after the name
Manager.

The __init__() method of the Employee class expects a name, a title, and
an optional rate per hour. A manager is a salaried employee and manages a
number of employees, so the __init__() method of the Manager class expects
a name, a title, a salary, and a list of employees. Adhering to the principle
of coding by difference, the __init__() method starts by initializing any-
thing the __init__() method of the Employee class doesn’t do. Therefore, we
save the salary and reportsList in similarly named instance variables 2.

Next we want to call the __init__() method of the Employee base class 3.
Here, I am calling the built-in function super(), which asks Python to figure
out which class is the base class (often referred to as the superclass) and call
that class’s __init__() method. It also adjusts the arguments to include self
as the first argument in this call. Therefore, you can think of this line as
translating to:

Employee.__init__(self, name, title)

In fact, coding that line this way would work perfectly well; using the
call to super() is simply a much cleaner way to write the call without having
to specify the name of the base class.

The effect is that the new Manager class’s __init__() method initializes
the two instance variables (self.salary and self.reportsList) that are dif-
ferent from those in the Employee class, and the Employee class’s __init__()
method initializes the self.name and self.title instance variables that are
common to any Employee or Manager object that is created. For a Manager who
has a salary, self.ratePerHour is set to None.

N O T E 	 Older versions of Python required you to write this code in yet a third way, so you may
see this in older programs and documentation:

super(Employee, self).__init__(name, salary)

This also does the exact same thing. However, the newer syntax with the simple
call to super() is much easier to remember. Using super() also makes it less error-
prone if you decide that you want to change the name of your base class.

The Manager class has an added getter method, getReports() 4, that
allows client code to retrieve a list of Employees who report to the Manager.
The payPerYear() method 5 calculates and returns the Manager’s pay.

Notice that both the Employee and the Manager classes have a method
named payPerYear(). If you call the payPerYear() method using an instance
of Employee, the Employee class’s method will run and calculate the pay based
on the hourly rate. If you call the payPerYear() method with an instance of
Manager, the Manager class’s method will run and do a different calculation.
The payPerYear() method in the Manager class overrides the method by the
same name in the base class. Overriding a method in a subclass specializes

Inheritance 217

the subclass to differentiate it from the base class. The overriding method
must have the exact same name as the method that it overrides (although it
may have a different list of parameters). In the overriding method, you can:

•	 Completely replace the overridden method in the base class. We see
this in the payPerYear() method of the Manager class.

•	 Do some work on its own and call the inherited or overridden method
of the same name in the base class. We see this in the __init__()
method of the Manager class.

The actual content of the overriding method depends on the situation.
If the client makes a call to a method that does not exist in a subclass, the
method call will be sent on to the base class. For example, notice that there
is no method named getName() in the Manager class, but it does exist in the
Employee base class. If a client calls getName() on an instance of Manager, that
call is handled by the base class, Employee.

The payPerYear() method of the Manager class contains this code:

 if giveBonus:
 pay = pay + (.10 * self.salary) # add a bonus of 10%
 6 print(self.name, 'gets a bonus for good work')

The instance variable self.name was defined in the Employee class, but the
Manager class has no previous mention of it. This demonstrates that instance
variables defined in a base class are available for use in methods of a sub-
class. Here we are calculating the pay for a manager, which works correctly
because payPerYear() has access to instance variables defined inside its own
class (self.salary) and instance variables defined in the base class (printing
using self.name 6).

Test Code
Let’s test our Employee and Manager objects and call methods of each.

File: EmployeeManagerInheritance/EmployeeManagerInheritance.py

Create objects
oEmployee1 = Employee('Joe Schmoe', 'Pizza Maker', 16)
oEmployee2 = Employee('Chris Smith', 'Cashier', 14)
oManager = Manager('Sue Jones', 'Pizza Restaurant Manager',
 55000, [oEmployee1, oEmployee2])

Call methods of the Employee objects
print('Employee name:', oEmployee1.getName())
print('Employee salary:', '{:,.2f}'.format(oEmployee1.payPerYear()))
print('Employee name:', oEmployee2.getName())
print('Employee salary:', '{:,.2f}'.format(oEmployee2.payPerYear()))
print()

Call methods of the Manager object
managerName = oManager.getName()

218 Chapter 10

print('Manager name:', managerName)

Give the manager a bonus
print('Manager salary:', '{:,.2f}'.format(oManager.payPerYear(True)))
print(managerName, '(' + oManager.getTitle() + ')', 'direct reports:')
reportsList = oManager.getReports()
for oEmployee in reportsList:
 print(' ', oEmployee.getName(),
 '(' + oEmployee.getTitle() + ')')

When we run this code, we see the following output, as we would
expect:

Employee name: Joe Schmoe
Employee salary: 33,280.00
Employee name: Chris Smith
Employee salary: 29,120.00

Manager name: Sue Jones
Sue Jones gets a bonus for good work
Manager salary: 60,500.00
Sue Jones (Pizza Restaurant Manager) direct reports:
 Joe Schmoe (Pizza Maker)
 Chris Smith (Cashier)

The Client’s View of a Subclass
The discussion so far has been focused on the details of implementation.
But classes can look different depending on whether you are the developer
of a class or are writing code to use a class. Let’s change focus and take a
look at inheritance from the client’s point of view. As far as client code is
concerned, a subclass has all the functionality of the base class, plus any-
thing defined in the subclass itself. It may help to think about the result-
ing collection of methods as layers of paint on a wall. When a client looks
at the Employee class, the client sees all the methods defined in that class
(Figure 10-3).

init()
Client

Employee

getName()

getTitle()

payPerYear()

Figure 10-3: What a client would see looking at the
interface of the Employee class

Inheritance 219

When we introduce the Manager class that inherits from the Employee
class, it’s like adding paint to touch up the places where we want to add or
change methods. For methods that we don’t want to change, we just leave
the old layer of paint (Figure 10-4).

init()

payPerYear()

getReports()

init()
Client

Employee

getName()

getTitle()

payPerYear()

Manager

Figure 10-4: What a client would see looking at the interface of
the Manager class

As the developer, we know that the Manager class inherits from the
Employee class and overrides some methods. As the client, we just see five
methods. The client doesn’t need to know that some methods are imple-
mented in the Manager class and others come from the inherited Employee
class.

Real-World Examples of Inheritance
Let’s take a look at two real-world examples of inheritance. First, I’ll show
you how to build an input field that only allows you to enter numbers. I’ll
then build an output field that formats monetary values.

InputNumber
In this first example, we’ll create an input field that allows the user to input
only numerical data. As a general user interface design principle, it’s much
better to restrict the input to allow only for correctly formatted data while
the user is entering the data, rather than allowing any input and checking
its correctness later. Entering letters or other symbols in this input field, or
attempting to enter multiple decimal points or multiple minus signs, should
not be allowed.

The pygwidgets package contains an InputText class that allows the user
to input any characters. We’ll write an InputNumber class to allow only valid
numbers as input. The new InputNumber class will inherit much of its code
from InputText. We’ll only need to override three methods of InputText:
__init__(), handleEvent(), and getValue(). Listing 10-3 shows the InputNumber
class that overrides these methods.

220 Chapter 10

File: MoneyExamples/InputNumber.py

InputNumber class - allows the user to enter only numbers
#
Demo of inheritance

import pygame
from pygame.locals import *
import pygwidgets

BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
Tuple of legal editing keys
LEGAL_KEYS_TUPLE = (pygame.K_RIGHT, pygame.K_LEFT, pygame.K_HOME,
 pygame.K_END, pygame.K_DELETE, pygame.K_BACKSPACE,
 pygame.K_RETURN, pygame.K_KP_ENTER)
Legal keys to be typed
LEGAL_UNICODE_CHARS = ('0123456789.-')

#
InputNumber inherits from InputText
#
class InputNumber(pygwidgets.InputText):

 def __init__(self, window, loc, value='', fontName=None, 1
 fontSize=24, width=200, textColor=BLACK,
 backgroundColor=WHITE, focusColor=BLACK,
 initialFocus=False, nickName=None, callback=None,
 mask=None, keepFocusOnSubmit=False,
 allowFloatingNumber=True, allowNegativeNumber=True):
 self.allowFloatingNumber = allowFloatingNumber
 self.allowNegativeNumber = allowNegativeNumber

 # Call the __init__ method of our base class
 super().__init__(window, loc, value, fontName, fontSize, 2
 width, textColor, backgroundColor,
 focusColor, initialFocus, nickName, callback,
 mask, keepFocusOnSubmit)

 # Override handleEvent so we can filter for proper keys
 def handleEvent(self, event): 3
 if (event.type == pygame.KEYDOWN):
 # If it's not an editing or numeric key, ignore it
 # Unicode value is only present on key down
 allowableKey = (event.key in LEGAL_KEYS_TUPLE) or
 (event.unicode in LEGAL_UNICODE_CHARS))
 if not allowableKey:
 return False

 if event.unicode == '-': # user typed a minus sign
 if not self.allowNegativeNumber:
 # If no negatives, don't pass it through
 return False
 if self.cursorPosition > 0:

Inheritance 221

 return False # can't put minus sign after 1st char
 if '-' in self.text:
 return False # can't enter a second minus sign

 if event.unicode == '.':
 if not self.allowFloatingNumber:
 # If no floats, don't pass the period through
 return False
 if '.' in self.text:
 return False # can't enter a second period

 # Allow the key to go through to the base class
 result = super().handleEvent(event)
 return result

 def getValue(self): 4
 userString = super().getValue()
 try:
 if self.allowFloatingNumber:
 returnValue = float(userString)
 else:
 returnValue = int(userString)
 except ValueError:
 raise ValueError('Entry is not a number, needs to have at least one digit.')

 return returnValue

Listing 10-3: InputNumber only allows the user to enter numeric data.

The __init__() method allows for the same parameters as the InputText
base class, plus a few more 1. It adds two Booleans: allowFloatingNumber to
determine if the user should be allowed to enter floating-point numbers
and allowNegativeNumber to determine if the user can enter a number starting
with a minus sign. Both default to True, so the default case allows the user to
enter a floating-point number and both positive and negative numbers. You
could use these to restrict the user to, for example, only entering a positive
integer value by setting both to False. The __init__() method saves the val-
ues of these two additional parameters in instance variables, then calls the
__init__() method of the base class using the call to super() 2.

The significant code is in the handleEvent() method 3, which restricts
the allowed keys to a small subset: the numbers zero through nine, the
minus sign, a period (decimal point), ENTER, and a few editing keys. When
the user presses a key, this method is called and a KEYDOWN or KEYUP event is
passed in. The code first ensures that the key pressed is in the restricted set.
If the user enters a key not in that set (for example, any letter), we return
False to indicate that nothing important has happened in this widget, and
that key is ignored.

The handleEvent() method then does a few more checks to ensure that
the number being entered is legal (for example, doesn’t have two periods,
only has one minus sign and, so on). Whenever a valid key press is detected,
the code calls the handleEvent() method of the InputText base class to do
whatever it needs to do with that key (display or edit the field).

222 Chapter 10

When the user presses RETURN or ENTER, client code calls the get-
Value() method 4 to get the user’s entry. The getValue() method in this class
calls getValue() in the InputText class to get the string from the field, then
attempts to convert that string to a number. If that conversion fails, it raises an
exception.

By overriding methods, we have built a very powerful new reusable class
that extends the functionality of the InputText class, without changing a
single line in the base class. InputText will continue to function as a class by
itself, without any changes to its functionality whatsoever.

DisplayMoney
As a second real-world example, we’ll create a field to display an amount of
money. To make this general, we’ll display the amount with a chosen cur-
rency symbol, place that currency symbol to the left or the right of the text
(as appropriate), and format the number by adding commas between every
three digits, followed by a period and then two decimal digits. For example,
we would like to be able to display 1234.56 US dollars as $1,234.56.

The pygwidgets package already has a DisplayText class. We can instanti-
ate an object from that class using the following interface:

def __init__(self, window, loc=(0, 0), value='',
 fontName=None, fontSize=18, width=None, height=None,
 textColor=PYGWIDGETS_BLACK, backgroundColor=None,
 justified='left', nickname=None):

Let’s assume that we have some code that creates a DisplayText object
named oSomeDisplayText using the appropriate arguments. Any time that we
want to update the text in a DisplayText object, we must call its setValue()
method, like this:

 oSomeDisplayText.setValue('1234.56')

The functionality of displaying a number (as a string) with a DisplayText
object already exists. We want to create a new class named DisplayMoney that is
similar to DisplayText but adds functionality, so we’ll inherit from DisplayText.

Our DisplayMoney class will have an enhanced version of the setValue()
method that overrides the base class’s setValue() method. The DisplayMoney
version will add the desired formatting, by adding a currency symbol, add-
ing commas, optionally truncating to two decimal digits, and so on. At the
end, the method will call the inherited setValue() method of the DisplayText
base class and pass in a string version of the formatted text to display in the
window.

We’ll also add some additional setup parameters in the __init__()
method to allow client code to:

•	 Choose the currency symbol (defaults to $)

•	 Place the currency symbol on the left or right (defaults to left)

•	 Show or hide two decimal places (defaults to show)

Inheritance 223

Listing 10-4 shows the code of our new DisplayMoney class.

File: MoneyExamples/DisplayMoney.py

DisplayMoney class - displays a number as an amount of money
#
Demo of inheritance

import pygwidgets

BLACK = (0, 0, 0)

#
DisplayMoney class inherits from DisplayText class
#
1 class DisplayMoney(pygwidgets.DisplayText):

 2 def __init__(self, window, loc, value=None,
 fontName=None, fontSize=24, width=150, height=None,
 textColor=BLACK, backgroundColor=None,
 justified='left', nickname=None, currencySymbol='$',
 currencySymbolOnLeft=True, showCents=True):

 3 self.currencySymbol = currencySymbol
 self.currencySymbolOnLeft = currencySymbolOnLeft
 self.showCents = showCents
 if value is None:
 value = 0.00

 # Call the __init__ method of our base class
 4 super().__init__(window, loc, value,
 fontName, fontSize, width, height,
 textColor, backgroundColor, justified)

 5 def setValue(self, money):
 if money == '':
 money = 0.00

 money = float(money)

 if self.showCents:
 money = '{:,.2f}'.format(money)
 else:
 money = '{:,.0f}'.format(money)

 if self.currencySymbolOnLeft:
 theText = self.currencySymbol + money
 else:
 theText = money + self.currencySymbol

 # Call the setValue method of our base class
 6 super().setValue(theText)

Listing 10-4: DisplayMoney displays a number formatted as a monetary value.

224 Chapter 10

In the class definition, we explicitly inherit from pygwidgets.DisplayText 1.
The DisplayMoney class only contains two methods: __init__() and setValue().
These two methods override the methods with the same names in the base
class.

A client instantiates a DisplayMoney object like this:

oDisplayMoney = DisplayMoney(widow, (100, 100), 1234.56)

With this line, the __init__() method in DisplayMoney 2 will run and
override the __init__() method in the base class. This method does some
initialization, including saving any client preferences for the currency
symbol, the side on which to show the symbol, and whether or not we
should show cents, all in instance variables 3. The method ends with a
call to the __init__() method of the base class, DisplayText 4 (which it
finds by calling super()), and passes on the data required by that
method.

Later, the client makes a call like this to show a value:

oDisplayMoney.setValue(12233.44)

The setValue() method 5 in the DisplayMoney class runs to create a ver-
sion of the amount of money formatted as a currency value. The method
ends by calling the inherited setValue() method in the DisplayText class 6 to
set the new text to display.

When a call is made to any other method with an instance of DisplayMoney,
the version residing in DisplayText will run. Most importantly, every time
through the loop, the client code should call oDisplayMoney.draw(), which
draws the field in the window. Since DisplayMoney does not have a draw()
method, that call will go to the DisplayText base class, which does have a
draw() method.

Example Usage
Figure 10-5 shows the output of an example program that takes advantage
of both the InputNumber and DisplayMoney classes. The user enters a number
into an InputNumber field. When the user presses OK or ENTER, that value will
be displayed in the two DisplayMoney fields. The first field shows the number
with decimal places, and the second rounds to the closest dollar using dif-
ferent initial settings.

Listing 10-5 contains the full code of the main program. Notice
that the code creates a single InputNumber object and two DisplayMoney
objects.

Inheritance 225

Figure 10-5: A client program where the user enters an amount into an InputNumber
field and the amount is displayed in two DisplayMoney fields

File: MoneyExamples/Main_MoneyExample.py

Money example
#
Demonstrates overriding inherited DisplayText and InputText methods

1 - Import packages
import pygame
from pygame.locals import *
import sys
import pygwidgets
from DisplayMoney import *
from InputNumber import *

2 - Define constants
BLACK = (0, 0, 0)
BLACKISH = (10, 10, 10)
GRAY = (128, 128, 128)
WHITE = (255, 255, 255)
BACKGROUND_COLOR = (0, 180, 180)
WINDOW_WIDTH = 640
WINDOW_HEIGHT = 480
FRAMES_PER_SECOND = 30

3 - Initialize the world
pygame.init()
window = pygame.display.set_mode([WINDOW_WIDTH, WINDOW_HEIGHT])
clock = pygame.time.Clock()

4 - Load assets: image(s), sound(s), etc.

226 Chapter 10

5 - Initialize variables
title = pygwidgets.DisplayText(window, (0, 40),
 'Demo of InputNumber and DisplayMoney fields',
 fontSize=36, width=WINDOW_WIDTH, justified='center')

inputCaption = pygwidgets.DisplayText(window, (20, 150),
 'Input money amount:', fontSize=24,
 width=190, justified='right')
inputField = InputNumber(window, (230, 150), '', width=150), inputFocus=True
okButton = pygwidgets.TextButton(window, (430, 150), 'OK')

outputCaption1 = pygwidgets.DisplayText(window, (20, 300),
 'Output dollars & cents: ', fontSize=24,
 width=190, justified='right')
moneyField1 = DisplayMoney(window, (230, 300), '', textColor=BLACK,
 backgroundColor=WHITE, width=150)

outputCaption2 = pygwidgets.DisplayText(window, (20, 400),
 'Output dollars only: ', fontSize=24,
 width=190, justified='right')
moneyField2 = DisplayMoney(window, (230, 400), '', textColor=BLACK,
 backgroundColor=WHITE, width=150,
 showCents=False)

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 # If the event was a click on the close box, quit pygame and the program
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 # Pressing Return/Enter or clicking OK triggers action
 if inputField.handleEvent(event) or okButton.handleEvent(event): 1
 try:
 theValue = inputField.getValue()
 except ValueError: # any remaining error
 inputField.setValue('(not a number)')
 else: # input was OK
 theText = str(theValue)
 moneyField1.setValue(theText)
 moneyField2.setValue(theText)

 # 8 Do any "per frame" actions

 # 9 - Clear the window
 window.fill(BACKGROUND_COLOR)

 # 10 - Draw all window elements
 title.draw()
 inputCaption.draw()
 inputField.draw()
 okButton.draw()

Inheritance 227

 outputCaption1.draw()
 moneyField1.draw()
 outputCaption2.draw()
 moneyField2.draw()

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND) # make pygame wait

Listing 10-5: The main program to demonstrate the InputNumber and DisplayMoney classes

The user enters the number into an InputNumber field. As the user types,
any inappropriate characters are filtered out and ignored by the handleEvent()
method. When the user clicks OK 1, the code reads the input and passes it to
the two DisplayMoney fields. The first shows the dollar and cents amount (with
two decimal digits), while the second shows the value in dollars only. Both
add a $ as the currency symbol and add commas every three digits.

Multiple Classes Inheriting from the Same Base Class
Multiple different classes can inherit from the same base class. You can
build a very general base class, then construct any number of subclasses
that inherit from it. Figure 10-6 is a representation of this relationship.

Inherits from

…

Base class

Subclass SubclassSubclass

Figure 10-6: Three or more different subclasses inheriting from a common base class

Each of the different subclasses can then be a variant (a more specific
version) of the generic base class. Each subclass can override any methods
of the base class that it wants to or needs to, independent of any other
subclass.

Let’s walk through an example using the Shapes program from
Chapter 9 that created and drew circles, squares, and triangles. The code
also allowed the user to click on any shape in the window to see the area of
that shape.

The program was implemented with three different shape classes:
Circle, Square, and Triangle. If we look back at those three classes, we find
that each one has this exact same method:

 def getType(self):
 return self.shapeType

228 Chapter 10

Further, looking at the __init__() methods of the three classes, we find
that there is some common code that remembers the window, chooses a
random color, and chooses a random location:

 self.window = window
 self.color = random.choice((RED, GREEN, BLUE))
 self.x = random.randrange(1, maxWidth - 100)
 self.y = random.randrange(1, maxHeight - 100)

Finally, each class sets the instance variable self.shapeType to an appro-
priate string.

Whenever we find a set of classes that implement the exact same method
and/or share some code in a commonly named method, we should recog-
nize that this is a good candidate for inheritance.

Let’s extract the common code from the three classes and build a com-
mon base class named Shape, shown in Listing 10-6.

File: InheritedShapes/ShapeBasic.py

Shape class - basic

import random

Set up the colors
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)

class Shape():

 1 def __init__(self, window, shapeType, maxWidth, maxHeight):
 self.window = window
 self.shapeType = shapeType
 self.color = random.choice((RED, GREEN, BLUE))
 self.x = random.randrange(1, maxWidth - 100)
 self.y = random.randrange(25, maxHeight - 100)

 2 def getType(self):
 return self.shapeType

Listing 10-6: The Shape class, to be used as a base class

The class consists of only two methods: __init__() and getType(). The
__init__() method 1 remembers the data passed in in instance vari-
ables, then randomly chooses a color and a starting location (self.x and
self.y). The getType() method 2 just returns the type of the shape given
at initialization.

We can now write any number of subclasses that inherit from Shape.
We’ll create three subclasses that will call the __init__() method of the Shape
class, passing in a string that identifies its type and the size of the window.
The getType() method will only appear in the Shape class, so any client calls

Inheritance 229

to getType() will be handled by that method in the inherited Shape class.
We’ll start with the code for the Square class, shown in Listing 10-7.

File: InheritedShapes/Square.py

Square class

import pygame
from Shape import *

 class Square(Shape): 1

 def __init__(self, window, maxWidth, maxHeight):
 super().__init__(window, 'Square', maxWidth, maxHeight) 2
 self.widthAndHeight = random.randrange(10, 100)
 self.rect = pygame.Rect(self.x, self.y,
 self.widthAndHeight, self.widthAndHeight)

 def clickedInside(self, mousePoint): 3
 clicked = self.rect.collidepoint(mousePoint)
 return clicked

 def getArea(self): 4
 theArea = self.widthAndHeight * self.widthAndHeight
 return theArea

 def draw(self): 5
 pygame.draw.rect(self.window, self.color,
 (self.x, self.y, self.widthAndHeight, self.widthAndHeight))

Listing 10-7: The Square class that inherits from the Shape class

The Square class starts by inheriting from the Shape class 1. The
__init__() method calls the __init__() method of its base class (or super-
class) 2, identifying this shape as a square and randomly choosing its size.

Next we have three methods whose implementation is specific
to a square. The clickedInside() method only needs to make a call to
rect.collidepoint() to determine if a click happened inside its rectan-
gle 3. The getArea() method simply multiplies the widthAndHeight by the
widthAndHeight 4. Finally, the draw() method draws a rectangle using the
value of widthAndHeight 5.

Listing 10-8 shows the Circle class, which has also been modified to
inherit from the Shape class.

File: InheritedShapes/Circle.py

Circle class

import pygame
from Shape import *
import math

230 Chapter 10

class Circle(Shape):

 def __init__(self, window, maxWidth, maxHeight):
 super().__init__(window, 'Circle', maxWidth, maxHeight)
 self.radius = random.randrange(10, 50)
 self.centerX = self.x + self.radius
 self.centerY = self.y + self.radius
 self.rect = pygame.Rect(self.x, self.y, self.radius * 2, self.radius * 2)

 def clickedInside(self, mousePoint):
 theDistance = math.sqrt(((mousePoint[0] - self.centerX) ** 2) +
 ((mousePoint[1] - self.centerY) ** 2))
 if theDistance <= self.radius:
 return True
 else:
 return False

 def getArea(self):
 theArea = math.pi * (self.radius ** 2)
 return theArea

 def draw(self):
 pygame.draw.circle(self.window, self.color, (self.centerX, self.centerY),
 self.radius, 0)

Listing 10-8: The Circle class that inherits from the Shape class

The Circle class also contains the clickedInside(), getArea(), and draw()
methods, whose implementation is specific to a circle.

Finally, Listing 10-9 shows the code of the Triangle class.

File: InheritedShapes/Triangle.py

Triangle class

import pygame
from Shape import *

class Triangle(Shape):

 def __init__(self, window, maxWidth, maxHeight):
 super().__init__(window, 'Triangle', maxWidth, maxHeight)
 self.width = random.randrange(10, 100)
 self.height = random.randrange(10, 100)
 self.triangleSlope = -1 * (self.height / self.width)
 self.rect = pygame.Rect(self.x, self.y, self.width, self.height)

 def clickedInside(self, mousePoint):
 inRect = self.rect.collidepoint(mousePoint)
 if not inRect:
 return False

 # Do some math to see if the point is inside the triangle
 xOffset = mousePoint[0] - self.x

Inheritance 231

 yOffset = mousePoint[1] – self.y
 if xOffset == 0:
 return True

 pointSlopeFromYIntercept = (yOffset – self.height) / xOffset # rise over run
 if pointSlopeFromYIntercept < 1:
 return True
 else:
 return False

 def getArea(self):
 theArea = .5 * self.width * self.height
 return theArea

 def draw(self):
 pygame.draw.polygon(self.window, self.color, (
 (self.x, self.y + self.height),
 (self.x, self.y),
 (self.x + self.width, self.y)))

Listing 10-9: The Triangle class that inherits from the Shape class

The main code we used for testing in Chapter 9 doesn’t have to change at
all. As a client of these new classes, it instantiates Square, Circle, and Triangle
objects without having to worry about the implementation of those classes. It
doesn’t need to know that each is subclassed from a common Shape class.

Abstract Classes and Methods
Unfortunately, our Shape base class has a potential bug. At the moment, a
client could instantiate a generic Shape object, which is too generic to have
its own getArea() method. Further, all classes that inherit from the Shape
class (like Square, Circle, and Triangle) must implement clickedInside(),
getArea(), and draw(). To solve both of these problems, I’ll introduce the
concepts of an abstract class and an abstract method.

	abstract class	 A class that is not intended to be instantiated directly, but only to be used as a base
class by one or more subclasses. (In some other languages, an abstract class is
referred to as a virtual class.)

	abstract method	 A method that must be overridden in every subclass.

Often, a base class cannot correctly implement an abstract method
because it cannot know the detailed data it should operate on, or it may not
be possible to implement a general algorithm. Instead, all subclasses need
to implement their own version of the abstract method.

In our shapes example, we want the Shape class to be an abstract class
so no client code can instantiate a Shape object. Further, our Shape class

232 Chapter 10

should indicate that all its subclasses need to implement the clickedInside(),
getArea(), and draw() methods.

Python does not have a keyword to designate a class or method as
abstract. However, the Python Standard Library contains the abc mod-
ule, short for abstract base class, which is designed to help developers build
abstract base classes and methods.

Let’s take a look at what we need to do to build an abstract class with
abstract methods. To begin, we need to import two things from the abc
module:

from abc import ABC, abstractmethod

Next, we need to indicate that the class we want to act as an abstract
base class should inherit from the ABC class, which we do by putting ABC
inside parentheses after the class name:

class <classWeWantToDesignateAsAbstract>(ABC):

We then must use the special decorator @abstractmethod before any meth-
ods that must be overwritten by all subclasses:

@abstractmethod
def <someMethodThatMustBeOverwritten>(self, ...):

Listing 10-10 shows how we can mark our Shape class as an abstract base
class and indicate its abstract methods.

File: InheritedShapes/Shape.py

Shape class
#
To be used as a base class for other classes

import random
from abc import ABC, abstractmethod

Set up the colors
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)

1 class Shape(ABC): # identifies this as an abstract base class

 2 def __init__(self, window, shapeType, maxWidth, maxHeight):
 self.window = window
 self.shapeType = shapeType
 self.color = random.choice((RED, GREEN, BLUE))
 self.x = random.randrange(1, maxWidth - 100)
 self.y = random.randrange(25, maxHeight - 100)

 3 def getType(self):
 return self.shapeType

Inheritance 233

 4 @abstractmethod
 def clickedInside(self, mousePoint):
 raise NotImplementedError

 5 @abstractmethod
 def getArea(self):
 raise NotImplementedError

 6 @abstractmethod
 def draw(self):
 raise NotImplementedError

Listing 10-10: The Shape base class that inherits from ABC with abstract methods

The Shape class inherits from the ABC class 1, telling Python to prevent
client code from instantiating a Shape object directly. Any attempt to do so
results in the following error message:

TypeError: Can't instantiate abstract class Shape with abstract methods
clickedInside, draw, getArea

The __init__() 2 and getType() 3 methods contain code that will be
shared by all subclasses of Shape.

The clickedInside() 4, getArea() 5, and draw() 6 methods are all pre-
ceded by the @abstractmethod decorator. This decorator indicates that these
methods must be overwritten by all subclasses of Shape. Since these methods
in this abstract class will never run, the implementation here consists only
of raise NotImplementedError to further emphasize that the method doesn’t
do anything.

Let’s extend the shape demonstration program to add a new Rectangle
class, as shown in Listing 10-11. The Rectangle class inherits from the
abstract Shape class and therefore must implement the clickedInside(),
getArea(), and draw() methods. I’ll make an intentional error in this subclass
to show what happens.

File: InheritedShapes/Rectangle.py

Rectangle class

import pygame
from Shape import *

class Rectangle(Shape):

 def __init__(self, window, maxWidth, maxHeight):
 super().__init__(window, 'Rectangle', maxWidth, maxHeight)
 self.width = random.randrange(10, 100)
 self.height = random.randrange(10, 100)
 self.rect = pygame.Rect(self.x, self.y, self.width, self.height)

 def clickedInside(self, mousePoint):

234 Chapter 10

 clicked = self.rect.collidepoint(mousePoint)
 return clicked

 def getArea(self):
 theArea = self.width * self.height
 return theArea

Listing 10-11: The Rectangle class that implements clickedInside() and getArea(), but not draw()

As a demonstration, this class mistakenly does not contain a draw()
method. Listing 10-12 shows a modified version of the main code that
includes the creation of Rectangle objects.

File: InheritedShapes/Main_ShapesWithRectangle.py

shapesList = []
shapeClassesTuple = ('Square', 'Circle', 'Triangle', 'Rectangle')
for i in range(0, N_SHAPES):
 randomlyChosenClass = random.choice(shapeClassesTuple)
 oShape = randomlyChosenClass(window, WINDOW_WIDTH, WINDOW_HEIGHT)
 shapesList.append(oShape)

Listing 10-12: The main code that randomly creates Squares, Circles, Triangles, and
Rectangles

When this code attempts to create a Rectangle object, Python generates
this error message:

TypeError: Can't instantiate abstract class Rectangle with abstract method
draw

This tells us that we cannot instantiate a Rectangle object because we did
not write a draw() method in our Rectangle class. Adding a draw() method to
the Rectangle class (with appropriate code to draw the rectangle) fixes the
error.

How pygwidgets Uses Inheritance
The pygwidgets module uses inheritance to share common code. For exam-
ple, consider the two button classes we discussed in Chapter 7: TextButton
and CustomButton. The TextButton class requires a string to be used as a label
on the button, while the CustomButton class requires you to supply your own
art. The way that you create an instance of each of these classes is dif-
ferent—you need to specify a different set of arguments. However, once
created, all the remaining methods of both objects are exactly the same.
That’s because the two classes inherit from a common base class, named
PygWidgetsButton (Figure 10-7).

PygWidgetsButton is an abstract class. Client code is not supposed to
create an instance of it, and attempting to do so will generate an error
message.

Inheritance 235

(Abstract base class)

Inherits from

TextButton CustomButton

PygWidgetsButton

Figure 10-7: The pygwidgets TextButton and CustomButton
classes both inherit from PygWidgetsButton.

Instead, PygWidgetsButton is subclassed by the TextButton and CustomButton
classes. Those classes each provide the single method, __init__(), which
will do whatever is needed to initialize their type of button. Each will then
pass on identical arguments to the __init__() method of the base class,
PygWidgetsButton.

The TextButton class is used to build a text-based button with minimal
art. This is helpful when trying to get programs up and running quickly.
Here is the interface for creating a TextButton object:

def __init__(self, window, loc, text, width=None, height=40,
 textColor=PYGWIDGETS_BLACK,
 upColor= PYGWIDGETS_NORMAL_GRAY,
 overColor= PYGWIDGETS_OVER_GRAY,
 downColor=PYGWIDGETS_DOWN_GRAY,
 fontName=None, fontSize=20, soundOnClick=None,
 enterToActivate=False, callBack=None, nickname=None)

While many of the parameters default to reasonable values, the caller
must provide a value for text, which will appear on the button. The __init__()
method itself creates “surfaces” (images) for the button that are used in dis-
playing a standard button. The code to create a typical TextButton object looks
like this:

oButton = pygwidgets.TextButton(window, (50, 50), 'Text Button')

When drawn, the user sees a button that looks like Figure 10-8.

Figure 10-8: An example of a
typical TextButton

The CustomButton class is used to build a button using artwork the client
supplies. Here is the interface for creating a CustomButton:

def __init__(self, window, loc, up, down=None, over=None,
 disabled=None, soundOnClick=None,
 nickname=None, enterToActivate=False):

236 Chapter 10

The key difference is that this version of the __init__() method requires
the caller to supply a value for the up parameter (remember, a button has
four images: up, down, disabled, and over). You can optionally also sup-
ply down, over, and disabled images. For any image that is not supplied,
CustomButton makes a copy of the up image of the button and uses that.

The last line of the __init__() methods for both the TextButton and
CustomButton classes is a call to the __init__() method of the common base
class, PygWidgetsButton. Both calls pass in four images for the button, along
with other arguments:

super().__init__(window, loc, surfaceUp, surfaceOver,
 surfaceDown, surfaceDisabled, buttonRect,
 soundOnClick, nickname, enterToActivate, callBack)

From the client’s point of view, you see two completely different classes
with many methods (most of which are identical). But from the implement-
er’s point of view, you can now see how inheritance allowed us to override
the single __init__() method in the base class to provide client program-
mers with two similar, but very useful, ways of creating buttons. The two
classes share everything other than the __init__() method. Therefore,
the way that the buttons function, and the method calls that are available
(handleEvent(), draw(), disable(), enable(), and so on), must be identical.

There are a number of benefits to this kind of inheritance. First, it pro-
vides consistency for both the client code and the end user: TextButton and
CustomButton objects work the same way. It also makes bugs easier to fix—
fixing a bug in a base class means you have then fixed the bug in all sub-
classes that inherit from it. Finally, if you add functionality in the base class,
it is available immediately in all classes that inherit from the base class.

Class Hierarchy
Any class can be used as a base class, even a subclass that already inherits
from another base class. This kind of relationship, known as a class hierarchy,
is depicted in Figure 10-9.

Inherits from

Class A

Class B

Inherits from

Class C

Figure 10-9: A class hierarchy

Inheritance 237

In this figure, class C inherits from class B, which inherits from class A.
Therefore, class C is a subclass and class B is a base class, but class B is also a
subclass of class A. So, class B serves in both roles. In cases like this, class C
inherits not only all the methods and instance variables in class B, but also
all the methods and instance variables in class A. This type of hierarchy can
be very useful when building more and more specific classes. Class A can be
very general, class B more detailed, and class C even more specific.

Figure 10-10 provides a different way to think about the relationships in
a class hierarchy.

Class C

Class B

Class A

Figure 10-10: A different way of
portraying a class hierarchy

Here, the client sees only class C, but this class is made up of all the
methods and instance variables defined collectively in classes C, B, and A.

The pygwidgets package uses a class hierarchy for all widgets. The first
class in pygwidgets is the abstract class PygWidget, which supplies basic func-
tionality to all widgets in the package. Its code consists of methods that
allow for showing and hiding, enabling and disabling, getting and setting
the location, and getting the nickname (internal name) of any widget.

There are other classes in pygwidgets that are used as abstract classes,
including the aforementioned PygWidgetsButton, which is the base class of
both TextButton and CustomButton. Figure 10-11 should help make this rela-
tionship clear.

Inherits from

Inherits from

PygWidget

TextButton CustomButton

PygWidgetsButton

Figure 10-11: Class hierarchy in pygwidgets

238 Chapter 10

As you can see, the PygWidgetsButton class is both a subclass of PygWidget
and a base class for TextButton and CustomButton.

The Difficulty of Programming with Inheritance
When developing using inheritance, it can be difficult to understand what
to put where. You’re constantly asking yourself questions like: Should this
instance variable be in the base class? Is there enough common code in sub-
classes to create a method in the base class? What are appropriate param-
eters for a method in a subclass? What are appropriate parameters and
defaults to be used in a base class that expects to be overridden or called
from a subclass?

Attempting to understand the interactions among all the variables and
methods in a hierarchy of classes can be an extremely difficult, tricky, and
frustrating task. This is especially true when reading the code of a class
hierarchy developed by another programmer. To fully understand what’s
going on, you often have to become familiar with the code in the base
classes all the way up the hierarchy.

For example, imagine a hierarchy in which class D is a subclass of C,
which is a subclass of B, which is a subclass of the base class A. In class D, you
may encounter code that branches based on the value of an instance vari-
able, but that variable might never be set in the code of class D. In cases like
this, you must look for the instance variable in the code of class C. If it is not
found there, then you must look in the code of class B, and so on.

When designing a class hierarchy, perhaps the best way to avoid this
problem is to only call methods and use instance variables inherited from
one layer up in the hierarchy. In our example, code in class D should only
make calls to methods in class C, while class C should only make calls to
methods in class B, and so on. This is a simplistic version of the Law of
Demeter. Stated simply, you (meaning objects) should only talk to your
immediate friends (nearby objects) and never talk to strangers (distant
objects). A detailed discussion is beyond the scope of this book, but there
are many references available on the internet.

Another approach, which we first talked about in Chapter 4, is to take
advantage of composition, where an object instantiates one or more other
objects. The key difference is that inheritance is used to model an “is a”
relationship, whereas composition uses a “has a” relationship. For example,
if we wanted to have a spinbox widget (an editable text number field with
an up and a down arrow), we could build a SpinBox class that instantiates
a DisplayNumber object and two CustomButton objects for the arrows. Each of
these objects already knows how to handle its user interactions.

Inheritance 239

MULT IPL E INHER ITA NCE

You’ve seen how a class can inherit from another class. In fact, Python (like
some other programming languages) allows a class to inherit from more than
just one class. This is known as multiple inheritance. The Python syntax is for
inheriting from more than one class is quite straightforward:

class SomeClass(<BaseClass1>, <BaseClass2>, ...):

However, it’s important to be aware that multiple inheritance can poten-
tially introduce conflicts when the base classes you inherit from contain iden-
tically named methods and/or instance variables. Python does have rules
(known as the method resolution order, or MRO) to resolve these potential
problems. I consider this an advanced topic and will not cover it here, but if
you want to look into it, a detailed discussion can be found at https://www
.python.org/download/releases/2.3/mro.

Summary
This was a very ambitious chapter on the topic of inheritance: the art of
“programming by difference.” The basic idea of inheritance is to build a
class (a subclass) that incorporates all the methods and instance variables
of another class (a base class), thereby allowing you to reuse existing code.
Your new subclass can choose to use or override the methods of the base
class, as well as define its own methods. A method in a subclass can find the
base class by using a call to super().

We built two classes, InputNumber and DisplayMoney that provide highly
reusable functionality. These classes are implemented as subclasses that use
classes in the pygwidgets package as base classes.

Any client code that uses your subclass will see an interface that incor-
porates methods defined in both the subclass and the base class. Any num-
ber of subclasses can be built using the same base class. An abstract class
is one that is not intended to be instantiated by client code, but rather is
intended only to be inherited from by subclasses. An abstract method in a
base class is one that must be overridden in each subclass.

We worked through a number of examples to demonstrate inheritance
in the pygwidgets package, including how the TextButton and CustomButton
classes both inherit from a common base class, PygWidgetsButton.

I showed how you can build a class hierarchy, where a class inherits
from another class, which in turn inherits from a third class, and so on.

Inheritance can be complex—reading someone else’s code can be
confusing—but as we’ve seen, inheritance can be extremely powerful.

https://www.python.org/download/releases/2.3/mro
https://www.python.org/download/releases/2.3/mro

11
M A N A G I N G M E M O R Y

U S E D B Y O B J E C T S

This chapter will explain a few important
concepts of Python and OOP, such as the

lifetime of an object (including deleting an
object) and class variables, that didn’t fit well

in the earlier chapters in this section. To tie all of this
together, we’ll build a small game. I’ll also introduce
slots, a memory management technique for objects.
This chapter should give you a better understanding
of how your code can affect the way that memory is
used by objects.

242 Chapter 11

Object Lifetime
In Chapter 2, I defined an object as “Data, plus code that acts on that data,
over time.” I’ve talked quite a bit about data (instance variables) and the
code that acts on that data (methods), but I haven’t explained much about
the time aspect. That will be my focus here.

You already know that a program can create an object at any time.
Often, a program will create one or more objects at startup and use those
objects throughout its operation. However, in many cases a program will
want to create an object when it needs it, but release or remove the object
when it’s done using it to free up the resources that the object uses (mem-
ory, files, network connections, and so on). Here are a few examples:

•	 A “transaction” object that’s used while a customer is making an
electronic purchase. When the purchase is completed, the object is
destroyed.

•	 An object to handle communication over the internet that’s released
when the communication is completed.

•	 Transient objects in a game. The program could instantiate many cop-
ies of bad guys, aliens, spaceships, and so on; as the player destroys each
one, the program can eliminate the underlying object.

The period of time from the instantiation of an object until it is destroyed
is known as the object’s lifetime. To understand the lifetime of an object, you
first need to know about a related underlying concept having to do with the
implementation of objects in Python (and some other OOP languages): the
reference count.

Reference Count
There are a number of different implementations of Python. The following
discussion of reference counts applies to the official version released by the
Python Software Foundation—the version downloaded from python.org—
that’s commonly known as CPython. Other implementations of Python may
use a different approach.

Part of the philosophy of Python is that programmers should never
have to worry about the details of managing memory. Python takes care of
that for you. However, having a basic idea of how Python manages memory
will be helpful in understanding how and when objects are released back to
the system.

Whenever a program instantiates an object from a class, Python allo-
cates memory for the storage of the instance variables defined in the class.
Each object also contains an extra internal field called a reference count,
which keeps track of how many different variables refer to that object. I
show how this works in Listing 11-1.

python.org

Managing Memory Used by Objects 243

File: ReferenceCount.py

Reference count example

1 class Square():
 def __init__(self, width, color):

self.width = width
self.color = color

Instantiate an object
2 oSquare1 = Square(5, 'red')
print(oSquare1)
Reference count of the Square object is 1

Now set another variable to the same object
3 oSquare2 = oSquare1
print(oSquare2)
Reference count of the Square object is 2

Listing 11-1: A simple Square class for demonstrating reference counting

We can use Python Tutor (http://pythontutor.com/) to step through our
code. We start with a simple Square class 1 containing a few instance vari-
ables. We then instantiate an object and assign it to the variable oSquare1 2.
Figure 11-1 shows what we see after instantiating the first object: as you can
see, the variable oSquare1 refers to an instance of the Square class.

Figure 11-1: A single variable (oSquare1) referring to an object

Next, we set a second variable to refer to the same Square object 3
and print the value of the new variable. Note that the statement oSquare2 =
oSquare1 does not make a new copy of the Square object! Figure 11-2 shows
what we see after executing these two lines.

http://pythontutor.com/

244 Chapter 11

Figure 11-2: Two variables referring to the same object

The variables oSquare1 and oSquare2 both refer to the same Square object.
You can also see in the top box that the two calls to print() show the same
memory address. Therefore, the reference count of the object is now 2. If
we were to assign another variable:

oSquare3 = oSquare2 # or oSquare1

the reference count would be incremented to 3 (because all three variables
would refer to the same object), and so on.

The reference count of an object is important because when it reaches
zero, Python marks the relevant memory as no longer in use by the pro-
gram. This is known as being marked as garbage. Python has a garbage col-
lector that runs to reclaim any blocks of memory that have been marked as
garbage; I’ll discuss that later in this chapter.

The Python Standard Library contains the getrefcount() function,
which returns the number of variables that refer to an object. Here, we use
it to see the reference count after the first instantiation of a Square object
from the Square class:

oSquare1 = Square(5, 'red')
print('Reference count is', sys.getrefcount(oSquare1))

This prints a count of 2. This may be surprising—you likely expected
that the count would be 1. However, as the documentation of this func-
tion explains, “The count returned is generally one higher than you might
expect, because it includes the (temporary) reference as an argument to
getrefcount().”

Managing Memory Used by Objects 245

Incrementing the Reference Count

There are a few ways that an object’s reference count is incremented:

1.	 When an additional variable is assigned to refer to the same object:

oSquare2 = oSquare1

2.	 When an object is passed into a function and therefore a local param-
eter variable is set to refer to the object:

def myFunctionOrMethod(oLocalSquareParam):
 # oLocalSquareParam now refers to wherever the argument refers to
 <body of myFunctionOrMethod>

myFunctionOrMethod(oSquare1) # call the function and pass in the object

3.	 When an object is put into a container such as a list or a dictionary:

myList = [oSquare1, someValue, someOtherValue]

If oSquare1 already refers to an object, after executing this line, the list
contains an additional reference to the same Square object.

Decrementing the Reference Count

Decrementing the reference count also happens in a few ways. To demon-
strate this, let’s create an object and increment its reference count:

oSquare1 = Square(20, BLACK)
oSquare2 = oSquare1
myList = [oSquare1]
myFunctionOrMethod(oSquare1) # call the function and pass in the object

When myFunctionOrMethod() starts, the reference to the object is copied
into a local parameter variable for use inside the function. The reference
count of this Square object is currently 4: two object variables, one copy
inside a list, plus a local parameter variable inside the function. This refer-
ence count can be decremented:

1.	 When any variable that refers to an object is reassigned. For example:

oSquare2 = 5

2.	 Whenever a local variable that refers to an object goes out of scope.
When a variable is created inside of a function or method, the scope of
that variable is limited to that function or method. When the execution

246 Chapter 11

of the current function or method ends, that variable literally goes
away. In this example, when myFunctionOrMethod() ends, the local variable
that refers to the object is eliminated.

3.	 When an object is removed from a container like a list, tuple, or diction-
ary, for example with:

myList.pop()

Calling the remove() method of a list would also decrement the refer-
ence count.

4.	 When you use the del statement to explicitly delete a variable that refers
to an object. This eliminates the variable and reduces the reference
count of the object:

del oSquare3 # delete the variable

5.	 If the reference count of the object’s container (in this case, myList)
goes to zero:

del myList # where myList has an element that refers to an object

If you have a variable that refers to an object, and you want to keep the
variable but lose the reference to the object, you can execute a statement
like the following:

oSquare1 = None

That keeps the variable name, but lowers the reference count of the
object.

Death Notice

When the reference count of an object goes to zero, Python knows that the
object can be safely deleted. Right before destroying an object, Python calls
a magic method of that object named __del__() to inform the object of its
impending demise.

 In any class, you can write your own version of the __del__() method.
In your version, you can include any code you want your object to execute
(ha! interesting word choice here) before the object disappears forever. For
example, your object may want to close a file, close a network connection,
and so on.

When an object is deleted, Python checks to see if any of its instance
variables refer to other objects. If so, the reference counts of those objects
are also decremented. If this results in another object’s reference count
going to zero, then that object is deleted as well. This type of chained or
cascading deletion can go on as many layers deep as is necessary. Listing 11-2
provides an example.

Managing Memory Used by Objects 247

File: DeleteExample_Teacher_Student.py

Student class

class Student():
 def __init__(self, name):
 self.name = name
 print('Creating Student object', self.name)

 1 def __del__(self):
 print('In the __del__ method for student:', self.name)

Teacher class
class Teacher():
 def __init__(self):
 print('Creating the Teacher object')
 2 self.oStudent1 = Student('Joe')
 self.oStudent2 = Student('Sue')
 self.oStudent3 = Student('Chris')

 3 def __del__(self):
 print('In the __del__ method for Teacher')

Instantiate the Teacher object (that creates Student objects)
4 oTeacher = Teacher()

Delete the Teacher object
5 del oTeacher

Listing 11-2: Classes demonstrating __del__() methods

Here we have two classes, Student and Teacher. The main code instanti-
ates one Teacher object 4, and its __init__() method creates three instances
of the Student class 2, one each for Joe, Sue, and Chris. Therefore, after
starting up, the Teacher object has three instance variables that are Student
objects. The output from the first part is:

Creating the Teacher object
Creating Student object Joe
Creating Student object Sue
Creating Student object Chris

Next, the main code uses the del statement to delete the Teacher
object 5. Since we wrote a __del__() method in the Teacher class 3, that
method of the Teacher object is called—which, for demonstration purposes,
only prints a message.

When the Teacher object is deleted, Python sees that it contains three
other objects (the three Student objects). So, Python lowers the reference
count of each of those objects from 1 to 0.

Once this happens, the __del__() method of the Student objects is
called 1, and each outputs a message. The memory used by all three of

248 Chapter 11

the Student objects is then marked as garbage. The output from the end of
the program is:

In the __del__ method for Teacher
In the __del__ method for student: Joe
In the __del__ method for student: Sue
In the __del__ method for student: Chris

Because Python keeps track of reference counts for all objects, you
rarely, if ever, have to worry about memory management in Python and
rarely need to include a __del__() method. However, you might consider
using a del statement to explicitly tell Python to delete objects that use
a very large amount of memory when you are no longer using them. For
example, you might want to delete an object that loads a large number of
records from a database, or loads many images, when you are done using it.
Also, it is not guaranteed that Python will call the __del__() method when
a program exits, so you should avoid putting any program-ending critical
code in this method.

Garbage Collection
When an object is deleted, either through the reference count going to zero
or though the explicit use of a del statement, as the programmer you should
consider the object inaccessible.

However, the specific implementation of the garbage collector is com-
pletely up to Python. The details of the algorithm that decides when the
actual garbage collection code runs are not important to you as the pro-
grammer. It may run when your program instantiates an object and Python
needs to allocate memory, or at random times, or at certain scheduled
times. The algorithm may change from one release of Python to another.
Whichever it is, Python will take care of garbage collection, and you needn’t
worry about the specifics.

Class Variables
I have talked extensively about how instance variables are defined in a class
and how each object instantiated from a class gets its own set of all the
instance variables. The prefix self. is used to identify each instance vari-
able. However, you can also create class variables at the class level.

	class variable	 A variable that is defined in and owned by a class. Only one of each class variable
exists, independent of how many instances of that class are created.

You create a class variable with an assignment statement, which by conven-
tion is placed between the class statement and the first def statement, like so:

class MyDemoClass():
 myClassVariable = 0 # create a class variable and assign 0 to it

Managing Memory Used by Objects 249

 def __init__(self, <otherParameters>):
 # More code here

Because this class variable is owned by the class, in methods of the class
you would refer to it as MyDemoClass.myClassVariable. Every object instantiated
from a class has access to all class variables defined in the class.

There are two typical uses for class variables: defining a constant and
creating a counter.

Class Variable Constants
You can create a class variable to be used as a constant, like so:

class MyClass():
 DEGREES_IN_CIRCLE = 360 # creating a class variable constant

To access this constant in methods of the class, you would write
MyClass.DEGREES_IN_CIRCLE.

As a reminder, Python does not actually have constants. Instead, there
is a convention among Python programmers that any variable whose name
consists of all uppercase letters, with words separated by underscores, is
meant to be treated as a constant. That is, this type of variable should
never be reassigned.

We can also use class variable constants to save on resources (memory
and time). Imagine we’re writing a game where we create many instances
of a SpaceShip class. We create a picture of a spaceship and place the file in
a folder named images. Before considering class variables, the __init__()
method of our SpaceShip class would start by instantiating an Image object
like this:

class SpaceShip():
 def __init__(self, window, ...):
 self.image = pygwidgets.Image(window, (0, 0),
 'images/ship.png')

This technique works fine. However, coding it this way means that not
only does every object instantiated from the SpaceShip class have to take the
time to load the image, but each object takes up all the memory needed to
represent a copy of the same image. Instead, we can have the class load the
image once, and each SpaceShip object then uses the single image kept in
the class, like this:

class SpaceShip():
 SPACE_SHIP_IMAGE = pygame.image.load('images/ship.png')
 def __init__(self, window, ...):
 self.image = pygwidgets.Image(window, (0, 0),
 SpaceShip.SPACE_SHIP_IMAGE)

An Image object (in pygwidgets, as used here) can use either a path
to an image or an already loaded image. Allowing the class to load

250 Chapter 11

the image only once makes startup faster and results in lower memory
usage.

Class Variables for Counting
A second way to use a class variable is to keep track of how many objects
have been instantiated from a class. Listing 11-3 shows an example.

File: ClassVariable.py

Sample class

class Sample():
 1 nObjects = 0 # this is a class variable of the Sample class
 def __init__(self, name):
 self.name = name
 2 Sample.nObjects = Sample.nObjects + 1

 def __del__(self):
 3 Sample.nObjects = Sample.nObjects - 1

Instantiate 4 objects
oSample1 = Sample('A')
oSample2 = Sample('B')
oSample3 = Sample('C')
oSample4 = Sample('D')

Delete 1 object
del oSample3

See how many we have
print('There are', Sample.nObjects, 'Sample objects')

Listing 11-3: Using a class variable for counting objects instantiated from a class

In the Sample class, nObjects is a class variable because it is defined
in the class scope, typically between the class statement and the first def
statement 1. It is used to count the number of Sample objects that exist
and is initialized to zero. All methods refer to this variable using the
name Sample.nObjects. Whenever a Sample object is instantiated, the count
is incremented 2. When one is deleted, the count is decremented 3.
The last line accesses the class variable and reports the current count.

The main code creates four objects, then deletes one. When run, this
program outputs:

There are 3 Sample objects

Managing Memory Used by Objects 251

Putting It All Together: Balloon Sample Program
In this section, we’ll take a number of different concepts we’ve covered and
put them all together in a relatively simple game—at least, simple from the
user’s point of view. The game will present some number of balloons in
three sizes that move upward in the window. The goal for the user is to pop
as many balloons as possible before they float off the top of the window.
Small balloons are worth 30 points, medium balloons are worth 20 points,
and large balloons are worth 10 points.

The game could be extended to include many levels with faster-moving
balloons, but for now, there is only a single level. The size and location
of each balloon is chosen at random. Before each round, a Start button
becomes available that allows the user to play again. Figure 11-3 is a screen-
shot of the game in action.

Figure 11-3: A screenshot of the Balloon game

252 Chapter 11

Figure 11-4 shows the project folder for the game.

Figure 11-4: The Balloon game project folder

The game is implemented with four Python source files:

Main_BalloonGame.py    Main code, runs the main loop

BalloonMgr.py    Contains the BalloonMgr class that handles all Balloon
objects

Balloon.py    Contains the Balloon class and BalloonSmall, BalloonMedium,
and BalloonLarge subclasses

BalloonConstants.py    Contains constants used by more than one file

Figure 11-5 shows an object diagram of the implementation.

…

BalloonMgr

Balloon BalloonBalloonBalloon

Main code

Figure 11-5: An object diagram of the Balloon game

The main code (found in Main_BalloonGame.py) instantiates a single
balloon manager (oBalloonMgr) object from the BalloonMgr class. The balloon

Managing Memory Used by Objects 253

manager then instantiates a number of balloons, each chosen randomly
from the BalloonSmall, BalloonMedium, and BalloonLarge classes, and keeps this
list of objects in an instance variable. Each Balloon object sets its own speed,
point value, and random starting position off the bottom of the window.

Given this structure, the main code is responsible for presenting the over-
all user interface. It only communicates with the oBalloonMgr. The oBalloonMgr
talks to all the Balloon objects. Therefore, the main code doesn’t even know
that the Balloon objects exist. It relies on the balloon manager to take care
of them. Let’s walk through the different parts of the program and see how
each piece works.

Module of Constants
This organization introduces a new technique for working with multiple
Python files, each of which is commonly referred to as a module. If you find
yourself in a situation where multiple Python modules require access to
the same constants, a good solution is to create a module of constants and
import that module into all modules that use the constants. Listing 11-4
shows some constants defined in BalloonConstants.py.

File: BalloonGame/BalloonConstants.py

Constants used by more than one Python module

N_BALLOONS = 15 # number of balloons in a round of the game
BALLOON_MISSED = 'Missed' # balloon went off the top
BALLOON_MOVING = 'Balloon Moving' # balloon is moving

Listing 11-4: A module of constants that’s imported by other modules

This is just a simple Python file that contains constants shared by more
than one module. The main code needs to know how many balloons there
are in order to display that number. The balloon manager needs to know
the number so it can instantiate the correct number of Balloon objects.
This approach makes it extremely simple to modify the number of Balloon
objects. If we added levels with different numbers of balloons, we could
build a list or a dictionary in this file alone, and all other files would have
access to that information.

The other two constants are used in each Balloon object as status indica-
tors as the balloon moves up the window. When I get to the discussion of
the game play, you’ll see that the balloon manager (oBalloonMgr) asks each
Balloon object for its status, and each responds with one of these two con-
stants. Placing shared constants in a module and importing that module
in modules that use the constants is a simple and effective technique for
ensuring that different parts of a program use consistent values. This is a
good example of applying the Don’t Repeat Yourself (DRY) principle by
only defining values in a single place.

254 Chapter 11

Main Program Code
The main code of our sample program, shown in Listing 11-5, follows the
12-step template I’ve used throughout this book. It shows the user’s score,
the game status, and a Start button at the bottom of the window, and it
reacts to the user clicking the Start button.

File: BalloonGame/Main_BalloonGame.py

Balloon game main code

1 - Import packages
from pygame.locals import *
import pygwidgets
import sys
import pygame
from BalloonMgr import *

2 - Define constants
BLACK = (0, 0, 0)
GRAY = (200, 200, 200)
BACKGROUND_COLOR = (0, 180, 180)
WINDOW_WIDTH = 640
WINDOW_HEIGHT = 640
PANEL_HEIGHT = 60
USABLE_WINDOW_HEIGHT = WINDOW_HEIGHT - PANEL_HEIGHT
FRAMES_PER_SECOND = 30

3 - Initialize the world
pygame.init()
window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))
clock = pygame.time.Clock()

4 - Load assets: image(s), sound(s), etc.
oScoreDisplay = pygwidgets.DisplayText(window, (10, USABLE_WINDOW_HEIGHT + 25),
 'Score: 0', textColor=BLACK,
 backgroundColor=None, width=140, fontSize=24)
oStatusDisplay = pygwidgets.DisplayText(window, (180, USABLE_WINDOW_HEIGHT + 25),
 '', textColor=BLACK, backgroundColor=None,
 width=300, fontSize=24)
oStartButton = pygwidgets.TextButton(window,
 (WINDOW_WIDTH - 110, USABLE_WINDOW_HEIGHT + 10),
 'Start')

5 - Initialize variables
oBalloonMgr = BalloonMgr(window, WINDOW_WIDTH, USABLE_WINDOW_HEIGHT)
playing = False 1 # wait until user clicks Start

6 - Loop forever
while True:
 # 7 - Check for and handle events
 nPointsEarned = 0
 for event in pygame.event.get():

Managing Memory Used by Objects 255

 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 if playing: 2
 oBalloonMgr.handleEvent(event)
 theScore = oBalloonMgr.getScore()
 oScoreDisplay.setValue('Score: ' + str(theScore))
 elif oStartButton.handleEvent(event): 3
 oBalloonMgr.start()
 oScoreDisplay.setValue('Score: 0')
 playing = True
 oStartButton.disable()

 # 8 - Do any "per frame" actions
 if playing: 4
 oBalloonMgr.update()
 nPopped = oBalloonMgr.getCountPopped()
 nMissed = oBalloonMgr.getCountMissed()
 oStatusDisplay.setValue('Popped: ' + str(nPopped) +
 ' Missed: ' + str(nMissed) +
 ' Out of: ' + str(N_BALLOONS))

 if (nPopped + nMissed) == N_BALLOONS: 5
 playing = False
 oStartButton.enable()

 # 9 - Clear the window
 window.fill(BACKGROUND_COLOR)

 # 10 - Draw all window elements
 if playing: 6
 oBalloonMgr.draw()

 pygame.draw.rect(window, GRAY, pygame.Rect(0,
 USABLE_WINDOW_HEIGHT, WINDOW_WIDTH, PANEL_HEIGHT))
 oScoreDisplay.draw()
 oStatusDisplay.draw()
 oStartButton.draw()

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND) # make pygame wait

Listing 11-5: The Balloon game’s main code

The code is based on a single Boolean variable, playing, set to False by
default to let the user begin the game by pressing Start 1.

When playing is True, the main code calls the handleEvent() method 2
of the balloon manager, oBalloonMgr, to handle all events. We call the bal-
loon manager’s getScore() method to get the score, and we update the score
field’s text.

256 Chapter 11

When the game is over, the program waits for the user to press the Start
button 3. When the button is clicked, the balloon manager is told to start
the game, and the user interface is updated.

In every frame, if the game is running, we send the update() message
to the balloon manager 4, triggering it to pass on the update() message to
all balloons. Then we ask the balloon manager for the numbers of balloons
remaining and balloons popped. We use that information to update the
user interface.

When the user pops all balloons or the last balloon floats off the top of
the window, we set the playing variable to False and enable the Start button 5.

The drawing code is very straightforward 6. We tell the balloon man-
ager to draw, which triggers all the balloons to draw themselves. Then we
draw the bottom bar with its status data and the Start button.

Balloon Manager
The balloon manager is responsible for keeping track of all balloons,
including creating the Balloon objects, telling each one to draw itself, tell-
ing each to move, and keeping track of how many were popped and missed.
Listing 11-6 contains the code of the BalloonMgr class.

File: BalloonGame/BalloonMgr.py

BalloonMgr class

import pygame
import random
from pygame.locals import *
import pygwidgets
from BalloonConstants import *
from Balloon import *

BalloonMgr manages a list of Balloon objects
class BalloonMgr():
 1 def __init__(self, window, maxWidth, maxHeight):
 self.window = window
 self.maxWidth = maxWidth
 self.maxHeight = maxHeight

 2 def start(self):
 self.balloonList = []
 self.nPopped = 0
 self.nMissed = 0
 self.score = 0

 3 for balloonNum in range(0, N_BALLOONS):
 randomBalloonClass = random.choice((BalloonSmall,
 BalloonMedium,
 BalloonLarge))
 oBalloon = randomBalloonClass(self.window, self.maxWidth,
 self.maxHeight, balloonNum)

Managing Memory Used by Objects 257

 self.balloonList.append(oBalloon)

 def handleEvent(self, event):
 4 if event.type == MOUSEBUTTONDOWN:
 # Go 'reversed' so topmost balloon gets popped
 for oBalloon in reversed(self.balloonList):
 wasHit, nPoints = oBalloon.clickedInside(event.pos)
 if wasHit:
 if nPoints > 0: # remove this balloon
 self.balloonList.remove(oBalloon)
 self.nPopped = self.nPopped + 1
 self.score = self.score + nPoints
 return # no need to check others

 5 def update(self):
 for oBalloon in self.balloonList:
 status = oBalloon.update()
 if status == BALLOON_MISSED:
 # Balloon went off the top, remove it
 self.balloonList.remove(oBalloon)
 self.nMissed = self.nMissed + 1

 6 def getScore(self):
 return self.score

 7 def getCountPopped(self):
 return self.nPopped

 8 def getCountMissed(self):
 return self.nMissed

 9 def draw(self):
 for oBalloon in self.balloonList:
 oBalloon.draw()

Listing 11-6: The BalloonMgr class

When instantiated, the balloon manager is told the width and height of
the window 1, and it saves this information in instance variables.

The concept behind the start() method 2 is important. Its purpose
is to initialize any instance variables needed for one round of the game,
so it’s called whenever the user starts a round of the game. In this game,
start() resets the count of popped balloons and the count of missed bal-
loons. It then goes through a loop that creates all the Balloon objects (ran-
domly chosen among three different sizes using three different classes)
and stores them in a list 3. Whenever the method creates a Balloon object,
it passes the window and the width and height of the window. (For future
expansion, each Balloon object is given a unique number.)

Each time through the main loop, the main code calls the handleEvent()
method of the balloon manager 4. Here, we check if the user has clicked
on any Balloon. If the event detected was a MOUSEDOWNEVENT, the code loops
through all the Balloon objects, asking each one if the click occurred inside
that balloon. Each Balloon returns a Boolean indicating if it was hit and, if

258 Chapter 11

so, the number of points the user should get for popping it. (The code is set
up this way for future expansion, as discussed in the note at the end of this
section.) The balloon manager then uses the remove() method to eliminate
that Balloon from its list, increments the number of popped balloons, and
updates the score.

In each iteration of the main loop, the main code also calls the update()
method of the balloon manager 5, which passes this call on to all of the
balloons, telling them to update themselves. Each balloon moves up the
screen based on its own speed setting and returns its status: either that it is
still moving (BALLOON_MOVING) or that it has moved beyond the top of the win-
dow (BALLOON_MISSED). If a balloon was missed, the balloon manager removes
that balloon from its list and increments its count of missed balloons.

The balloon manager provides three getter methods that allow the
main code to get the score 6, the number of popped balloons 7, and the
number of missed balloons 8.

Each time through the main loop, the main code calls the balloon
manager’s draw() method 9. The balloon manager doesn’t have anything
to draw by itself, but loops though all the Balloon objects and calls the draw()
method of each. (Notice the polymorphism here. The balloon manager has
a draw() method, and each Balloon object has a draw() method.)

N O T E 	 As a challenge, try to expand this game to include a new type (subclass) of Balloon, a
MegaBalloon. The difference is that a MegaBalloon will take three clicks to pop. Artwork
is included in the download for this game.

Balloon Class and Objects
Finally, we have the balloon classes. To reinforce the concept of inheri-
tance from Chapter 10, the Balloon.py module includes an abstract base
class named Balloon and three subclasses: BalloonSmall, BalloonMedium, and
BalloonLarge. The balloon manager instantiates Balloon objects from these
subclasses. The subclasses each only include an __init__() method, which
overrides and then calls the abstract method __init__() in the Balloon
class. Each balloon image will start at some randomized location (below
the bottom of the window) and will move up a few pixels in every frame.
Listing 11-7 shows the code of the Balloon class and its subclasses.

File: BalloonGame/Balloon.py

Balloon base class and 3 subclasses

import pygame
import random
from pygame.locals import *
import pygwidgets
from BalloonConstants import *
from abc import ABC, abstractmethod

Managing Memory Used by Objects 259

1 class Balloon(ABC):

 popSoundLoaded = False
 popSound = None # load when first balloon is created

 @abstractmethod
 2 def __init__(self, window, maxWidth, maxHeight, ID,
 oImage, size, nPoints, speedY):
 self.window = window
 self.ID = ID
 self.balloonImage = oImage
 self.size = size
 self.nPoints = nPoints
 self.speedY = speedY
 if not Balloon.popSoundLoaded: # load first time only
 Balloon.popSoundLoaded = True
 Balloon.popSound = pygame.mixer.Sound('sounds/balloonPop.wav')

 balloonRect = self.balloonImage.getRect()
 self.width = balloonRect.width
 self.height = balloonRect.height
 # Position so balloon is within the width of the window,
 # but below the bottom
 self.x = random.randrange(maxWidth - self.width)
 self.y = maxHeight + random.randrange(75)
 self.balloonImage.setLoc((self.x, self.y))

 3 def clickedInside(self, mousePoint):
 myRect = pygame.Rect(self.x, self.y, self.width, self.height)
 if myRect.collidepoint(mousePoint):
 Balloon.popSound.play()
 return True, self.nPoints # True here means it was hit
 else:
 return False, 0 # not hit, no points

 4 def update(self):
 self.y = self.y - self.speedY # update y position by speed
 self.balloonImage.setLoc((self.x, self.y))
 if self.y < -self.height: # off the top of the window
 return BALLOON_MISSED
 else:
 return BALLOON_MOVING

 5 def draw(self):
 self.balloonImage.draw()

 6 def __del__(self):
 print(self.size, 'Balloon', self.ID, 'is going away')

7 class BalloonSmall(Balloon):
 balloonImage = pygame.image.load('images/redBalloonSmall.png')
 def __init__(self, window, maxWidth, maxHeight, ID):
 oImage = pygwidgets.Image(window, (0, 0),
 BalloonSmall.balloonImage)

260 Chapter 11

 super().__init__(window, maxWidth, maxHeight, ID,
 oImage, 'Small', 30, 3.1)

8 class BalloonMedium(Balloon):
 balloonImage = pygame.image.load('images/redBalloonMedium.png')
 def __init__(self, window, maxWidth, maxHeight, ID):
 oImage = pygwidgets.Image(window, (0, 0),
 BalloonMedium.balloonImage)
 super().__init__(window, maxWidth, maxHeight, ID,
 oImage, 'Medium', 20, 2.2)

9 class BalloonLarge(Balloon):
 balloonImage = pygame.image.load('images/redBalloonLarge.png')
 def __init__(self, window, maxWidth, maxHeight, ID):
 oImage = pygwidgets.Image(window, (0, 0),
 BalloonLarge.balloonImage)
 super().__init__(window, maxWidth, maxHeight, ID,
 oImage, 'Large', 10, 1.5)

Listing 11-7: The Balloon classes

The Balloon class is an abstract class 1, so the BalloonMgr instanti-
ates objects (randomly) from the BalloonSmall 7, BalloonMedium 8, and
BalloonLarge 9 classes. Each of those classes creates a pygwidgets Image object,
then calls the __init__() method in the Balloon base class. We differentiate
the balloons with the arguments representing the image, size, number of
points, and speed.

The __init__() method in the Balloon class 2 stores the information
about each balloon in instance variables. We get the rectangle of the bal-
loon image and remember its width and height. We set a randomized
horizontal position that will ensure that the balloon image will fully show
within the window.

Every time a MOUSEDOWNEVENT happens, the balloon manager loops
through the Balloon objects and calls the clickedInside() method of each 3.
The code here checks to see if the MOUSEDOWNEVENT that was detected hap-
pened inside the current balloon. If it did, the Balloon plays the pop sound
and returns a Boolean to say that it was clicked on, as well as the number of
points that balloon was worth. If it was not hit, it returns False and zero.

In each frame, the balloon manager calls the update() method of each
Balloon 4, which updates that Balloon’s y position by subtracting its own
speed in order to move higher in the window. After changing the position,
the update() method returns either BALLOON_MISSED (if it has moved completely
off the top of the window) or BALLOON_MOVING (to indicate that it is still in play).

The draw() method simply draws the image of the balloon at the appro-
priate (x, y) location 5. Although the y position is kept as a floating-point
value, pygame automatically converts it to an integer for pixel placement in
the window.

The last method, __del__() 6, has been added for debugging and for
future development. Whenever the balloon manager deletes a balloon,
the __del__() method of that Balloon object is called. For demonstration

Managing Memory Used by Objects 261

purposes, for now it simply prints a message that displays the balloon’s size
and ID number.

When the program is run and the user starts clicking on the balloons,
we see output like this in the shell or console window:

Small Balloon 2 is going away
Small Balloon 8 is going away
Small Balloon 3 is going away
Small Balloon 7 is going away
Small Balloon 9 is going away
Small Balloon 12 is going away
Small Balloon 11 is going away
Small Balloon 6 is going away
Medium Balloon 14 is going away
Large Balloon 1 is going away
Medium Balloon 10 is going away
Medium Balloon 13 is going away
Medium Balloon 0 is going away
Medium Balloon 4 is going away
Large Balloon 5 is going away

When the game is over, the program waits for the user to click on the
Start button. When that button is clicked, the balloon manager re-creates
the list of Balloon objects and resets its instance variables, and the game
begins again.

Managing Memory: Slots
As we have discussed, when you instantiate an object, Python must allocate
space for the instance variables defined in the class. By default, Python does
this using a dictionary with a special name: __dict__. To see this in action,
you can add this line to the end of the __init__() method of any class:

print(self.__dict__)

A dictionary is an excellent way to represent all the instance vari-
ables because it is dynamic—it can grow whenever Python encounters an
instance variable that it has not seen before in a class. While I recommend
that you initialize all your instance variables in your __init__() method, you
can in fact define instance variables in any method, and those instance vari-
ables will be added when the method is executed for the first time. While
I personally think the following is a bad idea, it demonstrates the ability to
add an instance variable to an object dynamically:

myObject = MyClass()
myObject.someInstanceVariable = 5

In order to allow for this dynamic capability, dictionaries are typically
implemented starting with enough empty space to represent some number
of instance variables (the exact number is an internal detail of Python).

262 Chapter 11

Whenever a new instance variable is encountered, it’s added to the diction-
ary. If the dictionary runs out of space, Python adds more. This generally
works well, and programmers do not experience any problems with this
implementation.

However, imagine you have a class like the following with two instance
variables created in the __init__() method, and you know that you will not
need to add any more instance variables:

class Point():
 def __init__(self, x, y):
 self.x = x
 self.y = y
 # More methods

Now, let’s assume that you need to instantiate a very large number
(hundreds of thousands, or even millions) of objects from this class. A case
like this could cumulatively account for a large amount of wasted memory
space (RAM).

To combat this potential waste, Python gives us a different approach,
known as slots, to represent the instance variables. The idea is that you can
tell Python the names of all the instance variables up front, and Python
will use a data structure that allocates exactly enough space for just those
instance variables. To use slots, you need to include the special class vari-
able __slots__ to define a list of variables:

__slots__ = [<instanceVar1>, <instanceVar2>, ... <instanceVarN>]

Here is what a modified version of our example class would look like:

class PointWithSlots():
 # Define slots for only two instance variables
 __slots__ = ['x', 'y']

 def __init__(self, x, y):
 self.x = x
 self.y = y
 print(x, y)

These two classes will work identically, but objects instantiated from
PointWithSlots will take up considerably less memory. To demonstrate the
difference, we’ll add this line to the end of the __init__() method of both
classes:

 # Try to create an additional instance variable
 self.color = 'black'

Now when we try to instantiate an object from both classes, the
Point class has no problem adding another instance variable, but the
PointWithSlots class fails with the following error:

AttributeError: 'PointWithSlots' object has no attribute 'color'

Managing Memory Used by Objects 263

Using slots is highly memory-efficient at the expense of a loss of
dynamic instance variables. If you’re dealing with a very large number of
objects from a class, this trade-off may very well be worthwhile.

Summary
This chapter focused on a few concepts that didn’t readily fit in the previ-
ous chapters. First, I discussed the circumstances under which you might
want to delete an object. We looked at reference counts and how they track
how many variables refer to the same object, which led to a discussion of
object lifetimes and garbage collection. When the reference count goes to
zero, the object is available for garbage collection. If a class has a __del__()
method, then any objects created from the class can use the __del__()
method for any cleanup that they might want to do.

Next, I discussed how class variables are different from instance
variables. Every object instantiated from a class gets its own set of all the
instance variables in the class. However, there is only one of each class
variable, and that is accessible by all objects created from the class. Class
variables are often used as constants or counters, or for loading something
large and making it available to all objects instantiated from the class.

To put a number of techniques and concepts together, we built a
balloon-popping game and organized it very efficiently. We had one file
that contained only constants used by other files. The main code con-
sisted of the main loop and a status display, and the balloon manager
did the work of managing the objects. Such a division of labor allows for
splitting up the game into smaller, logical pieces. The role of each part is
well defined, making the overall program more manageable.

Finally, I explained how a technique called slots allows for a memory-
efficient representation of instance variables.

PART IV
U S I N G O O P I N G A M E

D E V E L O P M E N T

In this part of the book, we’ll build some sample
games using pygwidgets. I’ll also introduce the pyghelpers
module, which includes a number of classes and func-
tions that can be useful in building game programs.

Chapter 12 revisits the Higher or Lower game from Chapter 1. We’ll
build a version of the game with a graphical user interface, and I’ll intro-
duce Deck and Card classes that can be reused in any card game program.

Chapter 13 focuses on timers. We’ll build a number of different timer
classes that allow your program to keep running while concurrently check-
ing for a certain time limit.

Chapter 14 discusses different animation classes you can use to show
sequences of images. This will allow you to easily build more artistic games
and programs.

Chapter 15 introduces an approach to building a program that can con-
tain many scenes, like a start scene, a play scene, and a game over scene. I’ll
show a SceneMgr class that is designed to manage any number of program-
mer-built scenes, and we’ll use it to build a Rock, Paper, Scissors game.

Chapter 16 demonstrates how to show and react to different types of
dialog boxes. You’ll then use everything you’ve learned to build a fully func-
tioning animated game.

Chapter 17 introduces the concept of design patterns, using the model,
view, controller pattern as an example. It then provides a short wrap-up for
the book.

12
C A R D G A M E S

In the remaining chapters of this book,
we’ll build a few demo programs using

pygame and pygwidgets. Each program will
present one or more reusable classes and show

how they can be used in a sample project.
In Chapter 1, I presented a text-based Higher or Lower card game. In

this chapter we’ll create a GUI version of the game, as shown in Figure 12-1.
To quickly recap the game rules: we start with seven cards face down

and one card face up. The player guesses whether the next card to be
turned over will be higher or lower than the last visible card by pressing
Lower or Higher. When the game is over, the user can click New Game to
start a new round of the game. The player starts with 100 points, gains 15
points for a correct answer, and loses 10 points for an incorrect answer.

268 Chapter 12

Figure 12-1: The user interface of the Higher or Lower game

The Card Class
In the original text-based version of the game, the code dealing with the
deck of cards was not easily reusable in other projects. To solve this prob-
lem, here we’ll create a highly reusable Deck class that manages cards from a
Card class.

To represent a card in pygame, we need to store the following data in
instance variables for each Card object:

•	 Rank (ace, 2, 3, … 10, jack, queen, king)

•	 Suit (clubs, hearts, diamonds, spades)

•	 Value (1, 2, 3, … 12, 13)

•	 Name (built using the rank and suit: for example, 7 of clubs)

•	 Image of the back of the card (a single image shared by all Card objects)

•	 Image of the front of the card (a unique image for each Card object)

Each card must be able to perform the following behaviors, for which
we will create methods:

•	 Mark itself as concealed (face down)

•	 Mark itself as revealed (face up)

•	 Return its name

•	 Return its value

•	 Set and get its location in the window

•	 Draw itself (either the revealed image or the concealed image)

Card Games 269

While the following card behaviors are not used in the Higher or Lower
game, we’ll add these too in case they are needed in some other game:

•	 Return its rank

•	 Return its suit

Listing 12-1 shows the code of the Card class.

File: HigherOrLower/Card.py

Card class

import pygame
import pygwidgets

class Card():

 1 BACK_OF_CARD_IMAGE = pygame.image.load('images/BackOfCard.png')

 2 def __init__(self, window, rank, suit, value):
 self.window = window
 self.rank = rank
 self.suit = suit
 self.cardName = rank + ' of ' + suit
 self.value = value
 3 fileName = 'images/' + self.cardName + '.png'
 # Set some starting location; use setLoc below to change
 4 self.images = pygwidgets.ImageCollection(window, (0, 0),
 {'front': fileName,
 'back': Card.BACK_OF_CARD_IMAGE}, 'back')

 5 def conceal(self):
 self.images.replace('back')

 6 def reveal(self):
 self.images.replace('front')

 7 def getName(self):
 return self.cardName

 def getValue(self):
 return self.value

 def getSuit(self):
 return self.suit

 def getRank(self):
 return self.rank

 8 def setLoc(self, loc): # call the setLoc method of the ImageCollection
 self.images.setLoc(loc)

270 Chapter 12

 9 def getLoc(self): # get the location from the ImageCollection
 loc = self.images.getLoc()
 return loc

 a def draw(self):
 self.images.draw()

Listing 12-1: The Card class

The Card class assumes that image files for all 52 cards, plus an image
for the back of all the cards, are available in a folder named images inside
the project folder. If you download the files associated with this chapter,
you will see that the images folder contains the full set of .png files. The
files are available via my GitHub repository at https://github.com/IrvKalb/
Object-Oriented-Python-Code/.

The class loads the image of the back of the cards once and saves it in a
class variable 1. That image is available to all Card objects.

When called for each card, the __init__() method 2 starts by storing
the window; building and storing the name of the card; and storing its
rank, value, and suit in instance variables. It then builds the path to the file
in the images folder that contains the image for that specific card 3. For
example, if the rank is ace and the suit is spades, we build a path of images/
Ace of Spades.png. We use an ImageCollection object to remember the paths
to both the front and back images 4; we’ll use 'back' to say that we want to
show the back of the card as the starting image.

The conceal() method 5 tells ImageCollection to set the back of the card
as the current image. The reveal() method 6 tells ImageCollection to set the
front of the card as the current image.

The getName(), getValue(), getSuit(), and getRank() methods 7 are getter
methods that allow the caller to retrieve the name, value, suit, and rank of
the given card.

The setLoc() method sets a new location for the card 8, and getLoc()
retrieves the current location 9. The location is kept in the ImageCollection.

Finally, draw() a draws the image of the card in the window. More spe-
cifically, it tells the ImageCollection to draw the currently indicated image at
the remembered location.

The Deck Class
A Deck object is a classic example of an object manager object. Its job is to
create and manage 52 Card objects. Listing 12-2 contains the code of our
Deck class.

File: HigerOrLower/Deck.py

Deck class

import random
from Card import *

https://github.com/IrvKalb/Object-Oriented-Python-Code/
https://github.com/IrvKalb/Object-Oriented-Python-Code/

Card Games 271

class Deck():
 1 SUIT_TUPLE = ('Diamonds', 'Clubs', 'Hearts', 'Spades')
 # This dict maps each card rank to a value for a standard deck
 STANDARD_DICT = {'Ace':1, '2':2, '3':3, '4':4, '5':5,
 '6':6, '7':7, '8': 8, '9':9, '10':10,
 'Jack':11, 'Queen':12, 'King':13}

 2 def __init__(self, window, rankValueDict=STANDARD_DICT):
 # rankValueDict defaults to STANDARD_DICT, but you can call it
 # with a different dict, e.g., a special dict for Blackjack
 self.startingDeckList = []
 self.playingDeckList = []
 for suit in Deck.SUIT_TUPLE:
 3 for rank, value in rankValueDict.items():
 oCard = Card(window, rank, suit, value)
 self.startingDeckList.append(oCard)

 self.shuffle()

 4 def shuffle(self):
 # Copy the starting deck and save it in the playing deck list
 self.playingDeckList = self.startingDeckList.copy()
 for oCard in self.playingDeckList:
 oCard.conceal()
 random.shuffle(self.playingDeckList)

 5 def getCard(self):
 if len(self.playingDeckList) == 0:
 raise IndexError('No more cards')
 # Pop one card off the deck and return it
 oCard = self.playingDeckList.pop()
 return oCard

 6 def returnCardToDeck(self, oCard):
 # Put a card back into the deck
 self.playingDeckList.insert(0, oCard)

Listing 12-2: A Deck class that manages 52 Card objects

We begin the Deck class by creating a few class variables 1 that we’ll
use to create 52 cards with the proper suits and values. There are only four
methods.

To the __init__() method 2, we pass a reference to the window and an
optional dictionary that maps card ranks to their values. If none is passed
in, we use the dictionary for a standard deck of values. We build a deck
of 52 cards, saved in self.startingDeckList, by iterating through all suits,
then iterating through all card ranks and values. In the inner for loop 3,
we use a call to the items() method of a dictionary that allows us to eas-
ily get the key and value (here, the rank and value) in a single statement.
Each time through the inner loop we instantiate a Card object, passing the
rank, suit, and value of the new card. We append each Card object to the
list self.startingDeckList to create a full deck of cards.

272 Chapter 12

The final step is to call the shuffle() method 4 to randomize the
deck. The purpose of this method may seem obvious: to shuffle the deck.
However, it does an extra little trick. The __init__() method built the
self.startingDeckList, and that work should only be done once. So, when-
ever we shuffle the deck, rather than re-creating all the Card objects, we
make a copy of the starting deck list, save it in self.playingDeckList, and
shuffle that. The copy is what will be used and manipulated as the game
runs. With this approach, we can remove cards from self.playingDeckList
and not have to worry about adding them back into the deck later or reload-
ing cards. The two lists, self.startingDeckList and self.playingDeckList, share
references to the same 52 Card objects.

Note that when we call shuffle() for subsequent runs of the game, some
of the Card objects may be in the “revealed” state. So, before proceeding, we
iterate through the entire deck and call the conceal() method on each card,
so that all cards will initially appear face down. The shuffle() method fin-
ishes by randomizing the cards in the playing deck using random.shuffle().

The getCard() method 5 retrieves a card from the deck. It first checks
to see if the deck is empty and, if so, raises an exception. Otherwise, since
the deck is already shuffled, it pops a card off the deck and returns that
card to the caller.

Together, Deck and Card provide a highly reusable combination of classes
that can be used in most card games. The Higher or Lower game only uses
eight cards for each round and shuffles the entire deck at the start of each
game. Therefore, in this game it is not possible for the Deck object to run out
of cards. For a card game where you need to know if the deck runs out of
cards, you can build a try block around the call to getCard() and use an except
clause to catch an exception. The choice of what to do there is up to you.

While not used in this game, the returnCardToDeck() method 6 allows
you to put a card back into the deck.

The Higher or Lower Game
The code of the actual game is fairly simple: the main code implements the
main loop, and a Game object contains the logic for the game itself.

Main Program
Listing 12-3 is the main program that sets up the world and contains the
main loop. It also creates the Game object that runs the game.

File: HigherOrLower/Main_HigherOrLower.py

Higher or Lower - pygame version
Main program

--- snip ---
4 - Load assets: image(s), sound(s), etc.
1 background = pygwidgets.Image(window, (0, 0),

Card Games 273

 'images/background.png')
newGameButton = pygwidgets.TextButton(window, (20, 530),
 'New Game', width=100, height=45)
higherButton = pygwidgets.TextButton(window, (540, 520),
 'Higher', width=120, height=55)
lowerButton = pygwidgets.TextButton(window, (340, 520),
 'Lower', width=120, height=55)
quitButton = pygwidgets.TextButton(window, (880, 530),
 'Quit', width=100, height=45)

5 - Initialize variables
2 oGame = Game(window)

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 if ((event.type == QUIT) or
 ((event.type == KEYDOWN) and (event.key == K_ESCAPE)) or
 (quitButton.handleEvent(event))):
 pygame.quit()
 sys.exit()

 3 if newGameButton.handleEvent(event):
 oGame.reset()
 lowerButton.enable()
 higherButton.enable()

 if higherButton.handleEvent(event):
 gameOver = oGame.hitHigherOrLower(HIGHER)
 if gameOver:
 higherButton.disable()
 lowerButton.disable()

 if lowerButton.handleEvent(event):
 gameOver = oGame.hitHigherOrLower(LOWER)
 if gameOver:
 higherButton.disable()
 lowerButton.disable()

 # 8 - Do any "per frame" actions

 # 9 - Clear the window before drawing it again
 4 background.draw()

 # 10 - Draw the window elements
 # Tell the game to draw itself
 5 oGame.draw()
 # Draw remaining user interface components
 newGameButton.draw()
 higherButton.draw()
 lowerButton.draw()
 quitButton.draw()

274 Chapter 12

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND)

Listing 12-3: The main code of the Higher or Lower game

The main program loads the background image and builds four but-
tons 1, then instantiates the Game object 2.

In the main loop, we listen for any of the buttons being pressed 3, and
when one is, we call the appropriate method in the Game object.

At the bottom of the loop, we draw the window elements 4, starting
with the background. Most significantly, we call the draw() method of the
Game object 5. As you will see, the Game object passes this message on to each
of the Card objects. Finally, we draw all four buttons.

Game Object
The Game object handles the actual game logic. Listing 12-4 contains the
code of the Game class.

File: HigherOrLower/Game.py

Game class

import pygwidgets
from Constants import *
from Deck import *
from Card import *

class Game():
 CARD_OFFSET = 110
 CARDS_TOP = 300
 CARDS_LEFT = 75
 NCARDS = 8
 POINTS_CORRECT = 15
 POINTS_INCORRECT = 10

 def __init__(self, window): 1
 self.window = window
 self.oDeck = Deck(self.window)
 self.score = 100
 self.scoreText = pygwidgets.DisplayText(window, (450, 164),
 'Score: ' + str(self.score),
 fontSize=36, textColor=WHITE,
 justified='right')

 self.messageText = pygwidgets.DisplayText(window, (50, 460),
 '', width=900, justified='center',
 fontSize=36, textColor=WHITE)

 self.loserSound = pygame.mixer.Sound("sounds/loser.wav")

Card Games 275

 self.winnerSound = pygame.mixer.Sound("sounds/ding.wav")
 self.cardShuffleSound = pygame.mixer.Sound("sounds/cardShuffle.wav")

 self.cardXPositionsList = []
 thisLeft = Game.CARDS_LEFT
 # Calculate the x positions of all cards, once
 for cardNum in range(Game.NCARDS):
 self.cardXPositionsList.append(thisLeft)
 thisLeft = thisLeft + Game.CARD_OFFSET

 self.reset() # start a round of the game

 def reset(self): 2 # this method is called when a new round starts
 self.cardShuffleSound.play()
 self.cardList = []
 self.oDeck.shuffle()
 for cardIndex in range(0, Game.NCARDS): # deal out cards
 oCard = self.oDeck.getCard()
 self.cardList.append(oCard)
 thisXPosition = self.cardXPositionsList[cardIndex]
 oCard.setLoc((thisXPosition, Game.CARDS_TOP))

 self.showCard(0)
 self.cardNumber = 0
 self.currentCardName, self.currentCardValue = \
 self.getCardNameAndValue(self.cardNumber)

 self.messageText.setValue('Starting card is ' + self.currentCardName +
 '. Will the next card be higher or lower?')

 def getCardNameAndValue(self, index):
 oCard = self.cardList[index]
 theName = oCard.getName()
 theValue = oCard.getValue()
 return theName, theValue

 def showCard(self, index):
 oCard = self.cardList[index]
 oCard.reveal()

 def hitHigherOrLower(self, higherOrLower): 3
 self.cardNumber = self.cardNumber + 1
 self.showCard(self.cardNumber)
 nextCardName, nextCardValue = self.getCardNameAndValue(self.cardNumber)

 if higherOrLower == HIGHER:
 if nextCardValue > self.currentCardValue:
 self.score = self.score + Game.POINTS_CORRECT
 self.messageText.setValue('Yes, the ' + nextCardName + ' was higher')
 self.winnerSound.play()
 else:
 self.score = self.score – Game.POINTS_INCORRECT
 self.messageText.setValue('No, the ' + nextCardName + ' was not higher')
 self.loserSound.play()

276 Chapter 12

 else: # user hit the Lower button
 if nextCardValue < self.currentCardValue:
 self.score = self.score + Game.POINTS_CORRECT
 self.messageText.setValue('Yes, the ' + nextCardName + ' was lower')
 self.winnerSound.play()
 else:
 self.score = self.score – Game.POINTS_INCORRECT
 self.messageText.setValue('No, the ' + nextCardName + ' was not lower')
 self.loserSound.play()

 self.scoreText.setValue('Score: ' + str(self.score))

 self.currentCardValue = nextCardValue # set up for the next card

 done = (self.cardNumber == (Game.NCARDS - 1)) # did we reach the last card?
 return done

 def draw(self): 4
 # Tell each card to draw itself
 for oCard in self.cardList:
 oCard.draw()

 self.scoreText.draw()
 self.messageText.draw()

Listing 12-4: The Game object that runs the game

In the __init__() method 1, we initialize a number of instance variables
that only need to be set up once. We create the Deck object, set the starting
score, and create a DisplayText object for displaying the score and the result
of each move. We also load a number of sound files for use during play.
Lastly, we call the reset() method 2, which contains any code needed for
one play of the game: that is, to shuffle the deck, play the shuffling sound,
deal out eight cards, display them in previously computed positions, and
show the face of the first card.

When the user presses the Higher or Lower button, the main code calls
hitHigherOrLower() 3, which turns over the next card, compares the value
with the previous face-up card, and awards or subtracts points.

The draw() method 4 iterates through all the cards in the current game,
telling each to draw itself (by calling each Card object’s draw() method). It
then draws the text of the score and the feedback for the current move.

Testing with __name__
When you write a class, it’s always a good idea to write some test code
to ensure that an object created from that class will work correctly. As a
reminder, any file containing Python code is called a module. A standard
practice is to write one or more classes in a module, then use an import
statement to bring that module into some other module. When you write a
module that contains a class (or classes), you can add some test code that’s

Card Games 277

intended to run only when the module is run as the main program, and
doesn’t run in the typical case when the module is imported by another
Python file.

In a project with multiple Python modules, you typically have one main
module and several other modules. When your program runs, Python cre-
ates the special variable __name__ in every module. In whichever module is
given control first, Python sets the value of __name__ to the string '__main__'.
Therefore, you can write code to check the value of __name__ and execute
some test code only if a module is running as the main program.

I’ll use the Deck class as an example. At the end of Deck.py, after the
code of the class, I’ve added this code to create an instance of the Deck class
and print out the cards that it creates:

--- snip code of the Deck class ---
if __name__ == '__main__':
 # Main code to test the Deck class

 import pygame

 # Constants
 WINDOW_WIDTH = 100
 WINDOW_HEIGHT = 100

 pygame.init()
 window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))

 oDeck = Deck(window)
 for i in range(1, 53):
 oCard = oDeck.getCard()
 print('Name: ', oCard.getName(), ' Value:', oCard.getValue())

This checks if the Deck.py file is running as the main program. In the
typical case where the Deck class is imported by some other module, the
value of __name__ will be 'Deck', so this code does nothing. But if we run
Deck.py as the main program, for testing purposes only, Python sets the
value of __name__ to '__main__' and this test code runs.

In the test code, we build a minimal pygame program that creates
an instance of the Deck class, then prints out the name and value of all 52
cards. The output of running Deck.py as the main program looks like this in
the shell or console window:

Name: 4 of Spades Value: 4
Name: 4 of Diamonds Value: 4
Name: Jack of Hearts Value: 11
Name: 8 of Spades Value: 8
Name: 10 of Diamonds Value: 10
Name: 3 of Clubs Value: 3
Name: Jack of Diamonds Value: 11
Name: 9 of Spades Value: 9
Name: Ace of Diamonds Value: 1
Name: 2 of Clubs Value: 2
Name: 7 of Clubs Value: 7

278 Chapter 12

Name: 4 of Clubs Value: 4
Name: 8 of Hearts Value: 8
Name: 3 of Diamonds Value: 3
Name: 7 of Spades Value: 7
Name: 7 of Diamonds Value: 7
Name: King of Diamonds Value: 13
Name: 10 of Spades Value: 10
Name: Ace of Hearts Value: 1
Name: 8 of Diamonds Value: 8
Name: Queen of Diamonds Value: 12
...

Code like this is useful for testing that the class is generally working as
we expect, without having to deal with a larger main program to instanti-
ate it. It gives us a quick way to make sure the class isn’t broken. Depending
on our needs, we could go further and add some example code to illustrate
typical calls to the methods of the class.

Other Card Games
There are many card games that use a standard 52-card deck. We could
use the Deck and Card classes as is to build games like Bridge, Hearts, Gin
Rummy, and most Solitaire games. However, there are some card games
that use different card values or different numbers of cards. Let’s look at a
few examples and see how our classes could be adapted for these cases.

Blackjack Deck
While a deck for Blackjack, also known as 21, uses the same cards as a stan-
dard deck, the values of the cards are different: the card values for 10, jack,
queen, and king are all 10. The __init__() method of the Deck class starts
like this:

def __init__(self, window, rankValueDict=STANDARD_DICT):

To create a Blackjack deck, you would only need to supply a different
dictionary for rankValueDict, like this:

blackJackDict = {'Ace':1, '2':2, '3':3, '4':4, '5':5,
 '6':6, '7':7, '8': 8, '9':9, '10':10,
 'Jack':10, 'Queen':10, 'King':10}
oBlackjackDeck = Deck(window, rankValueDict=blackJackDict)

Once you create the oBlackjackDeck this way, you can then call the exist-
ing shuffle() and getCard() methods with no change. In the implementation
of Blackjack, you would also have to deal with the fact that an ace can have
a value of 1 or 11. But that, as we say, is an exercise left to the reader!

Card Games 279

Games with Unusual Card Decks
There are a number of card games that do not use a standard deck of 52
cards. The game of canasta requires at least two decks with jokers, for a
total of 108 cards. A pinochle deck consists of two copies of 9, 10, jack,
queen, king, and ace for each suit, for a total of 48 cards.

For games like these, you could still use the Deck class, but you would
need to create a subclass with Deck as the base class. The new CanastaDeck
or PinochleDeck class would need to have its own __init__() method that
builds a deck as a list consisting of the appropriate Card objects. However,
the shuffle() and getCard() methods could be inherited from the Deck class.
Therefore, a CanastaDeck or PinochleDeck class would subclass the Deck class
and consist of only an __init__() method.

Summary
In this chapter, we built a GUI version of the Higher or Lower card game
from Chapter 1 using highly reusable Deck and Card classes. The main code
instantiates a Game object, which creates a Deck object that instantiates 52 Card
objects, one for each card in the resulting deck. Each Card object is respon-
sible for drawing its appropriate image in the window and can respond to
queries about its name, rank, suit, and value. The Game class, which contains
the logic of the game, is separate from the main code, which runs the
main loop.

I demonstrated how Python creates a special variable called __name__
and gives it different values depending on whether a file is being run as
the main program or not. You can use this feature to add some test code
that runs when you run the file as a main program (to test the code in the
module), but will not run in the typical case when the file is imported by
another module.

Finally, I showed how you can build different types of card decks,
depending on how different they are from the Deck class.

13
T I M E R S

This chapter is about timers. A timer
allows your program to count or wait for

a given amount of time before moving on
to perform some other action. In the world of

text-based Python programs, this is easily achieved
with time.sleep() by specifying a number of seconds
to sleep. To pause for two and a half seconds, you
could write:

import time
time.sleep(2.5)

However, in the world of pygame, and event-driven programming in
general, the user should always be able to interact with the program, so
pausing in this way is inappropriate. A call to time.sleep() would make the
program nonreactive during the sleeping period.

282 Chapter 13

Instead, the main loop needs to continue to run at whatever frame
rate you have chosen. You need a way for the program to continue to loop,
but also count time from a given starting point to some time in the future.
There are three different ways this can be accomplished:

•	 Measure time by counting frames.

•	 Use pygame to create an event that is issued in the future.

•	 Remember a start time and continuously check for the elapsed time.

I will quickly discuss the first two, but I’ll focus on the third, as it pro-
vides the cleanest and most accurate approach.

Timer Demonstration Program
To illustrate the different approaches, I’ll use different implementations of
the test program shown in Figure 13-1.

Figure 13-1: The timer demonstration program

When the user clicks Start, a 2.5-second timer starts and the window
changes to look like Figure 13-2.

Figure 13-2: The message displayed while the timer is running

For two and a half seconds, the Start button becomes disabled and a
message is displayed below the buttons. When the time expires, the mes-
sage goes away and the Start button is re-enabled. Independent of the timer
running, anything else that the user wants to do in the program still needs
to be responsive. In this example, clicking Click Me prints a message to the
shell window, whether the timer is running or not.

Timers 283

Three Approaches for Implementing Timers
In this section, I’ll discuss three different approaches to implementing tim-
ers: counting frames, generating a pygame event, and checking for elapsed
time. To make these concepts clear, the following code examples are built
directly in the main loop.

Counting Frames
A straightforward approach to creating a timer is to count the number of
frames that go by. One frame is the same as one loop iteration. If you know
the frame rate of a program, you can calculate how long to wait by multiply-
ing the time to wait by the frame rate. The following code shows the key
parts of the implementation:

File: InLineTimerExamples/CountingFrames.py

FRAMES_PER_SECOND = 30 # takes 1/30th of a second for each frame
TIMER_LENGTH = 2.5
--- snip ---
timerRunning = False

This code shows what happens when the user clicks the Start button:

 if startButton.handleEvent(event):
 timerRunning = True
 nFramesElapsed = 0 # initialize a counter
 nFramesToWait = int(FRAMES_PER_SECOND * TIMER_LENGTH)
 startButton.disable()
 timerMessage.show()

The program calculates that it should wait for 75 frames (2.5 seconds
× 30 frames per second), and we set timerRunning to True to indicate that the
timer has started. Inside the main loop, we use this code to check for when
the timer ends:

 if timerRunning:
 nFramesElapsed = nFramesElapsed + 1 # increment the counter
 if nFramesElapsed >= nFramesToWait:
 startButton.enable()
 timerMessage.hide()
 print('Timer ended by counting frames')
 timerRunning = False

When the timer ends, we re-enable the Start button, hide the message,
and reset the timerRunning variable. (If you prefer, you could set the count
to the number of frames to wait and count down to zero instead.) This
approach works fine, but it is tied to the program’s frame rate.

284 Chapter 13

Timer Event
As a second approach, we’ll take advantage of pygame’s built-in timer.
Pygame allows you to add a new event to the event queue—this is known
as posting an event. Specifically, we’ll ask pygame to create and post a timer
event. We only need to specify how far into the future we want the event to
happen. After the given amount of time, pygame will issue a timer event in
the main loop, in the same way that it issues other standard events such as
KEYUP, KEYDOWN, MOUSEBUTTONUP, MOUSEBUTTONDOWN, and so on. Your code will need
to look for and react to this type of event.

The following documentation is from https://www.pygame.org/docs/ref/
time.html:

pygame.time.set_timer()

Repeatedly create an event on the event queue

set_timer(eventid, milliseconds) -> None

set_timer(eventid, milliseconds, once) -> None

Set an event type to appear on the event queue every given number of
milliseconds. The first event will not appear until the amount of time
has passed.

Every event type can have a separate timer attached to it. It is best to
use the value between pygame.USEREVENT and pygame.NUMEVENTS.

To disable the timer for an event, set the milliseconds argument to 0.

If the once argument is True, then only send the timer once.

Every event type in pygame is represented by unique identifier. As of
pygame 2.0, you can now make a call to pygame.event.custom_type() to get an
identifier for a custom event.

File: InLineTimerExamples /TimerEvent.py

TIMER_EVENT_ID = pygame.event.custom_type() # new in pygame 2.0
TIMER_LENGTH = 2.5 # seconds

When the user clicks Start, the code creates and posts the timer event:

 if startButton.handleEvent(event):
 pygame.time.set_timer(TIMER_EVENT_ID,
 int(TIMER_LENGTH * 1000), True)
 --- snip disable button, show message ---

The value calculated is 2,500 milliseconds. True means that the timer
should only run once (generate only one event). We now need code in the
event loop that checks for the event happening:

 if event.type == TIMER_EVENT_ID:
 --- snip enable button, hide message ---

https://www.pygame.org/docs/ref/time.html
https://www.pygame.org/docs/ref/time.html

Timers 285

Since we specified True in the call to set the timer, this event is issued
only once. If we want to repeat events every 2,500 milliseconds, we could set
the last argument in the original call to False (or just let it default to False).
To end repeated timer events, we would make a call to set_timer() and pass
0 (zero) as the second argument.

Building a Timer by Calculating Elapsed Time
The third approach for implementing a timer uses the current time as a
starting point. We can then continuously query the current time and per-
form a simple subtraction to calculate the elapsed time. The code shown
for this example runs in the main loop; later, we’ll extract the timer-related
code and build a reusable Timer class.

The time module of the Python Standard Library has this function:

time.time()

Calling this function returns the current time in seconds as a floating-
point number. The value returned is the number of seconds that have passed
since “epoch time,” which is defined as 00:00:00 UTC on January 1, 1970.

The code in Listing 13-1 creates a timer by remembering the time when
the user clicks Start. While the timer is running, we check in every frame to
see if the desired amount of time has elapsed. You’ve already seen the user
interface, so I’ll omit those details and some of the setup code for brevity.

File: InLineTimerExamples/ElapsedTime.py

Timer in the main loop

--- snip ---

TIMER_LENGTH = 2.5 # seconds
--- snip ---
timerRunning = False

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 1 if startButton.handleEvent(event):
 timeStarted = time.time() # remember the start time
 startButton.disable()
 timerMessage.show()
 print('Starting timer')
 timerRunning = True

286 Chapter 13

 if clickMeButton.handleEvent(event):
 print('Other button was clicked')

 # 8 - Do any "per frame" actions
 2 if timerRunning: # if the timer is running
 elapsed = time.time() - timeStarted
 3 if elapsed >= TIMER_LENGTH: # True here means timer has ended
 startButton.enable()
 timerMessage.hide()
 print('Timer ended')
 timerRunning = False

 # 9 - Clear the window
 window.fill(WHITE)

 # 10 - Draw all window elements
 headerMessage.draw()
 startButton.draw()
 clickMeButton.draw()
 timerMessage.draw()

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND) # make pygame wait

Listing 13-1: A timer built into the main loop

The important variables to notice in this program are:

TIMER_LENGTH    A constant that says how long we want our timer to run

timerRunning    A Boolean that tells us whether the timer is running

timeStarted    The time at which the user pressed the Start button

When the user clicks Start, timerRunning is set to True 1. We initialize the
variable startTime to the current time. We then disable the Start button and
show the message below the buttons.

Each time through the loop, if the timer is running 2, we subtract
the starting time from the current time to see how much time has elapsed
since the timer started. When the amount of time elapsed becomes greater
than or equal to TIMER_LENGTH, whatever action we want to happen when the
time is up can happen. In this sample program, we enable the Start but-
ton, remove the bottom message, print a short text output, and reset the
timerRunning variable to False 3.

The code in Listing 13-1 works fine . . . for a single timer. However, this
is a book on object-oriented programming, so we want this to be scalable.
To generalize the functionality, we’ll turn the timing code into a class.
We’ll take the important variables, turn them into instance variables, and
split the code into methods. That way, we can define and use any number

Timers 287

of timers in a program. The Timer class, along with other classes used to
display timing in pygame programs, are available in a module named
pyghelpers.

Installing pyghelpers
To install pyghelpers, open the command line and enter the following two
commands:

python3 -m pip install -U pip --user

python3 -m pip install -U pyghelpers --user

These commands download and install pyghelpers from PyPI into a
folder that is available to all your Python programs. Once installed, you can
use pyghelpers by including the following statement at the beginning of your
programs:

import pyghelpers

You can then instantiate objects from the classes in the module and call
the methods of those objects. The most current documentation of pyghelpers
is at https://pyghelpers.readthedocs.io/en/latest/, and the source code is available
via my GitHub repository at https://github.com/IrvKalb/pyghelpers/.

The Timer Class
Listing 13-2 contains the code of a very simple timer as a class. This code is
built into the pyghelpers package as the Timer class (I’ve omitted some of the
documentation here for brevity).

File: (Available as part of the pyghelpers module)

Timer class

class Timer():
--- snip ---
 1 def __init__(self, timeInSeconds, nickname=None, callBack=None):
 self.timeInSeconds = timeInSeconds
 self.nickname = nickname
 self.callBack = callBack
 self.savedSecondsElapsed = 0.0
 self.running = False

 2 def start(self, newTimeInSeconds=None):

https://pyghelpers.readthedocs.io/en/latest/
https://github.com/IrvKalb/pyghelpers

288 Chapter 13

 --- snip ---
 if newTimeInSeconds != None:
 self.timeInSeconds = newTimeInSeconds
 self.running = True
 self.startTime = time.time()

 3 def update(self):
 --- snip ---
 if not self.running:
 return False
 self.savedSecondsElapsed = time.time() - self.startTime
 if self.savedSecondsElapsed < self.timeInSeconds:
 return False # running but hasn't reached limit

 else: # timer has finished
 self.running = False
 if self.callBack is not None:
 self.callBack(self.nickname)

 return True # True here means that the timer has ended

 4 def getTime(self):
 --- snip ---
 if self.running:
 self.savedSecondsElapsed = time.time() - self.startTime

 return self.savedSecondsElapsed

 5 def stop(self):
 """Stops the timer"""
 self.getTime() # remembers final self.savedSecondsElapsed
 self.running = False

Listing 13-2: A simple Timer class

When you create a Timer object, the only required argument is the num-
ber of seconds you want the timer to run 1. You can optionally supply a
nickname for the timer and a function or method to be called back when
the time has elapsed. If you specify a callback, the nickname will be passed
in when the callback happens.

You call the start() method 2 to start the timer running. The Timer
object remembers the start time in the instance variable self.startTime.

The update() method 3 must be called every time through the main
loop. If the timer is running and the appropriate amount of time has
elapsed, this method returns True. In any other call, this method returns
False.

If a Timer is running, calling getTime() 4 returns how much time has
elapsed for that Timer. You can call the stop() method 5 to immediately
stop the Timer.

We can now rewrite the timer demonstration program shown in
Figure 13-1 to use this Timer class from the pyghelpers package. Listing 13-3
shows how we use a Timer object in the code.

Timers 289

File: TimerObjectExamples/SimpleTimerExample.py

Simple timer example

--- snip ---

1 oTimer = pyghelpers.Timer(TIMER_LENGTH) # create a Timer object

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 if startButton.handleEvent(event):
 2 oTimer.start() # start the timer
 startButton.disable()
 timerMessage.show()
 print('Starting timer')

 if clickMeButton.handleEvent(event):
 print('Other button was clicked')

 # 8 - Do any "per frame" actions
 3 if oTimer.update(): # True here means timer has ended
 startButton.enable()
 timerMessage.hide()
 print('Timer ended')

 # 9 - Clear the screen
 window.fill(WHITE)

 # 10 - Draw all screen elements
 headerMessage.draw()
 startButton.draw()
 clickMeButton.draw()
 timerMessage.draw()

 # 11 - Update the screen
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND) # make pygame wait

Listing 13-3: A main program that uses an instance of the Timer class

Again, I’ve cut the setup code. Before the main loop starts, we create a
Timer object 1. When the user clicks Start, we call oTimer.start() 2 to start
the timer running.

290 Chapter 13

Each time through the loop, we call the update() method of the Timer
object 3. There are two ways to know when the timer ends. The simple
way is to check for this call returning True. The sample code in Listing 13-3
uses this approach. Alternatively, if we specified a value for callBack in the
__init__() call, when the timer finished, whatever was specified as the
callBack value would be called back. In most cases, I would suggest using
the first approach.

There are two advantages to using a Timer class. First, it hides the details
of the timing code; you only create a Timer object when you want to, and
you call the methods of that object. Second, you can create as many Timer
objects as you wish, and each will run independently.

Displaying Time
Many programs will need to count and display time to the user. For exam-
ple, in a game, the elapsed time might be constantly displayed and updated,
or the user might have a set amount of time to complete a task, requiring a
countdown timer. I’ll demonstrate how to do both of these using the Slider
Puzzle game pictured in Figure 13-3.

Figure 13-3: The Slider Puzzle user interface

When you start this game, the tiles are randomly rearranged, and there
is one empty black space. The goal of the game is to move tiles one at a time
to put them in order from 1 to 15. You are only allowed to click a tile that is
horizontally or vertically adjacent to the empty square. Clicking a valid tile
swaps it with the space. I won’t get into the details of the full implementa-
tion of the game (although the source code is available online, with the rest
of the book’s resources). Instead, I will focus on how to integrate a timer.

The pyghelpers package contains two classes that allow programmers to
track time. The first is CountUpTimer, which starts at zero and counts up indef-
initely, or until you tell it to stop. The second is CountDownTimer, which starts
at a given amount of time and counts down to zero. I’ve built a version of

Timers 291

the game for each. The first version lets the user see how long it takes them
to solve the puzzle. In the second one, the user is given a certain amount of
time when they start the game, and if they have not completed it when the
timer reaches zero, they lose the game.

CountUpTimer
With the CountUpTimer class, you create a timer object and tell it when to
start. Then, in every frame, you can call one of three different methods to
get the time elapsed in different formats.

Listing 13-4 contains the implementation of the CountUpTimer class from
pyghelpers. The code is a good example of how the different methods of a
class share instance variables.

File: (Available as part of the pyghelpers module)

CountUpTimer class

class CountUpTimer():
 --- snip ---

 def __init__(self): 1
 self.running = False
 self.savedSecondsElapsed = 0.0
 self.secondsStart = 0 # safeguard

 def start(self): 2
 --- snip ---
 self.secondsStart = time.time() # get the current seconds and save the value
 self.running = True
 self.savedSecondsElapsed = 0.0

 def getTime(self): 3
 """Returns the time elapsed as a float"""
 if not self.running:
 return self.savedSecondsElapsed # do nothing

 self.savedSecondsElapsed = time.time() - self.secondsStart
 return self.savedSecondsElapsed # returns a float

 def getTimeInSeconds(self): 4
 """Returns the time elapsed as an integer number of seconds"""
 nSeconds = int(self.getTime())
 return nSeconds

 # Updated version using fStrings
 def getTimeInHHMMSS(self, nMillisecondsDigits=0): 5
 --- snip ---
 nSeconds = self.getTime()
 mins, secs = divmod(nSeconds, 60)
 hours, mins = divmod(int(mins), 60)

 if nMillisecondsDigits > 0:

292 Chapter 13

 secondsWidth = nMillisecondsDigits + 3
 else:
 secondsWidth = 2

 if hours > 0:
 output =
 f'{hours:d}:{mins:02d}:{secs:0{secondsWidth}.{nMillisecondsDigits}f}'
 elif mins > 0:
 output = f'{mins:d}:{secs:0{secondsWidth}.{nMillisecondsDigits}f}'
 else:
 output = f'{secs:.{nMillisecondsDigits}f}'

 return output

 def stop(self): 6
 """Stops the timer"""
 self.getTime() # remembers final self.savedSecondsElapsed
 self.running = False

Listing 13-4: The CountUpTimer class

The implementation depends on three key instance variables 1:

•	 self.running is a Boolean that indicates whether the timer is running or
not.

•	 self.savedSecondsElapsed is a float that represents the elapsed time of a
timer.

•	 self.secondsStart is the time that the timer started running.

The client calls the start() method 2 to start a timer. In response, the
method calls time.time(), stores the start time in self.secondsStart, and sets
self.running to True to indicate that the timer is running.

The client can call any of these three methods to get the elapsed time
associated with the timer, in different formats:

•	 getTime() 3 returns the elapsed time as a floating-point number.

•	 getTimeInSeconds() 4 returns the elapsed time as an integer number of
seconds.

•	 getTimeInHHMMSS() 5 returns the elapsed time as a formatted string.

The getTime() method calls time.time() to get the current time and
subtracts the starting time to get the elapsed time. The other two meth-
ods each make a call to the getTime() method of this class to calculate the
elapsed time, then do different processing on the output: getTimeInSeconds()
converts the time into an integer number of seconds, and getTimeInHHMMSS()
formats the time into a string in hours:minutes:seconds format. The output of
each of these methods is intended to be sent to a DisplayText object (defined
in the pygwidgets package) to be shown in the window.

The stop() method 6 can be called to stop the timer (for example,
when the user completes the puzzle).

Timers 293

The main file for this version of the Slider Puzzle game is available with
the rest of the book’s resources, at SliderPuzzles/Main_SliderPuzzleCountUp.py.
It instantiates a CountUpTimer object before the main loop begins and saves
it in the variable oCountUpTimer. It then calls the start() method right away.
It also creates a DisplayText field to display the time. Each time through the
main loop, the main code calls the getTimeInHHMMSS() method and shows the
result in the field:

timeToShow = oCountUpTimer.getTimeInHHMMSS() # ask the Timer object for the elapsed time
oTimerDisplay.setValue('Time: ' + timeToShow) # put that into a text field

The variable oTimerDisplay is an instance of the pygwidgets.DisplayText
class. The setValue() method of the DisplayText class is optimized to check
whether the new text to be displayed is the same as the previous text.
Therefore, even though we are telling the field to display the amount of
time 30 times every second, there is not much work done until the time
changes, once per second.

The game code checks for a solved puzzle and, when the puzzle is
solved, calls the stop() method to freeze the time. If the user clicks the
Restart button to start a new game, the game calls start() to restart the
timer object.

CountDownTimer
The CountDownTimer class has some subtle differences. Instead of counting up
from zero, you initialize a CountDownTimer by providing a starting number of
seconds, and it counts down from that value. The interface for creating a
CountDownTimer looks like this:

CountDownTimer(nStartingSeconds, stopAtZero=True, nickname=None,
 callBack=None):

There is a second optional parameter, stopAtZero, that defaults to True—
which assumes that you want the timer to stop when it reaches zero. You can
also optionally specify a function or method as a callback when the timer
reaches zero. Lastly, you can supply a nickname to be used if and when a
callback is made.

The client calls the start() method to begin counting down.
From the client’s point of view, the getTime(), getTimeInSeconds(),

getTimeInHHMMSS(), and stop() methods appear identical to their counter-
parts in the CountUpTimer class.

CountDownTimer has an additional method named ended(). The applica-
tion needs to call the ended() method every time through its main loop. It
returns False while the timer is active, but returns True when the timer ends
(that is, reaches zero).

The countdown version of the Slider Puzzle game’s main file is available
with the book’s resources, at SliderPuzzles/Main_SliderPuzzleCountDown.py.

The code is very similar to the previous version that counts up, but
this version creates an instance of CountDownTimer instead and supplies a set

294 Chapter 13

number of seconds it allows to solve the puzzle. It also calls getTimeInHHMMSS(2)
every frame and updates the time with two decimal digits. Finally, it includes
a call to the ended() method in every frame to see if the time has run out. If
the timer ends before the user has solved the puzzle, it plays a sound and
displays a message telling the user that they ran out of time.

Summary
This chapter gave you a number of ways to handle timing in programs. I
discussed three different approaches: first by counting frames, second by
creating a custom event, and finally by remembering a start time and sub-
tracting it from the current time to get the time elapsed.

Using the third approach, we built a generic reusable Timer class (which
you can find in the pyghelpers package). I also showed two additional classes
from this package, CountUpTimer and CountDownTimer, that can be used to han-
dle timing in programs where you want to show a timer to the user.

14
A N I M A T I O N

This chapter is about animation—
specifically, traditional image animation.

On a very simple level, you can think of
this like a flip-book: a series of images, each

slightly different from the previous one, that are
shown in succession. The user sees each image for a
short amount of time and experiences the illusion of
movement. Animation provides a good opportunity
for building a class because the mechanics of display-
ing the images over time are well understood and
easily coded.

To show the general principles, we’ll begin by implementing two anima-
tion classes: a SimpleAnimation class based on a series of individual image files,
and a SimpleSpriteSheetAnimation class built using a single file that contains

296 Chapter 14

a sequence of many images. Then I’ll show you two more-robust animation
classes from the pygwidgets package, Animation and SpriteSheetAnimation, and
explain how they are built using a common base class.

Building Animation Classes
The basic idea behind an animation class is relatively straightforward. The
client will provide an ordered set of images and an amount of time. The cli-
ent code will tell the animation when to start playing and will periodically
tell the animation to update itself. The images in the animation will be dis-
played in order, each for the given amount of time.

SimpleAnimation Class
The general technique is to begin by loading the complete set of images,
storing them in a list, and displaying the first image. When the client tells
the animation to start, the animation begins tracking time. Each time the
object is told to update itself, our code checks to see if the specified amount
of time has passed and, if so, displays the next image in the sequence.
When the animation is finished, we display the first image again.

Creating the Class

Listing 14-1 contains the code of a SimpleAnimation class, which handles an
animation made up of separate image files. To keep things clearly orga-
nized, I strongly recommend that you place all the image files associated
with an animation in a subfolder inside an images folder inside your project
folder. The examples given here will use this structure, and the associated
art and main code are available with the rest of the book’s resources.

File: SimpleAnimation/SimpleAnimation.py

SimpleAnimation class

import pygame
import time

class SimpleAnimation():
 def __init__(self, window, loc, picPaths, durationPerImage): 1
 self.window = window
 self.loc = loc
 self.imagesList = []
 for picPath in picPaths:
 image = pygame.image.load(picPath) # load an image
 image = pygame.Surface.convert_alpha(image) 2 # optimize blitting
 self.imagesList.append(image)

 self.playing = False
 self.durationPerImage = durationPerImage
 self.nImages = len(self.imagesList)

Animation 297

 self.index = 0

 def play(self): 3
 if self.playing:
 return
 self.playing = True
 self.imageStartTime = time.time()
 self.index = 0

 def update(self): 4
 if not self.playing:
 return

 # How much time has elapsed since we started showing this image
 self.elapsed = time.time() - self.imageStartTime

 # If enough time has elapsed, move on to the next image
 if self.elapsed > self.durationPerImage:
 self.index = self.index + 1

 if self.index < self.nImages: # move on to next image
 self.imageStartTime = time.time()
 else: # animation is finished
 self.playing = False
 self.index = 0 # reset to the beginning

 def draw(self): 5
 # Assumes that self.index has been set earlier - in the update() method.
 # It is used as the index into the imagesList to find the current image.
 theImage = self.imagesList[self.index] # choose the image to show

 self.window.blit(theImage, self.loc) # show it

Listing 14-1: The SimpleAnimation class

When a client instantiates a SimpleAnimation object, it must pass in the
following:

window    The window to draw into.

loc    The location in the window to draw the images.

picPaths    A list or tuple of paths to images. The images will be dis-
played in the order given here.

durationPerImage    How long (in seconds) to show each image.

In the __init__() method 1, we save these parameter variables into sim-
ilarly named instance variables. The method loops through the list of paths,
loads each image, and saves the resulting images into a list. A list is a perfect
way to represent an ordered set of images. The class will use the self.index
variable to keep track of the current image in the list.

The format of an image in a file is different from the format of an image
when displayed on the screen. The call to convert_alpha() 2 converts from the
file format to the screen format to optimize performance when showing an
image in the window. The actual drawing is done later, in the draw() method.

298 Chapter 14

The play() method 3 starts an animation running. It first checks to
see if the animation is already running, and if it is, the method just returns.
Otherwise, it sets self.playing to True to indicate that the animation is now
running.

When a SimpleAnimation is created, the caller specifies the amount of time
that each image should be shown, and this is saved in self.durationPerImage.
Therefore, we must keep track of time as a SimpleAnimation runs to know when
to switch to the next image. We call time.time() to get the current time (in mil-
liseconds) and save that in an instance variable. Making the class time based
means that any SimpleAnimation object built from this class will work correctly,
independent of the frame rate used for the main loop. Finally, we set the vari-
able self.index to 0 to indicate that we should be showing the first image.

The update() method 4 needs to be called in every frame of the
main loop. If the animation is not playing, update() does nothing and just
returns. Otherwise, update() calculates how much time has elapsed since
the current image started showing by getting the current time using the
system time.time() function and subtracting that from the time at which
the current image started showing.

If the elapsed time is greater than the amount of time that each image
should be showing, it’s time move to the next image. In this case, we incre-
ment self.index so that the upcoming call to the draw() method will draw
the appropriate image. We then check whether the animation has finished.
If not, we save the start time for the new image. If the animation is done, we
set self.playing back to False (to indicate that we are no longer playing the
animation), and we reset self.index to 0 so that the draw() method will show
the first image again.

Finally, we call draw() in every frame 5 to draw the current image of
the animation. The draw() method assumes that self.index has been set cor-
rectly by a previous method, and uses it to index into the list of images. It
then draws that image in the window at the specified location.

Example Main Program

Listing 14-2 shows a main program that creates and uses a SimpleAnimation
object. This will animate a dinosaur riding a bicycle.

File: SimpleAnimation/Main_SimpleAnimation.py

Animation example
Shows example of SimpleAnimation object

1 - Import library
import pygame
from pygame.locals import *
import sys
import pygwidgets
from SimpleAnimation import *

2 Define constants
SCREEN_WIDTH = 640

Animation 299

SCREEN_HEIGHT = 480
FRAMES_PER_SECOND = 30
BGCOLOR = (0, 128, 128)

3 - Initialize the world
pygame.init()
window = pygame.display.set_mode([SCREEN_WIDTH, SCREEN_HEIGHT])
clock = pygame.time.Clock()

4 - Load assets: images(s), sound(s), etc.
1 dinosaurAnimTuple = ('images/Dinobike/f1.gif',
 'images/Dinobike/f2.gif',
 'images/Dinobike/f3.gif',
 'images/Dinobike/f4.gif',
 'images/Dinobike/f5.gif',
 'images/Dinobike/f6.gif',
 'images/Dinobike/f7.gif',
 'images/Dinobike/f8.gif',
 'images/Dinobike/f9.gif',
 'images/Dinobike/f10.gif')

5 - Initialize variables
oDinosaurAnimation = SimpleAnimation(window, (22, 140),
 dinosaurAnimTuple, .1)
oPlayButton = pygwidgets.TextButton(window, (20, 240), "Play")

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

 2 if oPlayButton.handleEvent(event):
 oDinosaurAnimation.play()

 # 8 - Do any "per frame" actions
 3 oDinosaurAnimation.update()

 # 9 - Clear the window
 window.fill(BGCOLOR)

 # 10 - Draw all window elements
 4 oDinosaurAnimation.draw()
 oPlayButton.draw()

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND) # make pygame wait

Listing 14-2: The main program that instantiates and plays a SimpleAnimation

300 Chapter 14

All the images for the animated dinosaur are in the folder images/
DinoBike/. We first build a tuple of the images 1. Then, using that tuple,
we create a SimpleAnimation object and specify that each image should be
shown for a tenth of a second. We also instantiate a Play button.

In the main loop, we call the update() and draw() methods of the
oDinosaurAnimation object. The program loops while continuously drawing
the current image of the animation and the Play button. When the anima-
tion is not running, the user just sees the first image.

When the user clicks the Play button 2, the program calls the play()
method of oDinosaurAnimation to start the animation running.

In the main loop, we call the update() method of oDinosaurAnimation 3,
which determines whether enough time has elapsed for the animation to
move on to the next image.

Finally, we call draw() 4, and the object draws the appropriate image.

SimpleSpriteSheetAnimation Class
The second type of animation is implemented in the SimpleSpriteSheetAnimation
class. A sprite sheet is a single image made up of a number of equally sized
smaller images, intended to appear in order to create an animation. From a
developer’s point of view, there are three advantages to a sprite sheet. First,
all the images are in a single file, so there is no need to worry about building
a name for each separate file. Second, it’s possible to see the progression of
an animation in a single file, rather than having to flip through a sequence
of images. Finally, loading a single file is faster than loading a list of files that
make up an animation.

Figure 14-1 shows an example of a sprite sheet.

Figure 14-1: A sprite sheet image made up of
18 smaller images

This example is designed to show the numbers from 0 to 17. The origi-
nal file contains an image that is 384×192 pixels. A quick division shows that
each individual number image is 64×64 pixels. The key idea here is that we
use pygame to create subimages of a larger image to give us a set of 18 new
64×64 pixel images. The smaller images can then be displayed using the
same technique as we used in the SimpleAnimation class.

Animation 301

Creating the Class

Listing 14-3 contains the SimpleSpriteSheetAnimation class to handle sprite
sheet–based animations. During initialization, the contents of the single
sprite sheet image are split up into a list of smaller images, which are then
displayed by the other methods.

File: SimpleSpriteSheetAnimation/SimpleSpriteSheetAnimation.py

SimpleSpriteSheetAnimation class

import pygame
import time

class SimpleSpriteSheetAnimation():
 def __init__(self, window, loc, imagePath, nImages, width, height, durationPerImage): 1
 self.window = window
 self.loc = loc
 self.nImages = nImages
 self.imagesList = []

 # Load the sprite sheet
 spriteSheetImage = pygame.image.load(imagePath)
 # Optimize blitting
 spriteSheetImage = pygame.Surface.convert_alpha(spriteSheetImage)

 # Calculate the number of columns in the starting image
 nCols = spriteSheetImage.get_width() // width

 # Break up the starting image into subimages
 row = 0
 col = 0
 for imageNumber in range(nImages):
 x = col * width
 y = row * height

 # Create a subsurface from the bigger spriteSheet
 subsurfaceRect = pygame.Rect(x, y, width, height)
 image = spriteSheetImage.subsurface(subsurfaceRect)
 self.imagesList.append(image)

 col = col + 1
 if col == nCols:
 col = 0
 row = row + 1

 self.durationPerImage = durationPerImage
 self.playing = False
 self.index = 0

 def play(self):
 if self.playing:
 return
 self.playing = True

302 Chapter 14

 self.imageStartTime = time.time()
 self.index = 0

 def update(self):
 if not self.playing:
 return

 # How much time has elapsed since we started showing this image
 self.elapsed = time.time() - self.imageStartTime

 # If enough time has elapsed, move on to the next image
 if self.elapsed > self.durationPerImage:
 self.index = self.index + 1

 if self.index < self.nImages: # move on to next image
 self.imageStartTime = time.time()

 else: # animation is finished
 self.playing = False
 self.index = 0 # reset to the beginning

 def draw(self):
 # Assumes that self.index has been set earlier - in the update() method.
 # It is used as the index into the imagesList to find the current image.
 theImage = self.imagesList[self.index] # choose the image to show

 self.window.blit(theImage, self.loc) # show it

Listing 14-3: The SimpleSpriteSheetAnimation class

This class is very similar to SimpleAnimation, but because this animation
is based on a sprite sheet, the __init__() method must be passed different
information 1. The method requires the standard window and loc param-
eters, as well as:

imagePath    A path to a sprite sheet image (single file)

nImages    The number of images in the sprite sheet

width    The width of each subimage

height    The height of each subimage

durationPerImage    How long (in seconds) to show each image

Given these values, the __init__() method loads the sprite sheet file, and
it uses a loop to split up the larger image into a list of smaller subimages
through a call to the pygame subsurface() method. The smaller images are
then appended into the self.imagesList list for use by the other methods.
The __init__() method uses a counter to count the number of subimages,
up to the number specified by the caller; therefore, the last row of images
does not need to be a full row. For example, we could have used a sprite
sheet image that only had the numbers 0 through 14, rather than needing
to fill the row to 17. The nImages parameter is the key to making this work.

This rest of this class has the exact same methods as the previous
SimpleAnimation class: play(), update(), and draw().

Animation 303

Example Main Program

Listing 14-4 provides a sample main program that creates and shows
a SimpleSpriteSheetAnimation object that shows an animated drop of
water landing and spreading out. If you download everything in the
SpriteSheetAnimation folder of this book’s resources, you will get the
code and the appropriate artwork.

File: SimpleSpriteSheetAnimation/Main_SimpleSpriteSheetAnimation.py

Shows example of SimpleSpriteSheetAnimation object

1 - Import library
import pygame
from pygame.locals import *
import sys
import pygwidgets
from SimpleSpriteSheetAnimation import *

2 Define constants
SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480
FRAMES_PER_SECOND = 30
BGCOLOR = (0, 128, 128)

3 - Initialize the world
pygame.init()
window = pygame.display.set_mode([SCREEN_WIDTH, SCREEN_HEIGHT])
clock = pygame.time.Clock()

4 - Load assets: images(s), sound(s), etc.

5 - Initialize variables
1 oWaterAnimation = SimpleSpriteSheetAnimation(window, (22, 140),
 'images/water_003.png',
 50, 192, 192, .05)
oPlayButton = pygwidgets.TextButton(window, (60, 320), "Play")

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

 if oPlayButton.handleEvent(event):
 oWaterAnimation.play()

 # 8 - Do any "per frame" actions
 oWaterAnimation.update()

304 Chapter 14

 # 9 - Clear the window
 window.fill(BGCOLOR)

 # 10 - Draw all window elements
 oWaterAnimation.draw()
 oPlayButton.draw()

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND) # make pygame wait

Listing 14-4: A sample main program that creates and uses a SimpleSpriteSheetAnimation
object

The only significant difference with this example is that it instantiates a
SimpleSpriteSheetAnimation object 1 instead of a SimpleAnimation object.

Merging Two Classes
The __init__() methods in SimpleAnimation and SimpleSpriteSheetAnimation
have different parameters, but the other three methods (start(), update(),
and draw()) are identical. Once you instantiate either of these classes, the
way that you access the resulting objects is exactly the same. The “Don’t
Repeat Yourself” (DRY) principle says that having these duplicated meth-
ods is a bad idea, because any bug fixes and/or enhancements would have
to be applied in both copies of the methods.

Instead, this is a good opportunity to merge classes. We can create
a common abstract base class for these classes to inherit from. The base
class will have its own __init__() method that includes any common code
from the __init__() methods of both original classes, and it will contain the
play(), update(), and draw() methods.

Each original class will inherit from the new base class and implement
its own __init__() method using the appropriate parameters. Each will do
its own work to create self.imagesList, which is then used in the other three
methods in the new base class.

Rather than showing the result of merging these two “simple” classes,
I’ll show the result of this merge in the “professional strength” Animation and
SpriteSheetAnimation classes that are part of the pygwidgets package.

Animation Classes in pygwidgets
The pygwidgets module contains the following three animation classes:

PygAnimation    An abstract base class for the Animation and
SpriteSheetAnimation classes

Animation    A class for image-based animations (separate image files)

SpriteSheetAnimation    A class for sprite sheet–based animations (a
single large image)

Animation 305

We’ll look at each class in turn. The Animation and SpriteSheetAnimation
classes use the same basic concepts discussed, but also have more options
available via initialization parameters.

Animation Class
You use pygwidget’s Animation class to create an animation from many differ-
ent image files. Here is the interface:

Animation(window, loc, animTuplesList, autoStart=False,
 loop=False, showFirstImageAtEnd=True, nickname=None, callBack=None, nIterations=1):

The required parameters are:

window

The window to draw in.

loc

The upper-left corner where images should be drawn.

animTuplesList

A list (or tuple) of tuples describing the sequence of the animation.
Each inner tuple contains:

pathToImage   The relative path to an image file.

Duration   The duration this image should be shown (in seconds, float-
ing point).

offset (optional)   If present, an (x, y) tuple used as an offset from the
main loc to show this image.

These parameters are all optional:

autoStart

True if you want the animation to start right away; defaults to False.

loop

True if you want the animation to loop continuously; defaults to False.

showFirstImageAtEnd

When an animation ends, show the first image again; defaults to True.

nickname

An internal name to assign to this animation, used as an argument
when a callBack is specified.

callBack

The function or object method to call when the animation is done.

nIterations

The number of times to loop through the animation; defaults to 1.

Unlike SimpleAnimation, which uses a single duration for all images,
the Animation class lets you specify a duration for each image, allowing for

306 Chapter 14

greater flexibility in the timing of how the images are displayed. You can
also specify an x, y offset when drawing each image, but in general this
isn’t needed. Here is some sample code that creates an Animation object that
shows a running T-rex dinosaur:

TRexAnimationList = [('images/TRex/f1.gif', .1),
 ('images/TRex/f2.gif', .1),
 ('images/TRex/f3.gif', .1),
 ('images/TRex/f4.gif', .1),
 ('images/TRex/f5.gif', .1),
 ('images/TRex/f6.gif', .1),
 ('images/TRex/f7.gif', .1),
 ('images/TRex/f8.gif', .1),
 ('images/TRex/f9.gif', .1),
 ('images/TRex/f10.gif', .4)]

5 - Initialize variables
oDinosaurAnimation = pygwidgets.Animation(window, (22, 145),
 TRexAnimationList, callBack=myFunction, nickname='Dinosaur')

This creates an Animation object that will show 10 different images. The
first nine images each show for one-tenth of a second, but the last image
shows for four-tenths of a second. The animation will only play once and
will not automatically start playing. When the animation is finished,
myFunction() will be called with the argument 'Dinosaur'.

SpriteSheetAnimation Class
For SpriteSheetAnimation, you pass in a path to the single sprite sheet file. In
order for SpriteSheetAnimation to break up the large animation into many
smaller images, you must specify the width and height of all subimages. For
durations, you have two choices: you can specify a single value to say that all
images should be shown for the same amount of time, or you can specify a
list or tuple of durations, one for each image. Here’s the interface:

SpriteSheetAnimation(window, loc, imagePath, nImages,
 width, height, durationOrDurationsList,
 autoStart=False, loop=False, showFirstImageAtEnd=True, nickname=None,
 callBack=None, nIterations=1):

The required parameters are:

window    The window to draw in

loc    The upper-left corner where images should be drawn

imagePath    The relative path to the sprite sheet image file

nImages    The total number of subimages in the sprite sheet subimage

width    The width of each single resulting subimage

height   The height of each single resulting subimage

durationOrDurationsList    The amount of time for which each subim-
age should be shown during animation or a list of durations, one per
subimage (the length must be nImages)

Animation 307

These are the optional parameters:

autoStart

True if you want the animation to start right away; defaults to False.

loop

True if you want the animation to loop continuously; defaults to False.

showFirstImageAtEnd

When an animation ends, show the first image again; defaults to True.

nickname

An internal name to assign to this animation, used as an argument
when a callBack is specified.

callBack

The function or object method to call when the animation is done.

nIterations

The number of times to loop through the animation; defaults to 1.

Here is a typical statement to create a SpriteSheetAnimation object:

oEffectAnimation = pygwidgets.SpriteSheetAnimation(window, (400, 150),
'images/effect.png', 35, 192, 192, .1,
autoStart=True, loop=True)

This creates a SpriteSheetAnimation object using a single image file found
at the given path. The original image contains 35 subimages. Each smaller
image is 192×192 pixels, and each subimage will be shown for one-tenth of a
second. The animation will start automatically and loop continuously.

Common Base Class: PygAnimation
The Animation and SpriteSheetAnimation classes each consist only of an
__init__() method and inherit from a common abstract base class,
PygAnimation. The __init__() methods of both classes call the inherited
__init__() method of the PygAnimation base class. Therefore, the __init__()
methods of the Animation and SpriteSheetAnimation classes only initialize
the unique data in their classes.

After creating an Animation or SpriteSheetAnimation object, client code
needs to include calls to update() and draw() in every frame. The following is
a list of the methods available to both classes through the base class:

handleEvent(event)

Must be called in every frame if you want to check if the user has clicked
on the animation. If so, you pass in the event supplied by pygame. This
method returns False most of the time, but returns True when the user
clicks down on the image, in which case you would typically call play().

play()

Starts the animation playing.

308 Chapter 14

stop()

Stops the animation wherever it is, and resets to showing only the first
image.

pause()

Causes the animation to temporarily stop on the current image. You
can continue playing with a call to play().

update()

Should be called in every frame. When the animation is running, this
method takes care of calculating the proper time to advance to the
next image. It typically returns False, but returns True when the anima-
tion ends (and it is not set to loop).

draw()

Should be called in every frame. This method draws the current image
of the animation.

setLoop(trueOrFalse)

Pass in True or False to indicate whether the animation should loop or
not.

getLoop()

Returns True if the animation is set to loop or False if it is not.

N O T E 	 The location of an animation in the window is determined by the original value of
loc that’s passed to __init__(). Both Animation and SpriteSheetAnimation inherit
from the common PygAnimation class, and that class inherits from PygWidget. Since
all the methods available in PygWidget are therefore available in both animation
classes, you could easily construct an animation that also changes its location while
it is playing. You can make any animation move by calling setLoc(), inherited from
PygWidget, and supplying any x and y location you like for each image.

Example Animation Program
Figure 14-2 shows a screenshot of a sample program that demonstrates mul-
tiple animations built from the Animation and SpriteSheetAnimation classes.

The little dinosaur on the left is an Animation object. It’s set to autoStart so
the animation plays when the program begins, but only once. Clicking the
buttons below the small dinosaur makes appropriate calls to the Animation
object. If you click Play, the animation plays again. While the animation is
playing, clicking Pause will freeze the animation until you click Play again.
If you play the animation and then click Stop, the animation will stop and
show the first image. Below those buttons are two checkboxes. By default, this
animation will not loop. If you check Loop, then press Play, the animation
repeats until you uncheck Loop. The Show checkbox makes the animation
visible or invisible.

Animation 309

Figure 14-2: An example animation program using the Animation and
SpriteSheetAnimation classes

The second (T-rex) Animation object is not set to autoStart, so you only
see the first image of the animation. If you click this image, the anima-
tion is set to iterate through all its images three times (three loops) before
stopping.

At the top right is a firework SpriteSheetAnimation object, which comes
from a single image containing 35 subimages. This animation is set to loop,
so you see it run continuously.

At the bottom right is a walking SpriteSheetAnimation from a single image
with 36 subimages. When you click Start, the animation plays through all
the images once.

The full source code of this program is available in the AnimationExample/
Main_AnimationExample.py file along with the rest of the book’s resources.

The program instantiates two Animation objects (the small dinosaur and
the T-rex) and two SpriteSheetAnimation objects (the firework and the walk-
ing person). When a button below the little dinosaur is clicked, we call the
appropriate method of the dinosaur animation object. A click on the little
dinosaur or T-rex results in a call to the start() method of that animation.

The program shows that multiple animations can run at the same
time. This works because the main loop calls the update() and draw() meth-
ods of each animation in every frame in the main loop, and each animation
makes its own decision about keeping the current image or showing the
next image.

Summary
In this chapter, we explored the mechanisms required in an animation class
by building our own SimpleAnimation and SimpleSpriteSheetAnimation classes.
The former is made up of multiple images, whereas the latter uses a single
larger image that contains multiple subimages.

These two classes have different initializations, but the remaining meth-
ods of the classes are identical. I explained the process of merging the two
classes by building a common abstract base class.

I then introduced the Animation class and the SpriteSheetAnimation class
in pygwidgets. I explained that these two classes only implement their own
versions of the __init__() method, inheriting their other methods from the
common base class, PygAnimation. I concluded by showing a demonstration
program that provides examples of animations and sprite sheet animations.

Games and programs will often need to
present different scenes to the user. For the

purpose of this discussion, I’ll define a scene
as any window layout and related user interac-

tions that are significantly different from any other. For
example, a game like Space Invaders may have a starting
or splash scene, a main game play scene, a high scores
scene, and perhaps an ending or goodbye scene.

In this chapter I will discuss two different approaches to writing a pro-
gram that has multiple scenes. First, I’ll introduce the state machine tech-
nique, which works well for relatively small programs. Then I’ll show a fully
object-oriented approach where each scene is implemented as an object,
under the control of a scene manager. The latter is much more scalable for
larger programs.

15
S C E N E S

312 Chapter 15

The State Machine Approach
At the beginning of this book, we developed a software simulation of a
light switch. In Chapter 1, we first implemented a light switch using proce-
dural code, and then we rewrote it using a class. In both cases, the position
(or state) of the switch was represented by a single Boolean variable; True
represented on and False represented off.

There are many situations where a program or an object can be in
one of a number of different states, and different code needs to run based
on the current state. For example, consider the series of steps involved in
using an ATM. There is a starting (greeting) state, then you need to put in
your ATM card; after this you’re prompted to enter your PIN, choose which
action you want to do, and so on. At any point, you may need to go back a
step or even start over. The general implementation approach is to use a
state machine.

	state machine	 A model that represents and controls the flow of execution through a series of states.

The implementation of a state machine consists of:

•	 A collection of predefined states, typically expressed as constants whose
values are strings comprised of a word or short phrase that describes
what happens in the state

•	 A single variable to track the current state

•	 A starting state (from the set of predefined states)

•	 A set of clearly defined transitions between states

A state machine can only be in one state at any given time, but can
move to a new state, typically based on specific input from the user.

In Chapter 7 we discussed the GUI button classes in the pygwidgets
package. When rolling over and clicking a button, a user sees three differ-
ent images—up, over, and down—which correspond to different states of
the button. The image switching is done in the handleEvent() method (which
is called whenever an event occurs). Let’s take a closer look at how this is
implemented.

The handleEvent() method is built as a state machine. The state is kept
in an instance variable, self.state. Each button starts in the up state, show-
ing the “up” image. When the user moves the cursor over a button, we
show the “over” image and the code transitions to the over state. When the
user clicks down on the button, we show the “down” image and the code
moves into the down state (internally called the armed state). When the user
releases the mouse button (clicks up), we again show the “over” image, and
the code transitions back to the over state (and handleEvent() returns True to
indicate that a click has happened). If the user then moves the cursor off the
button, we show the “up” image again and transition back to the up state.

Scenes 313

Next, I’ll show you how we can use a state machine to represent dif-
ferent scenes that a user can encounter in a larger program. As a generic
example, we’ll have the following scenes: Splash (starting), Play, and End.
We’ll create a set of constants that represent the different states, create a
variable called state, and assign it the value of the starting state:

STATE_SPLASH = 'splash'
STATE_PLAY = 'play'
STATE_END = 'end'
state = STATE_SPLASH # initialize to starting state

In order to perform different actions in the different states, in the pro-
gram’s main loop we use an if/elif/elif/.../else construct that branches
based on the current value of the state variable:

while True:
 if state == STATE_SPLASH:
 # Do whatever you want to do in the Splash state here
 elif state == STATE_PLAY:
 # Do whatever you want to do in the Play state here
 elif state == STATE_END:
 # Do whatever you want to do in the End state here
 else:
 raise ValueError('Unknown value for state: ' + state)

Since state is initially set to STATE_SPLASH, only the first branch of the if
statement will run.

The idea of a state machine is that under certain circumstances, typi-
cally triggered by some event, the program changes its state by assigning a
different value to the state variable. For example, the starting Splash scene
could just show a game introduction with a Start button. When the user
clicks the Start button, the game will execute an assignment statement that
changes the value of the state variable to transition into the Play state:

state = STATE_PLAY

Once that line runs, only the code in the first elif runs and completely
different code will execute—the code to show and react to the Play state.

Similarly, whenever and however the program reaches the ending con-
dition for the game, it will execute the following line to transition to the
End state:

state = STATE_END

From then on, every time the program goes around the while loop, the
code of the second elif branch will run.

In summary, a state machine has a set of states, one variable to keep
track of which state the program is in, and a set of events that cause the pro-
gram to transition from one state to another. Since there is a single variable

314 Chapter 15

that keeps track of the state, the program can be in only one of the states at
any time. Different actions that the user takes (clicking a button, pressing
a key, dragging an item, and so on) or other events (such as a timer run-
ning out) can cause the program to transition from one state to another.
Depending on which state it is in, the program may listen for different
events and will typically execute different code.

A pygame Example with a State Machine
Next, we’ll build a Rock, Paper, Scissors game that uses a state machine.
The user chooses rock, paper, or scissors; then the computer randomly
chooses among the three. If the person and computer choose the same
item, it’s a tie. Otherwise, one point is awarded to the player or the com-
puter, according to the following rules:

•	 Rock crushes scissors.

•	 Scissors cuts paper.

•	 Paper covers rock.

The user will see the game as three scenes: an opening or Splash scene
(Figure 15-1), a Play scene (Figure 15-2), and a Results scene (Figure 15-3).

Figure 15-1: The Rock, Paper, Scissors Splash scene

The Splash scene waits for the user to click the Start button.

Scenes 315

Figure 15-2: The Rock, Paper, Scissors Play scene

The Play scene is where the user makes a choice. After the user clicks
an icon to indicate their choice, the computer makes a randomized choice.

Figure 15-3: The Rock, Paper, Scissors Results scene

316 Chapter 15

The Results scene shows the outcome of the round and the score. It
waits for the user to click Restart to play another round.

In this game, each value of state corresponds to a different scene.
Figure 15-4 is a state diagram that shows the states and transitions (the
actions or events that cause the program to move from one state to
another).

Splash Play Results

Choose rock, paper, or scissors

Press Restart button

Press Start button

Figure 15-4: Rock, Paper, Scissors state diagram

When sitting idle (waiting for the user), the current scene will typically
remain unchanged. That is, inside the main event loop, the program will
usually not change the value of the state variable. (The state might change
when a timer ends, but this will be rare.) This game starts in the Splash
scene, and when the user presses the Start button, the game moves to the
Play scene. The play of the game then alternates between the Play and
Results scenes. Though this is a simple example, a state diagram can be very
useful in understanding the flow of more complicated programs.

Listing 15-1 provides the code of the Rock, Paper, Scissors program,
with the boilerplate code omitted to save space.

File: RockPaperScissorsStateMachine/RockPaperScissors.py

Rock, Paper, Scissors in pygame
Demonstration of a state machine

--- snip ---

ROCK = 'Rock'
PAPER = 'Paper'
SCISSORS = 'Scissors'

Set constants for each of the three states
STATE_SPLASH = 'Splash' 1
STATE_PLAYER_CHOICE = 'PlayerChoice'
STATE_SHOW_RESULTS = 'ShowResults'

3 - Initialize the world
--- snip ---

4 - Load assets: image(s), sound(s), etc.
--- snip ---

Scenes 317

5 - Initialize variables
playerScore = 0
computerScore = 0
state = STATE_SPLASH 2 # the starting state

6 - Loop forever
while True:

 # 7 - Check for and handle events
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()

 if state == STATE_SPLASH: 3
 if startButton.handleEvent(event):
 state = STATE_PLAYER_CHOICE

 elif state == STATE_PLAYER_CHOICE: 4 # let the user choose
 playerChoice = '' # indicates no choice yet
 if rockButton.handleEvent(event):
 playerChoice = ROCK
 rpsCollectionPlayer.replace(ROCK)

 elif paperButton.handleEvent(event):
 playerChoice = PAPER
 rpsCollectionPlayer.replace(PAPER)

 elif scissorButton.handleEvent(event):
 playerChoice = SCISSORS
 rpsCollectionPlayer.replace(SCISSORS)

 if playerChoice != '': # player has made a choice, make computer choice
 # Computer chooses from tuple of moves
 rps = (ROCK, PAPER, SCISSORS)
 computerChoice = random.choice(rps) # computer chooses
 rpsCollectionComputer.replace(computerChoice)

 # Evaluate the game
 if playerChoice == computerChoice: # tie
 resultsField.setValue('It is a tie!')
 tieSound.play()

 elif playerChoice == ROCK and computerChoice == SCISSORS:
 resultsField.setValue('Rock breaks Scissors. You win!')
 playerScore = playerScore + 1
 winnerSound.play()

 elif playerChoice == ROCK and computerChoice == PAPER:
 resultsField.setValue('Rock is covered by Paper. You lose.')
 computerScore = computerScore + 1
 loserSound.play()

318 Chapter 15

 elif playerChoice == SCISSORS and computerChoice == PAPER:
 resultsField.setValue('Scissors cuts Paper. You win!')
 playerScore = playerScore + 1
 winnerSound.play()

 elif playerChoice == SCISSORS and computerChoice == ROCK:
 resultsField.setValue('Scissors crushed by Rock. You lose.')
 computerScore = computerScore + 1
 loserSound.play()

 elif playerChoice == PAPER and computerChoice == ROCK:
 resultsField.setValue('Paper covers Rock. You win!')
 playerScore = playerScore + 1
 winnerSound.play()

 elif playerChoice == PAPER and computerChoice == SCISSORS:
 resultsField.setValue('Paper is cut by Scissors. You lose.')
 computerScore = computerScore + 1
 loserSound.play()

 # Show the player's score
 playerScoreCounter.setValue('Your Score: '+ str(playerScore))
 # Show the computer's score
 computerScoreCounter.setValue('Computer Score: '+ str(computerScore))

 state = STATE_SHOW_RESULTS # change state

 elif state == STATE_SHOW_RESULTS: 5
 if restartButton.handleEvent(event):
 state = STATE_PLAYER_CHOICE # change state

 else:
 raise ValueError('Unknown value for state:', state)

 # 8 - Do any "per frame" actions
 if state == STATE_PLAYER_CHOICE:
 messageField.setValue(' Rock Paper Scissors')
 elif state == STATE_SHOW_RESULTS:
 messageField.setValue('You Computer')

 # 9 - Clear the window
 window.fill(GRAY)

 # 10 - Draw all window elements
 messageField.draw()

 if state == STATE_SPLASH: 6
 rockImage.draw()
 paperImage.draw()
 scissorsImage.draw()
 startButton.draw()

 # Draw player choices
 elif state == STATE_PLAYER_CHOICE: 7
 rockButton.draw()

Scenes 319

 paperButton.draw()
 scissorButton.draw()
 chooseText.draw()

 # Draw the results
 elif state == STATE_SHOW_RESULTS: 8
 resultsField.draw()
 rpsCollectionPlayer.draw()
 rpsCollectionComputer.draw()
 playerScoreCounter.draw()
 computerScoreCounter.draw()
 restartButton.draw()

 # 11 - Update the window
 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(FRAMES_PER_SECOND) # make pygame wait

Listing 15-1: The Rock, Paper, Scissors game

In this listing, I have snipped the code that creates images, buttons, and
text fields for the Splash, Play, and Results scenes. The downloadable files
for the book contain the full source code and all the associated art.

Before the program goes into the main loop, we define all three states 1,
instantiate and load all the screen elements, and set the starting state 2.

We do different event checks depending on which state the program is
in. In the Splash state, we only check for clicking the Start button 3. In the
Play state, we check for a click on the Rock, Paper, or Scissors icon buttons 4.
In the Results state, we only check for a click on the Restart button 5.

Pressing a button or making a selection in one scene changes the value
of the state variable and therefore moves the game into a different scene.
At the bottom of the main loop 6 7 8, we draw different screen elements
depending on which state the program is currently in.

This technique works well for a small number of states/scenes. However,
in a program with more complicated rules or one that has many scenes and/
or states, keeping track of what should be done where can become very dif-
ficult. Instead, we can take advantage of many of the object-oriented pro-
gramming techniques introduced earlier in this book and build a different
architecture based on independent scenes, all controlled by an object man-
ager object.

A Scene Manager for Managing Many Scenes
The second approach to building a program with multiple scenes is to use
a scene manager: an object that centralizes the handling of different scenes.
We’ll create a SceneMgr class and instantiate a single oSceneMgr object from
it. In the following discussion, I’ll refer to the oSceneMgr object as the scene
manager, since we only instantiate one. As you’ll see, the scene manager
and the related scenes take advantage of encapsulation, inheritance, and
polymorphism.

320 Chapter 15

Using the scene manager can be a little tricky, but the resulting pro-
gram architecture results in a highly modular, easy-to-modify program. A
program that uses the scene manager will be made up of the following files:

Main program    The small main program (that you write) must first
create an instance of every scene identified in your program, then cre-
ate an instance of the scene manager, passing a list of the scenes and
a frame rate. To start your program, you call the run() method of the
scene manager. For each new project you build, you must write a new
main program.

Scene manager    The scene manager is written for you and is avail-
able as the SceneMgr class in the pyghelpers.py file. It keeps track of all the
different scenes, remembers which one is current, calls methods in the
current scene, allows for switching between scenes, and handles com-
munication between scenes.

Scenes    Your program can have as many scenes as you want or need.
Each scene is typically developed as a separate Python file. Each scene
class must inherit from the prewritten Scene base class and have a set of
methods whose names are predefined. The scene manager uses poly-
morphism to call these methods in the current scene. I have provided a
template SceneExample.py file to show you how to build a scene.

The code for the SceneMgr class and the code for the Scene base class live
in the pyghelpers package. The scene manager is an object manager object
that manages any number of Scene objects.

A Demo Program Using a Scene Manager
As a demonstration, we’ll build a Scene Demo program that contains three
simple scenes: Scene A, Scene B, and Scene C. The idea is that from any
scene, you can click a button to get to any other scene. Figures 15-5 through
15-7 show screenshots of the three scenes.

Figure 15-5: What the user sees in Scene A

From Scene A, you can get to Scene B or Scene C.

Scenes 321

Figure 15-6: What the user sees in Scene B

From Scene B, you can get to Scene A or Scene C.

Figure 15-7: What the user sees in Scene C

From Scene C, you can get to Scene A or Scene B.
The structure of the project folder is shown in Figure 15-8. Note that

this assumes that you have already installed the pygwidgets and pyghelpers
modules in the proper site-packages folder.

Figure 15-8: The project folder showing the main program and the different scene files

Main_SceneDemo.py is the main program. Constants.py contains a few
constants shared by the main program and all the scenes. SceneA.py, SceneB.py,
and SceneC.py are the actual scenes, each containing a related scene class.
SceneExample.py is a sample file that shows what a typical scene file might

322 Chapter 15

look like. It’s not used in this program, but you can refer to it to get an
understanding of the basics of writing a typical scene.

Figure 15-9 shows how the objects in the program relate to each other.

Main
(Instantiates all scenes

and the scene manager)

Scene manager
(Manages navigation and

communication between scenes)

…Scene 3 Scene NScene 2Scene 1

All scenes inherit from the Scene base class

Starts the
scene manager

Figure 15-9: The hierarchy of objects in a project

Let’s see how the different parts of a program using the scene manager
work together, starting with the main program.

The Main Program
The main program will be unique for every project. Its purpose is to initial-
ize the pygame environment, instantiate all the scenes, create an instance
of the SceneMgr, then transfer control to the scene manager, oSceneMgr.
Listing 15-2 presents the code of the demo main program.

File: SceneDemo/Main_SceneDemo.py

Scene Demo main program with three scenes

--- snip ---
1 - Import packages
import pygame
1 import pyghelpers

from SceneA import *
from SceneB import *
from SceneC import *

2 - Define constants
2 WINDOW_WIDTH = 640
WINDOW_HEIGHT = 180
FRAMES_PER_SECOND = 30

Scenes 323

3 - Initialize the world
pygame.init()
window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))

4 - Load assets: image(s), sound(s), etc.

5 - Initialize variables
Instantiate all scenes and store them into a list
3 scenesList = [SceneA(window),
 SceneB(window),
 SceneC(window)]

Create the scene manager, passing in the scenes list and the FPS
4 oSceneMgr = pyghelpers.SceneMgr(scenesList, FRAMES_PER_SECOND)

Tell the scene manager to start running
5 oSceneMgr.run()

Listing 15-2: A sample main program using the scene manager

The code of the main program is relatively short. We start by import-
ing pyghelpers, then all the scenes (in this case, Scene A, Scene B, and
Scene C) 1. We then define a few more constants, initialize pygame, and
create the window 2. Next, we create an instance of each scene and store
all the scenes in a list 3. After this line executes, we have an initialized
object for each scene.

We then instantiate the scene manager object (oSceneMgr) 4 from the
SceneMgr class. When we create this object, we need to pass in two values:

•	 The list of scenes, so the scene manager can be aware of all the scenes.
The first scene in the list of scenes is used as the starting scene for the
program.

•	 The frames per second (frame rate) that the program should maintain.

Finally, we tell the scene manager to start running by calling its run()
method 5. The scene manager always maintains a single scene as the cur-
rent scene—the one that the user sees and interacts with.

Notice that with this approach, the main program implements the ini-
tialization of a typical pygame program but does not build the main loop.
Instead, the main loop is built into the scene manager itself.

Building the Scenes
To understand the interaction between the scene manager and any indi-
vidual scene, I’ll explain how a typical scene is built.

Each time through its loop, the scene manager calls a predefined set
of methods in the current scene that are intended to handle events, do any
per-frame actions, and draw anything that needs to be drawn in that scene.
Therefore, the code of each scene must be split up into these methods. The
approach makes use of polymorphism: each scene needs to implement a
common set of methods.

324 Chapter 15

Methods to Implement in Each Scene

Each scene is implemented as a class that inherits from the Scene base
class defined in the pyghelpers.py file. Therefore, each scene must import
pyghelpers. At a minimum, a scene needs to contain an __init__() method
and must override the getSceneKey(), handleInputs(), and draw() methods
from the base class.

Every scene must have a unique scene key—a string used by the scene
manager to identify each scene. I recommend that you build a file with a
name like Constants.py that contains the keys for all the scenes and import
this file into each scene file. For example, the Constants.py file for the sam-
ple program contains:

Scene keys (any unique values):
SCENE_A = 'scene A'
SCENE_B = 'scene B'
SCENE_C = 'scene C'

During its initialization, the scene manager calls the getSceneKey()
method of each scene, which simply returns its unique scene key. The
scene manager then builds an internal dictionary of scene keys and scene
objects. When any scene in the program wants to switch to a different
scene, it will call self.goToScene() (described in the following section) and
pass in the scene key of the target scene. The scene manager uses this key
in the dictionary to find the associated scene object; it then sets the new
scene object as the current scene and calls its methods.

Each scene must contain its own version of handleInputs() to handle any
events that would typically be handled in the main loop and its own version
of draw() to draw anything the scene wants to draw in the window. If your
scene does not override these two methods, it will not be able to respond to
any events and will not draw anything in the window.

Let’s take a closer look at the four methods you need to implement for
each scene:

def __init__(self, window):
Each scene should begin with its own __init__() method. The window
parameter is the window into which your program draws. You should
start your method with this statement to save the window parameter for
use in the draw() method:

 self.window = window

After that, you can include any other initialization code you want or
need, such as code for instantiating buttons and text fields, loading
images and sounds, and so on.

def getSceneKey(self):

This method must be implemented in every scene that you write. Your
method must return the unique scene key associated with this scene.

Scenes 325

def handleInputs(self, events, keyPressedList):

This method must be implemented in every scene that you write. It
should do everything needed to deal with events or keys. The events
parameter is a list of events that happened since the last frame, and
keyPressedList is a list of Booleans representing the state of all keyboard
keys (True means down). To find whether a particular key is up or down,
you should use a constant rather than an integer index. The constants
representing all keys of the keyboard are available in the pygame docu-
mentation (https://www.pygame.org/docs/ref/key.html).

Your implementation of this method should contain a for loop that
loops through all events in the list that is passed in. If you want, it can
also contain code to implement the continuous mode of handling the
keyboard, as described in Chapter 5.

def draw(self):

This method must be implemented in every scene that you write. It
should draw everything that needs to be drawn in the current scene.

The scene manager also calls the following methods in each scene. In
the Scene base class, these methods each contain a simple pass statement, so
they don’t do anything. You can override any or all of them to execute any
code you want for a particular scene:

def enter(self, data):

This method is called after the scene manager has made the transi-
tion into this scene. There is a single data parameter, with None as a
default. If data is not None, then the information it contains was sent
from the previous scene when it called goToScene() (described in the
next section). The value of data can take any form—from a single
string or numeric value to a list or dictionary to an object—as long
as the leaving scene and the entering scene agree on the type of data
being passed. The enter() method should do whatever it needs to do
when this scene is about to be given control.

def update(self):

This method is called in every frame. Here, you can perform any
actions you would have done in step 8 of the original 12-step template
introduced in Chapter 5. For example, you might want this method to
move images on the screen, check for collisions, and so on.

def leave(self):

This method is called by the scene manager whenever the program
is about to transition to a different scene. It should do any cleanup
that needs to be done before leaving, such as writing information to
a file.

https://www.pygame.org/docs/ref/key.html

326 Chapter 15

Navigating Between Scenes

The scene manager and the Scene base class provide a simple way to navi-
gate between scenes. When the program wants to transition to another
scene, the current scene should call its own goToScene() method, which is in
the inherited Scene base class, like this:

 self.goToScene(nextSceneKey, data)

The goToScene() method communicates to the scene manager that you
want to transition to a different scene, whose scene key is nextSceneKey. You
should make all scene keys available via a file such as Constants.py. The data
parameter is any optional information that you want to pass on to the next
scene. If no data needs to be transferred, you can eliminate this argument.

Typical calls would look like this:

self.goToScene(SOME_SCENE_KEY) # no data to be passed
Or
self.goToScene(ANOTHER_SCENE_KEY, data=someValueOrValues) # go to a scene and pass data

The value of data can take any form, as long as the scenes being left and
entered both understand the format. In response to this call, before leav-
ing the current scene, the scene manager calls that scene’s leave() method.
When the next scene is about to be activated, the scene manager calls that
scene’s enter() method and passes the value of data to the new scene.

Quitting the Program

The scene manager takes care of three different ways that the user can quit
the currently running program:

•	 By clicking the close button at the top of the window.

•	 By pressing the ESCAPE key.

•	 Through any additional mechanism such as a Quit button. In this case,
make the following call (which is also built into the Scene base class):

 self.quit() # quits the program

A Typical Scene
Listing 15-3 shows an example of a typical scene—this is the SceneA.py file that
implements Scene A in the demo program, shown in Figure 15-5. Remember
that the main loop is implemented by the scene manager. Inside its main loop,
the scene manager calls the handleInputs(), update(), and draw() methods for
the current scene.

Scenes 327

File: SceneDemo/SceneA.py

Scene A

import pygwidgets
import pyghelpers
import pygame
from pygame.locals import *
from Constants import *

class SceneA(pyghelpers.Scene):
 1 def __init__(self, window):

 self.window = window

 self.messageField = pygwidgets.DisplayText(self.window,
 (15, 25), 'This is Scene A', fontSize=50,
 textColor=WHITE, width=610, justified='center')

 self.gotoAButton = pygwidgets.TextButton(self.window,
 (250, 100), 'Go to Scene A')
 self.gotoBButton = pygwidgets.TextButton(self.window,
 (250, 100), 'Go to Scene B')
 self.gotoCButton = pygwidgets.TextButton(self.window,
 (400, 100), 'Go to Scene C')

 self.gotoAButton.disable()

 2 def getSceneKey(self):
 return SCENE_A

 3 def handleInputs(self, eventsList, keyPressedList):
 for event in eventsList:
 if self.gotoBButton.handleEvent(event):
 4 self.goToScene(SCENE_B)
 if self.gotoCButton.handleEvent(event):
 5 self.goToScene(SCENE_C)

 --- snip (testing code to send messages) ---
 6 def draw(self):
 self.window.fill(GRAYA)
 self.messageField.draw()
 self.gotoAButton.draw()
 self.gotoBButton.draw()
 self.gotoCButton.draw()

 --- snip (testing code to respond to messages) ---

Listing 15-3: A typical scene (Scene A in the Scene Demo program)

328 Chapter 15

In the __init__() method 1, we save away the window parameter in an
instance variable. We then create an instance of a DisplayText field to show a
title and create some TextButtons to allow for navigation to the other scenes.

The getSceneKey() method 2 just returns the unique scene key (found
in Constants.py) for this scene. In the handleInputs() method 3, if the user
has clicked the button for a different scene, we call the self.goToScene()
navigation method 4 5 to transfer control to the new scene. In the draw()
method 6, we fill the background, draw the message field, and draw the
buttons. This example scene does very little, so we don’t need to write our
own enter(), update(), and leave() methods. Calls to these methods will be
handled by methods of the same names in the Scene base class, and those
methods don’t do anything—they simply execute a pass statement.

The two other scene files are SceneB.py and SceneC.py. The only differ-
ences are the titles shown, the buttons drawn, and the effects of clicking the
buttons to transfer to the appropriate new scene.

Rock, Paper, Scissors Using Scenes
Let’s build an alternate implementation of the Rock, Paper, Scissors game
using the scene manager. To the user, the game will work exactly the same
way as the earlier state machine version. We’ll build a Splash scene, a Play
scene, and a Results scene.

All of the source code is available, so I won’t go through every Python
file. The Splash scene is just a background picture with a Start button. When
the user presses the Start button, the code executes goToScene(SCENE_PLAY) to
transfer to the Play scene. In the Play scene, the user is presented with a set
of images (rock, paper, and scissors) and asked to choose one. Clicking an
image transfers control to the Results scene. Listing 15-4 contains the code
of the Play scene.

File: RockPaperScissorsWithScenes/ScenePlay.py

The Play scene
The player chooses among rock, paper, or scissors

import pygwidgets
import pyghelpers
import pygame
from Constants import *
import random

class ScenePlay(pyghelpers.Scene):
 def __init__(self, window):

 self.window = window

 self.RPSTuple = (ROCK, PAPER, SCISSORS)

Scenes 329

 --- snip ---
 def getSceneKey(self): 1
 return SCENE_PLAY

 def handleInputs(self, eventsList, keyPressedList): 2
 playerChoice = None

 for event in eventsList:
 if self.rockButton.handleEvent(event):
 playerChoice = ROCK

 if self.paperButton.handleEvent(event):
 playerChoice = PAPER

 if self.scissorButton.handleEvent(event):
 playerChoice = SCISSORS

 if playerChoice is not None: 3 # user has made a choice
 computerChoice = random.choice(self.RPSTuple) # computer chooses
 dataDict = {'player': playerChoice, 'computer': computerChoice} 4
 self.goToScene(SCENE_RESULTS, dataDict) 5 # go to Results scene

 # No need to include update method, defaults to inherited one which does nothing

 def draw(self):
 self.window.fill(GRAY)
 self.titleField.draw()
 self.rockButton.draw()
 self.paperButton.draw()
 self.scissorButton.draw()
 self.messageField.draw()

Listing 15-4: The Play scene in Rock, Paper, Scissors

I’ve snipped the code to create text fields and the rock, paper, and scis-
sors buttons. The getSceneKey() method 1 simply returns the scene key for
this scene.

The most important method is handleInputs() 2, which is called in every
frame. If any button is clicked, we set a variable named playerChoice to an
appropriate constant 3, and we make a random choice for the computer.
We then take the player’s choice and the computer’s choice and build a
simple dictionary 4 incorporating both, so we can pass this information
as data to the Results scene. Finally, to transfer to the Results scene, we call
goToScene() and pass the dictionary 5.

The scene manager receives this call, calls leave() for the current scene
(Play), changes the current scene to the new scene (Results), and calls enter()
for the new scene (Results). It passes the data from the leaving scene into the
enter() method of the new scene.

Listing 15-5 contains the code of the Results scene. There’s a lot of code
here, but most of it deals with showing the appropriate icons and the evalu-
ation of the results of the round.

330 Chapter 15

File: RockPaperScissorsWithScenes/SceneResults.py

The Results scene
The player is shown the results of the current round

import pygwidgets
import pyghelpers
import pygame
from Constants import *

class SceneResults(pyghelpers.Scene):
 def __init__(self, window, sceneKey):
 self.window = window

 self.playerScore = 0
 self.computerScore = 0

 1 self.rpsCollectionPlayer = pygwidgets.ImageCollection(
 window, (50, 62),
 {ROCK: 'images/Rock.png',
 PAPER: 'images/Paper.png',
 SCISSORS: 'images/Scissors.png'}, '')

 self.rpsCollectionComputer = pygwidgets.ImageCollection(
 window, (350, 62),
 {ROCK: 'images/Rock.png',
 PAPER: 'images/Paper.png',
 SCISSORS: 'images/Scissors.png'}, '')

 self.youComputerField = pygwidgets.DisplayText(
 window, (22, 25),
 'You Computer',
 fontSize=50, textColor=WHITE,
 width=610, justified='center')

 self.resultsField = pygwidgets.DisplayText(
 self.window, (20, 275), '',
 fontSize=50, textColor=WHITE,
 width=610, justified='center')

 self.restartButton = pygwidgets.CustomButton(
 self.window, (220, 310),
 up='images/restartButtonUp.png',
 down='images/restartButtonDown.png'
 over='images/restartButtonHighlight.png')

 self.playerScoreCounter = pygwidgets.DisplayText(
 self.window, (86, 315), 'Score:',
 fontSize=50, textColor=WHITE)

 self.computerScoreCounter = pygwidgets.DisplayText(
 self.window, (384, 315), 'Score:',
 fontSize=50, textColor=WHITE)

Scenes 331

 # Sounds
 self.winnerSound = pygame.mixer.Sound("sounds/ding.wav")
 self.tieSound = pygame.mixer.Sound("sounds/push.wav")
 self.loserSound = pygame.mixer.Sound("sounds/buzz.wav")

 2 def enter(self, data):
 # data is a dictionary (comes from the Play scene) that looks like:
 # {'player': playerChoice, 'computer': computerChoice}
 playerChoice = data['player']
 computerChoice = data['computer']

 # Set the player and computer images
 3 self.rpsCollectionPlayer.replace(playerChoice)
 self.rpsCollectionComputer.replace(computerChoice)

 # Evaluate the game's win/lose/tie conditions
 4 if playerChoice == computerChoice:
 self.resultsField.setValue("It's a tie!")
 self.tieSound.play()

 elif playerChoice == ROCK and computerChoice == SCISSORS:
 self.resultsField.setValue("Rock breaks Scissors. You win!")
 self.playerScore = self.playerScore + 1
 self.winnerSound.play()

 --- snip ---

 # Show the player's and computer's scores
 self.playerScoreCounter.setValue(
 'Score: ' + str(self.playerScore))
 self.computerScoreCounter.setValue(
 'Score: ' + str(self.computerScore))

 5 def handleInputs(self, eventsList, keyPressedList):
 for event in eventsList:
 if self.restartButton.handleEvent(event):
 self.goToScene(SCENE_PLAY)

 # No need to include update method,
 # defaults to inherited one which does nothing

 6 def draw(self):
 self.window.fill(OTHER_GRAY)
 self.youComputerField.draw()
 self.resultsField.draw()
 self.rpsCollectionPlayer.draw()
 self.rpsCollectionComputer.draw()
 self.playerScoreCounter.draw()
 self.computerScoreCounter.draw()
 self.restartButton.draw()

Listing 15-5: The Results scene in Rock, Paper, Scissors

332 Chapter 15

Here, I’ve snipped some of the game evaluation logic. The enter()
method 2 is the most important method in this class. When the player
makes a choice in the previous Play scene, the program transitions to this
Results scene. First, we extract the player’s and computer’s choices that were
passed in from the Play scene as a dictionary, which looks like this:

{'player': playerChoice, 'computer': computerChoice}

In the __init__() method 1, we create ImageCollection objects for the
player and computer, each containing the rock, paper, and scissors images.
In the enter() method 2, we use the replace() method of ImageCollection 3
to show the images that represent the player’s and the computer’s choices.

Then, the evaluation is quite simple 4. If the computer and the player
made the same choice, we have a tie, and we play an appropriate tie sound.
If the player wins, we increment the player’s score and play a happy sound.
If the computer wins, we increment the computer’s score and play a sad
sound. We update the player’s or the computer’s score and show the scores
in the matching text display fields.

After the enter() method runs (one time for each round), the
handleInputs() method 5 is called in every frame by the scene manager.
When the user clicks Restart, we call the inherited goToScene() method
to transfer back to the Play scene.

The draw() method 6 draws everything in the window for this scene.
In this scene, we don’t do any additional work in each frame, so we don’t

need to write an update() method. When the scene manager calls update(),
the inherited method in the Scene base class runs and just executes a pass
statement.

Communication Between Scenes
The scene manager provides a set of methods that allow scenes to com-
municate with each other by sending or requesting information. This com-
munication won’t be needed by all programs but can be highly useful. The
scene manager allows any scene to:

•	 Request information from another scene

•	 Send information to another scene

•	 Send information to all other scenes

In the following sections, I’ll call the scene the user is seeing the cur-
rent scene. The scene that the current scene is sending information to or
requesting information from is the target scene. The methods used to trans-
fer information are all implemented in the Scene base class. Therefore, all
scenes (which must inherit from the Scene base class) have access to these
methods using self.<method>().

Scenes 333

Requesting Information from a Target Scene
To request information from any other scene, a scene makes a call to the
inherited request() method, like this:

 self.request(targetSceneKey, requestID)

This call allows the current scene to ask for information from a target
scene, identified by its scene key (targetSceneKey). The requestID uniquely
identifies the information you are asking for. The value used for a requestID
would normally be a constant defined in a file like Constants.py. The call
returns the requested information. A typical call would look like this:

 someData = self.request(SOME_SCENE_KEY, SOME_INFO_CONSTANT)

This effectively says, “Issue a request to the SOME_SCENE_KEY scene asking
for information identified by SOME_INFO_CONSTANT.” The data is returned and
assigned to the someData variable.

The scene manager acts as an intermediary: it receives the call to
request() and turns it into a call to respond() in the target scene. To make
a target scene able to give information, you must implement a respond()
method in that scene’s class. The method should start like this:

def respond(self, requestID):

The typical code of a respond() method checks the value of the requestID
parameter and returns the appropriate data. The data returned can be for-
matted in any way that the current scene and the target scene agree on.

Sending Information to a Target Scene
To send information to a target scene, the current scene makes a call to the
inherited send() method, like this:

 self.send(targetSceneKey, sendID, info)

This call allows the current scene to send information to a target scene,
identified by its scene key (targetSceneKey). The sendID uniquely identifies the
information you are sending. The info parameter is the information you
want to send to the target scene.

A typical call would look like this:

 self.send(SOME_SCENE_KEY, SOME_INFO_CONSTANT, data)

This effectively says, “Send information to the SOME_SCENE_KEY scene. The
information is identified by SOME_INFO_CONSTANT, and the information is in the
value of the variable data.”

The scene manager receives the call to send() and turns it into a call
to receive() in the target scene. To allow a scene to send information to

334 Chapter 15

another scene, you must implement a receive() method in your target scene
class, like this:

def receive(self, receiveID, info):

The receive() method can contain an if/elif/else construct if it needs
to handle different values for receiveID. The transmitted information can be
formatted in any way that the current scene and the target scene agree on.

Sending Information to All Scenes
As an additional convenience, a scene can send information to all other
scenes using the single method sendAll():

 self.sendAll(sendID, info)

This call allows the current scene to send information to all the other
scenes. The sendID uniquely identifies the information you are sending. The
info parameter is the information you want to send to all scenes.

A typical call would look like this:

 self.sendAll(SOME_INFO_CONSTANT, data)

This effectively says, “Send information to all scenes. The information
is identified by SOME_INFO_CONSTANT, and the information is in the value of the
variable data.”

For this to work, all scenes other than the current scene must implement
the receive() method, as described in the previous section. The scene manager
sends the message to all scenes (other than the current scene). The current
scene may contain a receive() method for information sent by other scenes.

Testing Communications Among Scenes
The Scene Demo program (with Scene A, Scene B, and Scene C), discussed
earlier with Listings 15-2 and 15-3, contains code in each scene that demon-
strates calls to send(), request(), and sendAll(). In addition, the scenes each
implement simple versions of the receive() and respond() methods. In the demo
program, you can send a message to another scene by pressing A, B, or C.
Pressing X sends a message to all scenes. Pressing 1, 2, or 3 sends a request
to get data from a target scene. The target scene responds with a string.

Implementation of the Scene Manager
Here we’ll look at how the scene manager is implemented. However, one
important lesson of OOP is that the developer of client code doesn’t need to
understand the implementation of a class, only the interface. With respect to
the scene manager, you don’t need to know how it works, only what methods
you must implement in your scenes, when they are called, and what methods
you can call. Therefore, if you’re not interested in the internals, you can go
right to the Summary. If you are interested, this section goes through the

Scenes 335

implementation details, and along the way you’ll learn an interesting tech-
nique to allow for two-way communication between objects.

The scene manager is implemented in a class named SceneMgr in the
pyghelpers module. As explained previously, in your main program, you cre-
ate a single instance of the scene manager like this:

 oSceneMgr = SceneMgr(scenesList, FRAMES_PER_SECOND)

The last line of your main program needs to be:

 oSceneMgr.run()

Listing 15-6 contains the code of the __init__() method of the SceneMgr
class.

 --- snip ---
 def __init__(self, scenesList, fps):

Build a dictionary, each entry of which is a sceneKey : scene object
 1 self.scenesDict = {}
 2 for oScene in scenesList:
 key = oScene.getSceneKey()
 self.scenesDict[key] = oScene

 # The first element in the list is used as the starting scene
 3 self.oCurrentScene = scenesList[0]
 self.framesPerSecond = fps

 # Give each scene a reference back to the SceneMgr.
 # This allows any scene to do a goToScene, request, send,
 # or sendAll, which gets forwarded to the scene manager.
 4 for key, oScene in self.scenesDict.items():
 oScene._setRefToSceneMgr(self)

Listing 15-6: The __init__() method of the SceneMgr class

The __init__() method keeps track of all scenes in a dictionary 1. It
iterates through the list of scenes, asking each scene for its scene key, and
builds a dictionary 2. The first scene object in the list of scenes is used as
the starting scene 3.

The last part of the __init__() method does some interesting work. The
scene manager holds a reference to every scene, so it can send messages to
any and every scene. But every scene also needs to be able to send messages
to the scene manager. To allow each scene to do that, the last for loop in
the __init__() method calls the special method _setRefToSceneMgr() 4 that
lives in the base class of every scene, and it passes self, which is a reference
to the scene manager. The entire code of this method consists of a single line:

def _setRefToSceneMgr(self, oSceneMgr):
--- snip ---
 self.oSceneMgr = oSceneMgr

336 Chapter 15

This method just stores this reference back to the scene manager in an
instance variable, self.oSceneMgr. Each scene can use this variable to make
calls to the scene manager. I’ll show how scenes use this a little later in this
section.

run() Method
For every project you build, you have to write a small main program that
instantiates the scene manager. The last step in your main program is a call
to the run() method of the scene manager. This is where the main loop of
the whole program lives. Listing 15-7 contains the code of that method.

def run(self):

--- snip ---
 clock = pygame.time.Clock()

 # 6 - Loop forever
 while True:

 1 keysDownList = pygame.key.get_pressed()

 # 7 - Check for and handle events
 2 eventsList = []
 for event in pygame.event.get():
 if (event.type == pygame.QUIT) or \
 ((event.type == pygame.KEYDOWN) and
 (event.key == pygame.K_ESCAPE)):
 # Tell the current scene we're leaving
 self.oCurrentScene.leave()
 pygame.quit()
 sys.exit()

 eventsList.append(event)

 # Here, we let the current scene process all events,
 # do any "per frame" actions in its update method,
 # and draw everything that needs to be drawn.
 3 self.oCurrentScene.handleInputs(eventsList, keysDownList)
 4 self.oCurrentScene.update()
 5 self.oCurrentScene.draw()

 # 11 - Update the window
 6 pygame.display.update()

 # 12 - Slow things down a bit
 clock.tick(self.framesPerSecond)

Listing 15-7: The run() method of the SceneMgr class

Scenes 337

The run() method is the key to how the scene manager works. Remember
that all scenes must be polymorphic—at a minimum, each must implement
a handleInputs() and a draw() method. Each time through the loop, the run()
method does the following:

•	 Gets a list of all keyboard keys 1 (False means up, True means down).

•	 Builds a list of events 2 that have happened since the last time through
the loop.

•	 Makes calls to the polymorphic methods 3 of the current scene. The cur-
rent scene is always kept in an instance variable named self.oCurrentScene.
In the call to the scene’s handleInputs() method, the scene manager
passes in the list of events that have happened and the list of keys. Each
scene is responsible for handling the events and for dealing with the
state of the keyboard.

•	 Calls the update() method 4 to allow the scene to do any per-frame
actions. The Scene base class implements an update() method that just
contains a pass statement, but a scene can override this method with
any code it wants to execute.

•	 Calls the draw() method 5 to allow the scene to draw anything it needs
to draw in the window.

At the bottom of the loop (identical to the standard main loop with-
out a scene manager), the method updates the window 6 and waits for an
appropriate amount of time.

Main Methods
The remaining methods of the SceneMgr class implement the navigation and
communication between scenes:

_goToScene()   Called to transfer to a different scene

_request_respond()   Called to query data in another scene

_send_receive()   Called to send information from one scene to another

_sendAll_receive()   Called to send information from one scene to all
other scenes

The code of any scenes that you write should not call these methods
directly, and they should not be overwritten. The underscore in front of
their names implies that these are private (internal) methods. While they
are not called directly within the scene manager itself, they are called by
the Scene base class.

To explain how these methods work, I’ll start by giving an overview
of the steps involved when a scene wants to navigate to another scene. To
make a transition to a target scene, the current scene calls:

self.goToScene(SOME_SCENE_KEY)

338 Chapter 15

When a scene makes this call, the call goes to the goToScene() method in
the inherited Scene base class. The code of the inherited method consists of
a single line:

def goToScene(self, nextSceneKey, data=None):
--- snip ---
 self.oSceneMgr._goToScene(nextSceneKey, data)

This makes a call to the private _goToScene() method in the scene man-
ager. Within the scene manager’s method, we need to give the current
scene an opportunity to do any cleanup that might be needed, then trans-
fer control to the new scene. Here is the code of the _goToScene() method of
the scene manager:

def _goToScene(self, nextSceneKey, dataForNextScene):
--- snip ---
 if nextSceneKey is None: # meaning, exit
 pygame.quit()
 sys.exit()

 # Call the leave method of the old scene to allow it to clean up.
 # Set the new scene (based on the key) and
 # call the enter method of the new scene.
 1 self.oCurrentScene.leave()
 pygame.key.set_repeat(0) # turn off repeating characters
 try:
 2 self.oCurrentScene = self.scenesDict[nextSceneKey]
 except KeyError:
 raise KeyError("Trying to go to scene '" + nextSceneKey +
 "' but that key is not in the dictionary of scenes.")
 3 self.oCurrentScene.enter(dataForNextScene)

The _goToScene() method performs a number of steps to transition
from the current scene to the target scene. First, it calls leave() in the cur-
rent scene 1 so the current scene can do any necessary cleanup. Then,
using the target scene key that was passed in, it finds the object for the target
scene 2 and sets that as the current scene. Finally, it calls enter() for the new
current scene 3 to allow the new current scene to do any required setup.

From this point on, the run() method of the scene manager loops and
calls the handleInputs(), update(), and draw() methods of the current scene.
These methods will be called in the current scene until the program exe-
cutes another call to self.goToScene() to transition to yet another scene or
the user quits the program.

Communication Between Scenes
Finally, let’s discuss how one scene communicates with another scene. To
request information from another scene, a scene only needs to make a call
to self.request(), which lives in the Scene base class, like this:

dataRequested = self.request(SOME_SCENE_KEY, SOME_DATA_IDENTIFIER)

Scenes 339

The target scene must have a respond() method. That method needs to
be defined like this:

def respond(self, requestID):

It uses the value of requestID to uniquely identify what data to retrieve
and returns that data. Again, the requesting scene and the target scene
must agree on the value of any identifier(s). The full process is shown in
Figure 15-10.

Scene manager

Scene
(Base class)

Target
scene

Scene
(Base class)

Current
scene

1
se

lf.
re

qu
es

t()
2

se
lf.

oS
ce

ne
M

gr
._

re
qu

es
t_

re
sp

on
d

3
oT

ar
ge

t.r
es

po
nd

()

4
Re

tu
rn

 d
at

a

6
Re

tu
rn

 d
at

a
5

Re
tu

rn
 d

at
a

Figure 15-10: The communication path of one scene asking for information from
another scene

The current scene cannot get information from another scene directly,
since the current scene does not have a reference to any other scene.
Instead, it uses the scene manager as an intermediary. Here is how it all
works:

1.	 The current scene makes a call to self.request(), which lives in the
inherited Scene base class.

2.	 The Scene base class has a reference to the scene manager in its
instance variable self.oSceneMgr, to allow its methods to call methods
of the scene manager. The self.request() method calls the scene
manager’s _request_respond() method to request information from a
target scene.

3.	 The scene manager has a dictionary of all scene keys and related
objects, and it uses the parameter that’s passed in to find the object
associated with the target scene. It then calls the respond() method in
the target scene.

4.	 The respond() method in the target scene (which you must write) does
whatever it needs to do to generate the data that was asked for, then
returns the data to the scene manager.

340 Chapter 15

5.	 The scene manager returns the data to the request() method in the
Scene base class inherited by the current scene.

6.	 Finally, the request() method in the Scene base class returns the data to
the original caller.

The same mechanism is used to implement send() and sendAll(). The
only difference is that when sending a message to a scene or to all scenes,
there is no data to be returned to the original caller.

Summary
In this chapter, I introduced two different ways to implement a program
that incorporates multiple scenes. A state machine is a technique for rep-
resenting and controlling the flow of execution through a series of states;
you can use it to implement a program with a small number of scenes. The
scene manager is designed to help you build larger multi-scene applications
by providing navigation and a general way for scenes to communicate with
each other. I also explained how the scene manager implements all this
functionality.

The scene manager and the Scene base class provide clear examples of
the three main tenets of object-oriented programming: encapsulation, poly-
morphism, and inheritance. Each scene is a good example of encapsulation
because all the code and data of a scene is written as a class. Each scene class
must be polymorphic, in that it must implement a common set of methods
in order for it to work with calls from the scene manager. Finally, each scene
inherits from a common Scene base class. Two-way communication between
the scene manager and the Scene base class is implemented by every scene
using the inherited methods and instance variables in the base class.

In this chapter we’ll build a full game called
Dodger that uses many of the techniques

and concepts that have been explained
in this book. This is a fully object-oriented

extended version of a game originally developed by
Al Sweigart in his book Invent Your Own Computer Games
with Python (No Starch, 2016; the basic game concept,
graphics, and sounds are used by permission).

Before I get into the game itself, I’ll introduce a set of functions that
present modal dialogs that we’ll use in the game. A modal dialog is one
that forces the user to interact with it—choosing an option, for example—
before they can continue using the underlying program. These dialogs
stop the program from running until an option is clicked.

16
F U L L G A M E : D O D G E R

342 Chapter 16

Modal Dialogs
The pyghelpers module has two types of modal dialogs:

•	 Yes/No dialogs present a question and wait for the user to click one of
two buttons. The text of these buttons defaults to Yes and No, though
you can use any text you like (for example, OK and Cancel). If no text
is specified for the No button, this dialog can be used as an alert, with
only a Yes (or typically, OK) button.

•	 Answer dialogs present a question, a text field for the user to type in, and
a set of buttons with text defaulting to OK and Cancel. The user can
answer the question and click OK or cancel (close) the dialog by click-
ing Cancel.

You present each type of dialog to the user by calling a particular func-
tion in the pyghelpers module. Each dialog comes in two flavors: a simple
TextButton-based version and a more complicated custom version. The sim-
ple text version uses a default layout with two TextButton objects that’s great
for quick prototyping. In the custom version, you can provide a background
for the dialog, customize the question text, customize the answer text (with
an Answer dialog), and provide customized artwork for the buttons.

Yes/No and Alert Dialogs
We’ll first look at the Yes/No dialog, starting with the text version.

Text Version

Here is the interface of the textYesNoDialog() function:

textYesNoDialog(theWindow, theRect, prompt, yesButtonText='Yes',
 noButtonText='No',
 backgroundColor=DIALOG_BACKGROUND_COLOR,
 textColor=DIALOG_BLACK)

When you call this function, you need to pass in the window to draw
into, a rectangle object or tuple representing the location and size of the
dialog to create, and a text prompt to be shown. You can also optionally
specify the text of the two buttons, a background color, and the color of the
prompt text. If not specified, the button text defaults to Yes and No.

Here is a typical call to this function:

returnedValue = pyghelpers.textYesNoDialog(window,
 (75, 100, 500, 150),
 'Do you want fries with that?')

This call shows the dialog in Figure 16-1.

Full Game: Dodger 343

Figure 16-1: A typical textYesNoDialog dialog

The Yes and No buttons are instances of the TextButton class in pygwidgets.
The main program stops while the dialog shows. When the user clicks a
button, the function returns True for Yes or False for No. Your code does
whatever needs to be done based on the returned Boolean value; then the
main program continues running where it left off.

You can also use this function to create a simple Alert dialog with only
one button. If the value passed in for noButtonText is None, that button will not
be shown. For example, you can make a call like this to show only one button:

ignore = pyghelpers.textYesNoDialog(window, (75, 80, 500, 150),
 'This is an alert!', 'OK', None)

Figure 16-2 shows the resulting Alert dialog.

Figure 16-2: A textYesNoDialog used as an Alert dialog

Custom Version

Setting up a custom Yes/No dialog is more complicated but allows for much
more control. Here is the interface of the customYesNoDialog() function:

customYesNoDialog(theWindow, oDialogImage, oPromptText, oYesButton,
 oNoButton)

Before you can call this function, you need to create objects for the
background of the dialog, the prompt text, and the Yes and No buttons. You
would typically use Image, DisplayText, and CustomButton (or TextButton) objects
created from pygwidgets classes for this purpose. The customYesNoDialog()
code demonstrates polymorphism by calling the handleEvent() method of the
buttons, so it doesn’t matter whether you use CustomButtons or TextButtons, and
by calling the draw() method of all objects that make up the dialog. Because
you create all these objects, you can customize the look of any or all of them.
You will need to supply your own artwork for any Image and CustomButton
objects and customarily place them in the images folder of the project.

344 Chapter 16

When implementing a custom Yes/No dialog, typically you would write
an intermediate function like showCustomYesNoDialog(), shown in Listing 16-1.
Then, at the place in your code where you want to show the dialog, rather
than calling customYesNoDialog() directly, you instead call the intermediate
function, which both instantiates the widgets and makes the actual call.

def showCustomYesNoDialog(theWindow, theText):
 1 oDialogBackground = pygwidgets.Image(theWindow, (60, 120),
 'images/dialog.png')
 2 oPromptDisplayText = pygwidgets.DisplayText(theWindow, (0, 170),
 theText, width=WINDOW_WIDTH,
 justified='center', fontSize=36)
 3 oNoButton = pygwidgets.CustomButton(theWindow, (95, 265),
 'images/noNormal.png',
 over='images/noOver.png',
 down='images/noDown.png',
 disabled='images/noDisabled.png')
 oYesButton = pygwidgets.CustomButton(theWindow, (355, 265),
 'images/yesNormal.png',
 over='images/yesOver.png',
 down='images/yesDown.png',
 disabled='images/yesDisabled.png')
 4 userAnswer = pyghelpers.customYesNoDialog(theWindow,
 oDialogBackground,
 oPromptDisplayText,
 oYesButton, oNoButton)
 5 return userAnswer

Listing 16-1: An intermediate function to create a custom Yes/No dialog

Inside the function you write code to create an Image object for the
background using an image you specify 1. You also create a DisplayText
object for the prompt 2, in which you specify the placement, text size,
font, and so on. Then you create buttons as either TextButton objects or,
more likely, CustomButton objects so you can show custom images 3. Finally,
this function calls customYesNoDialog(), passing in all the objects you just
created 4. The call to customYesNoDialog() returns the user’s choice to this
intermediate function, and the intermediate function returns the user’s
choice to the original caller 5. This approach works well because the wid-
get objects (oDialogBackground, oPromptDisplayText, oYesButton, and oNoButton)
created inside this function are all local variables and therefore will all go
away when the intermediate function ends.

When you call this function, you only need to pass in the window and
the text prompt to be displayed. For example:

returnedValue = showCustomYesNoDialog(window,
 'Do you want fries with that?')

Figure 16-3 shows the resulting dialog. This is just one example; you
can design any layout you like.

Full Game: Dodger 345

Figure 16-3: A typical customYesNoDialog dialog

As with the simple text version, if the value passed in for oNoButton is
None, that button will not be shown, which is useful for building and display-
ing an Alert dialog.

Internally, the textYesNoDialog() and customYesNoDialog() functions each
run their own while loop that handles events and updates and draws the
dialog. That way, the calling program is suspended (its main loop does
not run) until the user clicks a button and the modal dialog returns the
selected answer. (The source code of both functions is available in the
pyghelpers module.)

Answer Dialogs
An Answer dialog adds an input text field where the user can type a
response. The pyghelpers module also contains functions textAnswerDialog()
and customAnswerDialog() to handle these dialogs, which work similarly to
their Yes/No counterparts.

Text Version

Here is the interface of the textAnswerDialog() function:

textAnswerDialog(theWindow, theRect, prompt, okButtonText='OK'
 cancelButtonText='Cancel',
 backgroundColor=DIALOG_BACKGROUND_COLOR,
 promptTextColor=DIALOG_BLACK,
 inputTextColor=DIALOG_BLACK)

If the user clicks the OK button, the function returns whatever text the
user entered. If the user clicks the Cancel button, the function returns None.
Here is a typical call:

userAnswer = pyghelpers.textAnswerDialog(window, (75, 100, 500, 200),
 'What is your favorite flavor of ice cream?')
if userAnswer is not None:
 # User pressed OK, do whatever you want with the variable userAnswer
else:
 # Here do whatever you want knowing that the user pressed Cancel

346 Chapter 16

This will display the dialog in Figure 16-4.

Figure 16-4: A typical textAnswerDialog dialog

Custom Version

To implement a custom Answer dialog, you should write an intermediate
function, similar to the approach shown with customYesNoDialog(). Your main
code calls the intermediate function, which in turn calls customAnswerDialog().
Listing 16-2 shows the code of a typical intermediate function.

def showCustomAnswerDialog(theWindow, theText):
 oDialogBackground = pygwidgets.Image(theWindow, (60, 80),
 'images/dialog.png')
 oPromptDisplayText = pygwidgets.DisplayText(theWindow, (0, 120),
 theText, width=WINDOW_WIDTH,
 justified='center', fontSize=36)
 oUserInputText = pygwidgets.InputText(theWindow, (225, 165), '',
 fontSize=36, initialFocus=True)
 oNoButton = pygwidgets.CustomButton(theWindow, (105, 235),
 'images/cancelNormal.png',
 over='images/cancelOver.png',
 down='images/cancelDown.png',
 isabled='images/cancelDisabled.png')
 oYesButton = pygwidgets.CustomButton(theWindow, (375, 235),
 'images/okNormal.png',
 over='images/okOver.png',
 down='images/okDown.png',
 disabled='images/okDisabled.png')
 response = pyghelpers.customAnswerDialog(theWindow,
 oDialogBackground, oPromptDisplayText,
 oUserInputText,
 oYesButton, oNoButton)
 return response

Listing 16-2: An intermediate function to create a custom Answer dialog

You can customize the entire appearance of the dialog: background
image, fonts, and sizes and placement of the display and input text fields

Full Game: Dodger 347

and the two buttons. To show a custom dialog, your main code would call
the intermediate function and pass in the prompt text, like this:

userAnswer = showCustomAnswerDialog(window,
 'What is your favorite flavor of ice cream?')

That call displays a custom Answer dialog like the one shown in
Figure 16-5.

Figure 16-5: A typical customAnswerDialog dialog

If user clicks OK, the function returns the text the user entered. If the
user clicks the Cancel button, the function returns None.

A demo program that demonstrates all the types of dialogs, DialogTester/
Main_DialogTester.py, is available with the downloadable resources for the
book.

Building a Full Game: Dodger
In this section, we’ll put all the material from this part of the book together
in the context of a game called Dodger. From the user’s point of view, the
game is extremely simple: get as many points as you can by dodging the red
Baddies and making contact with the green Goodies.

Game Overview
Red Baddies will drop from the top of the window, and the user must avoid
them. Any Baddie that makes it all the way down to the bottom of the game
area is removed, and the user gains one point. The user moves the mouse to
control a Player icon. If the Player touches any Baddie, the game is over. A
small number of green Goodies show up randomly and move horizontally,
and the user gets 25 points for any Goodie they touch.

The game has three scenes: a starting or Splash scene with instructions,
a Play scene where you play the game, and a High Scores scene where you
can view the top 10 high scores. If you score within the top 10, you’re given
the option of entering your name and score into the high scores table.
Figure 16-6 shows the three scenes.

348 Chapter 16

Figure 16-6: The Splash, Play, and High Score scenes (left to right)

Implementation
The contents of the Dodger project folder are as follows (filenames are in italic):

__init__.py Empty file that indicates that this is a Python package

Baddies.py Contains the Baddie and BaddieMgr classes
Constants.py Contains constants used by multiple scenes

Goodies.py Contains the Goodie and GoodieMgr classes

HighScoresData.py Contains the HighScoresData class

images Folder that contains all the artwork for the game

Main_Dodger.py The main program

Player.py Contains the Player class
SceneHighScores.py The scene that shows and records high scores

ScenePlay.py The main Play scene

SceneSplash.py The Splash scene

sounds Folder that contains all the sound files for the game

The project folder is included with the book’s resources. I won’t talk
through the entirety of the code, but I’ll go through the source files and
explain how the key parts work.

File: Dodger/Constants.py

This file contains constants that can be used by more than one source file.
The most important constants are the scene keys:

Scene keys
SCENE_SPLASH = 'scene splash'
SCENE_PLAY = 'scene play'
SCENE_HIGH_SCORES = 'scene high scores'

Full Game: Dodger 349

The values of these constants are unique strings that identify the differ-
ent scenes.

File: Main_Dodger.py

The main file performs the necessary initialization, then passes control to
the scene manager. The most important code in the file is this:

Instantiate all scenes and store them in a list
scenesList = [SceneSplash(window)
 SceneHighScores(window)
 ScenePlay(window)]

Create the scene manager, passing in the scenes list and the FPS
oSceneMgr = pyghelpers.SceneMgr(scenesList, FRAMES_PER_SECOND)

Tell the scene manager to start running
oSceneMgr.run()

Here we create an instance of each scene, instantiate the scene man-
ager, then turn over control to the scene manager. The scene manager’s
run() method gives control to the first scene in the list. In this game, it gives
control to the Splash scene.

As discussed in the previous chapter, each scene class inherits from the
Scene base class. In addition to providing its own __init__() method, each
of these classes is required to override the getSceneKey(), handleInputs(), and
draw() methods from the base class.

File: Dodger/SceneSplash.py

The Splash scene shows the user a graphic with the rules of the game and
three buttons: Start, Quit, and Go to High Scores. The code for this scene’s
class only contains the required methods; all other methods default to the
ones in the Scene base class.

The __init__() method creates an Image object for the background
image and three CustomButton objects for the user’s options.

The getSceneKey() method must be implemented in all scenes; it just
returns a unique key for the scene.

The handleInputs() method checks for the user clicking any of the but-
tons. If the user clicks Start, we call the inherited self.goToScene() method
to ask the scene manager to transfer control to the Play scene. Similarly,
clicking the Go to High Scores button takes the user to the High Scores
scene. If the user clicks Quit, we call the scene’s inherited self.quit()
method, which quits the program.

In the draw() method, the program draws the background and all three
buttons.

File: Dodger/ScenePlay.py

The Play scene manages the actual playing of the game: the user moving
the Player icon, generation and movement of the Baddies and Goodies,

350 Chapter 16

and collision detection. It also manages the display elements at the bot-
tom of the window, including the current game score and high score, and
responds to clicks on the Quit, Go to High Scores, and Start buttons and
the Background Music checkbox.

There is quite a bit of code for the Play scene, so I’ll break it up into
smaller chunks (Listings 16-3 through 16-7) to explain the methods. The
scene adheres to the design rules established in Chapter 15 by implementing
the __init__(), handleInputs(), update(), and draw() methods. It also implements
an enter() method to handle what the scene should do when it becomes the
active scene and a leave() method for what the scene should do when the user
navigates away. Finally, it has a reset() method for resetting the state before
starting a new round. Listing 16-3 shows the initialization code.

Play scene - the main game play scene
--- snip imports and showCustomYesNoDialog ---

BOTTOM_RECT = (0, GAME_HEIGHT + 1, WINDOW_WIDTH,
 WINDOW_HEIGHT - GAME_HEIGHT)
STATE_WAITING = 'waiting'
STATE_PLAYING = 'playing'
STATE_GAME_OVER = 'game over'

class ScenePlay(pyghelpers.Scene):

 def __init__(self, window):
 1 self.window = window

 self.controlsBackground = pygwidgets.Image(self.window,
 (0, GAME_HEIGHT),
 'images/controlsBackground.jpg')

 self.quitButton = pygwidgets.CustomButton(self.window,
 (30, GAME_HEIGHT + 90),
 up='images/quitNormal.png',
 down='images/quitDown.png',
 over='images/quitOver.png',
 disabled='images/quitDisabled.png')

 self.highScoresButton = pygwidgets.CustomButton(self.window,
 (190, GAME_HEIGHT + 90),
 up='images/gotoHighScoresNormal.png',
 down='images/gotoHighScoresDown.png',
 over='images/gotoHighScoresOver.png',
 disabled='images/gotoHighScoresDisabled.png')

 self.startButton = pygwidgets.CustomButton(self.window,
 (450, GAME_HEIGHT + 90),
 up='images/startNewNormal.png',
 down='images/startNewDown.png',
 over='images/startNewOver.png',
 disabled='images/startNewDisabled.png',
 enterToActivate=True)

Full Game: Dodger 351

 self.soundCheckBox = pygwidgets.TextCheckBox(self.window,
 (430, GAME_HEIGHT + 17),
 'Background music',
 True, textColor=WHITE)

 self.gameOverImage = pygwidgets.Image(self.window, (140, 180),
 'images/gameOver.png')

 self.titleText = pygwidgets.DisplayText(self.window,
 (70, GAME_HEIGHT + 17),
 'Score: High Score:',
 fontSize=24, textColor=WHITE)

 self.scoreText = pygwidgets.DisplayText(self.window,
 (80, GAME_HEIGHT + 47), '0',
 fontSize=36, textColor=WHITE,
 justified='right')

 self.highScoreText = pygwidgets.DisplayText(self.window,
 (270, GAME_HEIGHT + 47), '',
 fontSize=36, textColor=WHITE,
 justified='right')

 pygame.mixer.music.load('sounds/background.mid')
 self.dingSound = pygame.mixer.Sound('sounds/ding.wav')
 self.gameOverSound = pygame.mixer.Sound('sounds/gameover.wav')

 # Instantiate objects
 2 self.oPlayer = Player(self.window)
 self.oBaddieMgr = BaddieMgr(self.window)
 self.oGoodieMgr = GoodieMgr(self.window)

 self.highestHighScore = 0
 self.lowestHighScore = 0
 self.backgroundMusic = True
 self.score = 0
 3 self.playingState = STATE_WAITING

 4 def getSceneKey(self):
 return SCENE_PLAY

Listing 16-3: The __init__() and getSceneKey() methods of the ScenePlay class

When run, the main code of the game instantiates all the scenes. In the
Play scene, the __init__() method creates all the buttons and text display
fields for the bottom of the window 1, then loads the sounds. Very impor-
tantly, we use composition, discussed in Chapters 4 and 10, to create a
Player object (oPlayer), a Baddie manager object (oBaddieMgr), and a Goodie
manager object (oGoodieMgr) 2. The Play scene object creates these manag-
ers and expects them to create and manage all the Baddies and Goodies.
The __init__() method runs when the program starts, but doesn’t actually
start the game. Instead, it implements a state machine (as discussed in
Chapter 15) that starts in the waiting state 3. A round of the game starts
when the user presses New Game.

352 Chapter 16

All scenes must have a getSceneKey() method 4 that returns a string rep-
resenting the current scene. Listing 16-4 shows the code that retrieves the
scores and resets the game upon request.

 1 def enter(self, data):
 self.getHiAndLowScores()

 2 def getHiAndLowScores(self):
 # Ask the High Scores scene for a dict of scores
 # that looks like this:
 # {'highest': highestScore, 'lowest': lowestScore}
 3 infoDict = self.request(SCENE_HIGH_SCORES, HIGH_SCORES_DATA)
 self.highestHighScore = infoDict['highest']
 self.highScoreText.setValue(self.highestHighScore)
 self.lowestHighScore = infoDict['lowest']

 4 def reset(self): # start a new game
 self.score = 0
 self.scoreText.setValue(self.score)
 self.getHiAndLowScores()

 # Tell the managers to reset themselves
 5 self.oBaddieMgr.reset()
 self.oGoodieMgr.reset()

 if self.backgroundMusic:
 pygame.mixer.music.play(-1, 0.0)
 6 self.startButton.disable()
 self.highScoresButton.disable()
 self.soundCheckBox.disable()
 self.quitButton.disable()
 pygame.mouse.set_visible(False)

Listing 16-4: The enter(), getHiAndLowScores(), and reset() methods of the ScenePlay
class

When navigating to the Play scene, the scene manager calls enter() 1,
which in turn calls the getHiAndLowScores() method 2. That method issues a
request to the High Scores scene 3 to retrieve the highest and lowest scores
from the high scores table, so we can draw the highest score from that table
in the bar at the bottom of the window. At the end of each game, it com-
pares the game’s score to the lowest top 10 score to see if this game ranks in
the top 10.

When the user clicks the New Game button, the reset() method 4
is called to reinitialize everything that needs to be reset before starting a
new round of the game. The reset() method tells the Baddie manager and
the Goodie manager to reinitialize themselves by calling their own reset()
methods 5, disables the buttons at the bottom of the screen so they cannot
be pressed during game play 6, and hides the pointer cursor. During play,
the user moves the mouse to control the Player icon in the window.

The code in Listing 16-5 deals with user input.

Full Game: Dodger 353

 1 def handleInputs(self, eventsList, keyPressedList):
 2 if self.playingState == STATE_PLAYING:
 return # ignore button events while playing

 for event in eventsList:
 3 if self.startButton.handleEvent(event):
 self.reset()
 self.playingState = STATE_PLAYING

 4 if self.highScoresButton.handleEvent(event):
 self.goToScene(SCENE_HIGH_SCORES)

 5 if self.soundCheckBox.handleEvent(event):
 self.backgroundMusic = self.soundCheckBox.getValue()

 6 if self.quitButton.handleEvent(event):
 self.quit()

Listing 16-5: The handleInputs() method of the ScenePlay class

The handleInputs() method 1 is responsible for click events. If the state
machine is in the playing state, the user cannot click the buttons, so we
don’t bother checking for events 2. If the user presses New Game 3, we
call reset() to reinitialize variables and change the state machine to the
playing state. If the user presses Go to High Scores 4, we navigate to the
High Scores scene using the inherited self.goToScene() method. If the user
toggles the Background Music checkbox 5, we call its getValue() method
to retrieve its new setting; the reset() method uses this setting to decide if
background music should be played. If the user presses Quit 6, we call the
inherited self.quit() method from the base class. Listing 16-6 shows the
code for the actual game play.

 1 def update(self):
 if self.playingState != STATE_PLAYING:
 return # only update when playing

 # Move the Player to the mouse position, get back its rect
 2 mouseX, mouseY = pygame.mouse.get_pos()
 playerRect = self.oPlayer.update(mouseX, mouseY)

 # Tell the GoodieMgr to move all Goodies
 # Returns the number of Goodies that the Player contacted
 3 nGoodiesHit = self.oGoodieMgr.update(playerRect)
 if nGoodiesHit > 0:
 self.dingSound.play()
 self.score = self.score + (nGoodiesHit * POINTS_FOR_GOODIE)

 # Tell the BaddieMgr to move all the Baddies
 # Returns the number of Baddies that fell off the bottom
 4 nBaddiesEvaded = self.oBaddieMgr.update()
 self.score = self.score + (nBaddiesEvaded * POINTS_FOR_BADDIE_EVADED)
 self.scoreText.setValue(self.score)

354 Chapter 16

 # Check if the Player has hit any Baddie
 5 if self.oBaddieMgr.hasPlayerHitBaddie(playerRect):
 pygame.mouse.set_visible(True)
 pygame.mixer.music.stop()

 self.gameOverSound.play()
 self.playingState = STATE_GAME_OVER
 6 self.draw() # force drawing of game over message

 7 if self.score > self.lowestHighScore:
 scoreAsString = ′Your score: ′ + str(self.score) + ′\n′
 if self.score > self.highestHighScore:
 dialogText = (scoreString +
 'is a new high score, CONGRATULATIONS!')
 else:
 dialogText = (scoreString +
 'gets you on the high scores list.')

 result = showCustomYesNoDialog(self.window, dialogText)
 if result: # navigate
 self.goToScene(SCENE_HIGH_SCORES, self.score)

 self.startButton.enable()
 self.highScoresButton.enable()
 self.soundCheckBox.enable()
 self.quitButton.enable()

Listing 16-6: The update() method of the ScenePlay class

The scene manager calls the update() method of the ScenePlay class 1 in
every frame. This method handles everything that happens while the game
is being played. First, it tells the Player object to move the Player’s icon to
the position of the mouse. Then it calls the Player’s update() method 2,
which returns the current rectangle of the icon in the window. We use this
to see if the Player’s icon has contacted any Goodies or Baddies.

Next, it calls the Goodie manager’s update() method 3 to move all the
Goodies. This method returns the number of Goodies that the Player has
contacted, which we use to increase the score.

This is followed by a call to the Baddie manager’s update() method 4
to move all the Baddies. That method returns the number of Baddies that
have fallen off the bottom of the game area.

We then check to see if the Player has contacted any Baddies 5. If so,
the game is over and we display a Game Over graphic. We also make a spe-
cial call to our draw() method 6 because we may put up a dialog for the
user, and the game’s main loop will not draw the Game Over graphic until
the user clicks one of the buttons in the dialog.

Finally, when the game ends, if the current game score is higher than
the tenth-best score 7, we put up a dialog giving the user the option of
recording their score into the high scores list. If the score of the current
game is a new all-time high score, we give a special message in the dialog.

The code in Listing 16-7 draws the game characters.

Full Game: Dodger 355

 1 def draw(self):
 self.window.fill(BLACK)

 # Tell the managers to draw all the Baddies and Goodies
 self.oBaddieMgr.draw()
 self.oGoodieMgr.draw()

 # Tell the Player to draw itself
 self.oPlayer.draw()

 # Draw all the info at the bottom of the window
 2 self.controlsBackground.draw()
 self.titleText.draw()
 self.scoreText.draw()
 self.highScoreText.draw()
 self.soundCheckBox.draw()
 self.quitButton.draw()
 self.highScoresButton.draw()
 self.startButton.draw()

 3 if self.playingState == STATE_GAME_OVER:
 self.gameOverImage.draw()

 4 def leave(self):
 pygame.mixer.music.stop()

Listing 16-7: The draw() and leave() methods of the ScenePlay class

The draw() method tells the Player to draw itself and the Goodie and
Baddie managers to draw all the Goodies and Baddies 1. We then draw the
bottom portion of the window 2 with all the buttons and text display fields.
If we are in the game over state 3, we draw the Game Over image.

When the user navigates away from this scene, the scene manager calls
the leave() method 4 and we stop any music.

File: Dodger/Baddies.py

The Baddies.py file contains two classes: Baddie and BaddieMgr. The Play scene
creates the single Baddie manager object, which creates and maintains a
list of all Baddies. The Baddie manager instantiates objects from the Baddie
class every few frames, based on a timer. Listing 16-8 contains the code for
the Baddie class.

Baddie class
--- snip imports ---

class Baddie():
 MIN_SIZE = 10
 MAX_SIZE = 40
 MIN_SPEED = 1
 MAX_SPEED = 8
 # Load the image only once

356 Chapter 16

 1 BADDIE_IMAGE = pygame.image.load('images/baddie.png')

 def __init__(self, window):
 self.window = window
 # Create the image object
 size = random.randrange(Baddie.MIN_SIZE, Baddie.MAX_SIZE + 1)
 self.x = random.randrange(0, WINDOW_WIDTH - size)
 self.y = 0 - size # start above the window
 2 self.image = pygwidgets.Image(self.window, (self.x, self.y),
 Baddie.BADDIE_IMAGE)

 # Scale it
 percent = (size * 100) / Baddie.MAX_SIZE
 self.image.scale(percent, False)
 self.speed = random.randrange(Baddie.MIN_SPEED,
 Baddie.MAX_SPEED + 1)

 3 def update(self): # move the Baddie down
 self.y = self.y + self.speed
 self.image.setLoc((self.x, self.y))
 if self.y > GAME_HEIGHT:
 return True # needs to be deleted
 else:
 return False # stays in the window

 4 def draw(self):
 self.image.draw()

 5 def collide(self, playerRect):
 collidedWithPlayer = self.image.overlaps(playerRect)
 return collidedWithPlayer

Listing 16-8: The Baddie class

We load the image of the Baddie as a class variable 1 so the single
image is shared by all Baddies.

The __init__() method 2 chooses a random size for each new Baddie,
so the user sees differently sized Baddies. It chooses a random x-coordinate
and a y-coordinate that will place the image just above the window. It then
creates an Image object and scales the image down to the selected size 2.
Lastly, it chooses a random speed.

The Baddie manager, the code for which I’ll show in a moment, calls
the update() method 3 in every frame: the code here moves the location of
the Baddie down by the number of pixels that represents its speed. If the
Baddie has moved off the bottom of the game area, we return True to say
this Baddie is ready to be removed. Otherwise, we return False to tell the
Baddie manager to leave this Baddie in the window.

The draw() method 4 draws the Baddie at its new location.
The collide() method 5 checks to see if the Player and the Baddie

intersect.

Full Game: Dodger 357

The BaddieMgr class, shown in Listing 16-9, creates and manages a list of
Baddie objects; this is a classic example of an object manager object.

BaddieMgr class
class BaddieMgr():
 ADD_NEW_BADDIE_RATE = 8 # how often to add a new Baddie

 1 def __init__(self, window):
 self.window = window
 self.reset()

 2 def reset(self): # called when starting a new game
 self.baddiesList = []
 self.nFramesTilNextBaddie = BaddieMgr.ADD_NEW_BADDIE_RATE

 3 def update(self):
 # Tell each Baddie to update itself
 # Count how many Baddies have fallen off the bottom
 nBaddiesRemoved = 0
 4 baddiesListCopy = self.baddiesList.copy()
 for oBaddie in baddiesListCopy:
 5 deleteMe = oBaddie.update()
 if deleteMe:
 self.baddiesList.remove(oBaddie)
 nBaddiesRemoved = nBaddiesRemoved + 1

 # Check if it's time to add a new Baddie
 6 self.nFramesTilNextBaddie = self.nFramesTilNextBaddie - 1
 if self.nFramesTilNextBaddie == 0:
 oBaddie = Baddie(self.window)
 self.baddiesList.append(oBaddie)
 self.nFramesTilNextBaddie = BaddieMgr.ADD_NEW_BADDIE_RATE

 # Return the count of Baddies that were removed
 return nBaddiesRemoved

 7 def draw(self):
 for oBaddie in self.baddiesList:
 oBaddie.draw()

 8 def hasPlayerHitBaddie(self, playerRect):
 for oBaddie in self.baddiesList:
 if oBaddie.collide(playerRect):
 return True
 return False

Listing 16-9: The BaddieMgr class

The __init__() method calls 1 the BaddieMgr’s own reset() method to
set the list of Baddie objects to the empty list. We use the frame-counting
approach to create a new Baddie relatively often, to keep things interesting.
We use the instance variable self.nFramesTilNextBaddie for counting frames.

358 Chapter 16

The reset() method 2 is called when starting a new round of the game.
It clears the list of Baddies and resets the frame counter.

The update() method 3 is where the real management of Baddies hap-
pens. Our intent here is to loop through all the Baddies, telling each one to
update its own position and removing any that have fallen off the bottom of
the window. However, there is a potential bug. If you simply iterate through
a list and remove an element that matches your criteria for deletion, the list
is immediately compacted. When this happens, the element directly follow-
ing the one that was deleted will be skipped; in this loop, that element will
not be told to update itself. Though I didn’t go into detail at the time, we
encountered the same problem in Chapter 11 in the Balloon game, where
we needed to eliminate balloons that floated off the top of the window.
There I employed a solution using the reversed() function applied to the
list, to iterate in the reverse order (see Listing 11-6).

Here I’ve implemented a more generalized solution 4. The approach
used in the BaddieMgr class is to make a copy of the list and iterate over the
copied list; then, if we find an element that meets the criteria for deletion
(in this case a Baddie that has fallen off the bottom of the window), we
remove that element (that specific Baddie) from the original list. With this
approach, we are iterating over a different list than the one from which we
are removing elements.

As we iterate through the Baddies, the call to the update() method of
each Baddie 5 returns a Boolean: False to indicate it’s still moving down
the window or True to indicate that it has fallen off the bottom. We count the
number of Baddies that fall off the bottom and remove each one from the
list. At the end of the method, we return the count to the main code so it
can update the score.

In every frame, we also check to see if it’s time to create a new
Baddie 6. When we’ve gone through the constant ADD_NEW_BADDIE_RATE num-
ber of frames, we create a new Baddie object and add it to the list of Baddies.

The draw() method 7 iterates through the list of Baddies and calls the
draw() method of each Baddie to draw itself at its appropriate location.

Finally, the hasPlayerHitBaddie() method 8 checks to see if the Player’s
rectangle intersects any Baddie. The code iterates through the list of
Baddies and calls the collide() method of each. If there was an intersec-
tion (overlap) with any Baddie, then we report that back to the main code,
which ends the game.

File: Dodger/Goodies.py

The GoodieMgr and Goodie classes are very similar to the BaddieMgr and Baddie
classes. The Goodie manager is an object manager object that maintains a
list of Goodies. The difference from the Baddie manager is that it will ran-
domly place a Goodie at either the left edge of the window (in which case it
moves right) or the right edge (so it moves left). It also creates new Goodies
after a randomized number of frames. When the Player intersects with a
Goodie, the user is rewarded with 25 points. The update() method of the
Goodie manager uses the technique described in the previous section: it
makes a copy of the Goodies list and iterates through the copy.

Full Game: Dodger 359

File: Dodger/Player.py

The Player class, shown in Listing 16-10, manages the Player icon and keeps
track of where it should appear in the game window.

Player class
--- snip imports ---

class Player():
 1 def __init__(self, window):
 self.window = window
 self.image = pygwidgets.Image(window,
 (-100, -100), 'images/player.png')
 playerRect = self.image.getRect()
 self.maxX = WINDOW_WIDTH - playerRect.width
 self.maxY = GAME_HEIGHT - playerRect.height

 # Every frame, move the Player icon to the mouse position
 # Limits the x- and y-coordinates to the game area of the window
 2 def update(self, x, y):
 if x < 0:
 x = 0
 elif x > self.maxX:
 x = self.maxX
 if y < 0:
 y = 0
 elif y > self.maxY:
 y = self.maxY

 self.image.setLoc((x, y))
 return self.image.getRect()

 3 def draw(self):
 self.image.draw()

Listing 16-10: The Player class

The __init__() method 1 loads the Player icon image and sets up a
number of instance variables for use later.

The update() method 2 is called in every frame by the Play scene. The
basic idea is to show the Player icon at the mouse location, which is passed
in. We do a few checks to ensure that the icon remains within the rect-
angle of the playable area. In every frame, the update() method returns the
updated rectangle of the Player icon so the main Play code in Listing 16-6
can check if the Player’s rectangle intersects with any Baddie or Goodie.

Finally, the draw() method 3 draws the Player icon at the new location.
The use of the Goodie manager, the Baddie manager, and the Player

object clearly demonstrates the power of OOP. We can just send messages to
these objects, asking them to update or reset themselves, and they do what-
ever they need to do in response. The Goodie and Baddie managers pass
these messages on to all the Goodies and Baddies that they manage.

360 Chapter 16

File: Dodger/SceneHighScores.py

The High Scores scene displays the top 10 high scores (and the names of
the players) in a table. It also allows a user who has scored in the top 10 to
optionally enter their name and score into the table. The scene instantiates
a HighScoresData object to manage the actual data, which includes reading
and writing the data file. This allows the High Scores scene to update the
table and to respond to requests from the Play scene for the current high
and low scores in the table.

Listings 16-11 through 16-13 contain the code of the SceneHighScores
class. We’ll start with the __init__() and getSceneKey() methods in
Listing 16-11.

High Scores scene
--- snip imports, showCustomAnswersDialog, and showCustomResetDialog ---

class SceneHighScores(pyghelpers.Scene):
 def __init__(self, window):
 self.window = window
 1 self.oHighScoresData = HighScoresData()

 self.backgroundImage = pygwidgets.Image(self.window,
 (0, 0),
 'images/highScoresBackground.jpg')

 self.namesField = pygwidgets.DisplayText(self.window,
 (260, 84), '', fontSize=48,
 textColor=BLACK,
 width=300, justified='left')

 self.scoresField = pygwidgets.DisplayText(self.window,
 (25, 84), '', fontSize=48,
 textColor=BLACK,
 width=175, justified='right')

 self.quitButton = pygwidgets.CustomButton(self.window,
 (30, 650),
 up='images/quitNormal.png',
 down='images/quitDown.png',
 over='images/quitOver.png',
 disabled='images/quitDisabled.png')

 self.backButton = pygwidgets.CustomButton(self.window,
 (240, 650),
 up='images/backNormal.png',
 down='images/backDown.png',
 over='images/backOver.png',
 disabled='images/backDisabled.png')

 self.resetScoresButton = pygwidgets.CustomButton(self.window,
 (450, 650),
 up='images/resetNormal.png',
 down='images/resetDown.png',
 over='images/resetOver.png',

Full Game: Dodger 361

 disabled='images/resetDisabled.png')

 2 self.showHighScores()

 3 def getSceneKey(self):
 return SCENE_HIGH_SCORES

Listing 16-11: The __init__() and getSceneKey() methods of the SceneHighScores class

The __init__() method 1 creates an instance of the HighScoresData class,
which maintains all the data for the High Scores scene. We then create all
the images, fields, and buttons for this scene. At the end of the initializa-
tion, we call self.showHighScores() 2 to populate the name and score fields.

The getSceneKey() method 3 returns a unique key for the scene and
must be implemented in all scenes.

Listing 16-12 shows the code for the enter() method of the
SceneHighScores class.

 1 def enter(self, newHighScoreValue=None):
 # This can be called two different ways:
 # 1. If no new high score, newHighScoreValue will be None
 # 2. newHighScoreValue is score of the current game - in top 10
 2 if newHighScoreValue is None:
 return # nothing to do

 3 self.draw() # draw before showing dialog
 # We have a new high score sent in from the Play scene
 dialogQuestion = ('To record your score of ' +
 str(newHighScoreValue) + ',\n' +
 'please enter your name:')
 4 playerName = showCustomAnswerDialog(self.window,
 dialogQuestion)
 5 if playerName is None:
 return # user pressed Cancel

 # Add user and score to high scores
 if playerName == '':
 playerName = 'Anonymous'
 6 self.oHighScoresData.addHighScore(playerName,
 newHighScoreValue)

 # Show the updated high scores table
 self.showHighScores()

Listing 16-12: The enter() method of the SceneHighScores class

The scene manager calls the enter() method of the High Scores scene 1
when navigating to that scene from the Play scene. If the game the user just
finished did not have a score in the top 10, this method just returns 2. But
if the user did earn a top 10 score, the enter() method is called with an extra
value—the score of the game that the user just completed.

In that case, we call draw() 3 to draw the contents of the High Scores
scene before showing the dialog offering the user the choice to add their

362 Chapter 16

score to the list. We then call an intermediate function, showCustom
AnswerDialog(), that builds and displays the custom dialog 4, as shown
in Figure 16-7.

Figure 16-7: A customAnswerDialog to let the user add their name to the high scores list

If the user selects No Thanks, we get a returned value of None and
we skip the rest of this method 5. Otherwise, we take the name that is
returned and add the name and score to the table 6 by calling a method
in the HighScoresData object. Finally, we update the fields by calling the
showHighScores() method. If there is no score in the call to this method 2,
there is nothing to do, since the current list is already displayed.

Listing 16-13 contains the code for the remaining methods of this class.

 def showHighScores(self): 1
 # Get the scores and names, show them in two fields
 scoresList, namesList = self.oHighScoresData.getScoresAndNames()
 self.namesField.setValue(namesList)
 self.scoresField.setValue(scoresList)

 def handleInputs(self, eventsList, keyPressedList): 2
 for event in eventsList:
 if self.quitButton.handleEvent(event):
 self.quit()

 elif self.backButton.handleEvent(event):
 self.goToScene(SCENE_PLAY)

 elif self.resetScoresButton.handleEvent(event):
 confirmed = showCustomResetDialog(self.window, 3
 'Are you sure you want to \nRESET the high scores?')
 if confirmed:
 self.oHighScoresData.resetScores()
 self.showHighScores()

 def draw(self): 4
 self.backgroundImage.draw()
 self.scoresField.draw()
 self.namesField.draw()
 self.quitButton.draw()
 self.resetScoresButton.draw()
 self.backButton.draw()

Full Game: Dodger 363

 def respond(self, requestID): 5
 if requestID == HIGH_SCORES_DATA:
 # Request from Play scene for the highest and lowest scores
 # Build a dictionary and return it to the Play scene
 highestScore, lowestScore = self.oHighScoresData.getHighestAndLowest()
 return {'highest':highestScore, 'lowest':lowestScore}

Listing 16-13: The showHighScores(), handleInputs(), draw(), and respond() methods of the SceneHighScores
class

The showHighScores() method 1 starts by asking the HighScoresData
object for two lists: the top 10 names and scores. It takes the lists that are
returned and sends them to two display fields to be shown. If you pass a list
to the setValue() method of a DisplayText object, it will display each element
on a separate line. We use two DisplayText objects because self.namesField is
left justified, while self.scoresField is right justified.

The handleInputs() method 2 only needs to check for and respond to
the user clicking the Quit, Back, and Reset Scores buttons. Because the
Reset Scores button wipes data, we should ask for confirmation before per-
forming this action. Therefore, when the user clicks this button, we call an
intermediate function, showCustomResetDialog() 3, to put up a dialog asking
the user to confirm that they really want to clear out all the current scores.

The draw() method 4 draws all the elements in the window.
Finally, the respond() method 5 allows another scene to ask this scene for

information. This is what allows the Play scene to request the highest current
score and the tenth-highest score—the minimum score to qualify a player for
the high scores list. The caller sends a value that indicates what information
it’s looking for. In this case, the requested info is HIGH_SCORES_DATA, a constant
that is shared from the Constants.py file. This method builds up a dictionary
of the two requested values and returns it to the calling scene.

File: Dodger/HighScoresData.py

The final class is HighScoresData, responsible for managing the high score
information. It reads and writes the data as a file in JSON format. The data
is always kept in order, from the highest to the lowest score. For example,
the file representing the 10 highest scores might look like this:

[['Moe', 987], ['Larry', 812], ... ['Curly', 597]]

Listing 16-14 shows the code of the HighScoresData class.

HighScoresData class
from Constants import *
from pathlib import Path
import json

class HighScoresData():
 """The data file is stored as a list of lists in JSON format.
 Each list is made up of a name and a score:
 [[name, score], [name, score], [name, score] ...]
 In this class, all scores are kept in self.scoresList.

364 Chapter 16

 The list is kept in order of scores, highest to lowest.
 """
 1 def __init__(self):
 self.BLANK_SCORES_LIST = N_HIGH_SCORES * [['-----', 0]]
 2 self.oFilePath = Path('HighScores.json')

 # Try to open and load the data from the data file
 try:
 3 data = self.oFilePath.read_text()
 except FileNotFoundError: # no file, set to blank scores and save
 4 self.scoresList = self.BLANK_SCORES_LIST.copy()
 self.saveScores()
 return

 # File exists, load the scores from the JSON file
 5 self.scoresList = json.loads(data)

 6 def addHighScore(self, name, newHighScore):
 # Find the appropriate place to add the new high score
 placeFound = False
 for index, nameScoreList in enumerate(self.scoresList):
 thisScore = nameScoreList[1]
 if newHighScore > thisScore:
 # Insert into proper place, remove last entry
 self.scoresList.insert(index, [name, newHighScore])
 self.scoresList.pop(N_HIGH_SCORES)
 placeFound = True
 break
 if not placeFound:
 return # score does not belong in the list

 # Save the updated scores
 self.saveScores()

 7 def saveScores(self):
 scoresAsJson = json.dumps(self.scoresList)
 self.oFilePath.write_text(scoresAsJson)

 8 def resetScores(self):
 self.scoresList = self.BLANK_SCORES_LIST.copy()
 self.saveScores()

 9 def getScoresAndNames(self):
 namesList = []
 scoresList = []
 for nameAndScore in self.scoresList:
 thisName = nameAndScore[0]
 thisScore = nameAndScore[1]
 namesList.append(thisName)
 scoresList.append(thisScore)

 return scoresList, namesList

 a def getHighestAndLowest(self):
 # Element 0 is the highest entry, element -1 is the lowest

Full Game: Dodger 365

 highestEntry = self.scoresList[0]
 lowestEntry = self.scoresList[-1]
 # Get the score (element 1) of each sublist
 highestScore = highestEntry[1]
 lowestScore = lowestEntry[1]
 return highestScore, lowestScore

Listing 16-14: The HighScoresData class

In the __init__() method 1, we first create a list of all blank entries. We
use the Path module to create a path object with the location of the data
file 2.

N O T E 	 The path shown in this listing is in the same folder as the code. This is fine for learn-
ing the concept of file input and output. However, if you intend to share your pro-
gram with other people to play on their computers, it would be better to use a different
path in the user’s home folder. This path can be constructed like this:

import os.path
DATA_FILE_PATH = os.path.expanduser('~/DodgerHighScores.json')

or:

from pathlib import Path
DATA_FILE_PATH = Path('~/DodgerHighScores.json').expanduser()

Next, we check if we already have some high scores saved by checking
for the existence of the data file 3. If the file is not found 4, we set the
scores to the list of blank entries, call saveScores() to save the scores, and
return. Otherwise, we read the contents of the file 5 and convert from
JSON format to a list of lists.

The addHighScores() method 6 is responsible for adding a new high
score to the list. Since the data is always kept in order, we iterate through
the list of scores until we find the appropriate index and insert the new
name and score. Because that operation will extend the list, we remove
the last element to only keep the top 10. We also check that the new score
should actually be inserted into the list. Finally, we call saveScores() to save
the scores to the data file.

The saveScores() method 7 saves the score data to a JSON-formatted
file. It’s called from various places.

The resetScores() method 8 is called when the user says that they wish
to reset all the names and scores to the starting point (all blank names and
all scores set to zero). We call saveScores() to rewrite the data file.

The getScoresAndNames() method 9 is called by the High Scores scene to
get the top 10 scores and names. We iterate through the list of lists of high
scores data to create one list of scores and another of names; both lists are
returned.

Finally, the getHighestAndLowest() method a is called by the High Scores
scene to get the highest and lowest scores in the table. It uses these results
to determine if a user’s score qualifies the user to enter their name and
score into the high scores table.

366 Chapter 16

Extensions to the Game
The overall architecture is modular, allowing for ease of modification. Each
scene encapsulates its own data and methods, while communication and
navigation are handled by the scene manager. Extensions can be handled
in one scene without affecting anything in other scenes.

For example, rather than the game ending as soon as the Player icon
hits a Baddie, you might want the user to start with some number of lives;
when the Player icon hits a Baddie, the number of lives is decremented by
one, and the game is over when the player runs out of lives. This kind of
change would be relatively easy to implement and would affect only the
Play scene.

As another idea, the user might start with a small number of bombs
that they can detonate when they’re in a bind, eliminating all Baddies
within a given radius around the Player icon. The count of bombs would
be decremented each time one is used, until it reaches zero. This change
would affect only the code of the Play scene and the Baddie manager.

Or maybe you want to keep track of more high scores—say, 20 instead
of 10. A change like that can be made in the High Scores scene without
affecting the Play or Splash scenes.

Summary
This chapter demonstrated how to create and use Yes/No and Answer
dialogs—both text and customizable versions. We then focused on building
a full object-oriented game program, Dodger.

We used the pygwidgets module for all the buttons, text displays, and
input text fields. We used the pyghelpers module for all the dialogs. The
SceneMgr allowed us to split up the game into smaller, more manageable
pieces (Scene objects) and to navigate between scenes.

The game used or demonstrated the following object-oriented
concepts:

Encapsulation   Each scene handles only the things specific to the
scene.

Polymorphism   Each scene implements the same methods.

Inheritance   Each scene inherits from the Scene base class.

Object manager object   The Play scene uses composition to create a
Baddie manager object, self.oBaddieMgr, and a Goodie manager object,
self.oGoodieMgr, each of which manages a list of its objects.

Shared constants   We use separate modules for Goodies and Baddies,
and a Constants.py file allows us to easily share constants across modules.

In this final chapter, I’ll introduce the
object-oriented programming concept of

design patterns, which are reusable OOP solu-
tions to commonly occurring software prob-

lems. We’ve already seen one design pattern in this
book: using an object manager object to manage a list
or dictionary of objects. Many full books have been written on the topic of
design patterns, so we obviously cannot discuss all of them. In this chapter
we’ll focus on the Model View Controller pattern that’s used to break a sys-
tem into smaller, more manageable and more modifiable parts. Lastly, I’ll
give a wrap-up on OOP.

Model View Controller
The Model View Controller (MVC) design pattern enforces a clear split
between a collection of data and the way that data is represented to the
user. The pattern separates the functionality into three parts: the model,

17
D E S I G N P A T T E R N S

A N D W R A P - U P

368 Chapter 17

the view, and the controller. Each part has a clearly defined responsibility,
and each is implemented by one or more objects.

The model stores data. The view is responsible for drawing the infor-
mation from the model in one of perhaps multiple ways. The controller
typically creates the model and view objects, handles all user interactions,
communicates changes to the model, and tells the view to display the
data. This separation makes the overall system highly maintainable and
modifiable.

File Display Example
As a good example of the MVC pattern, consider the way files are displayed
in the macOS Finder or the Windows File Explorer. Say we have a folder that
contains four files and a subfolder. The end user can choose to display these
items as a list, as in Figure 17-1.

Figure 17-1: Files in a folder shown as a list

Alternatively, the user can choose to display the same items as icons, as
in Figure 17-2.

Figure 17-2: Files in a folder shown as icons

The underlying data for both displays is identical, but the representa-
tion of the information to the user is different. In this example, the data is
the list of files and subfolders; it’s kept in a model object. The view object
displays the data in whatever way the user chooses: as a list, as icons, as a
detailed list, and so on. The controller tells the view to display the informa-
tion in the layout chosen by the user.

Statistical Display Example
As a more extensive example of the MVC pattern, let’s consider a program
that simulates rolling a pair of dice many times and shows the results. In

Design Patterns and Wrap-Up 369

each roll we’ll add the values of the two dice, so the sum—which we’ll call
an outcome—must be between 2 and 12. The data consists of the count of
the number of times each outcome is rolled and the percentage of the
total number of rolls each outcome makes up. The program can display
this data in three different representations: a bar chart, a pie chart, and a
text table. It defaults to a bar chart and displays the result after simulating
rolling a pair of dice 2,500 times. Since this program is just intended as
a working demonstration of the MVC pattern, we’ll generate the output
using pygame and pygwidgets. For more professional-looking charts and
displays, I suggest that you look into Python data visualization libraries
such as Matplotlib, Seaborn, Plotly, Bokeh, and others that are designed
for this purpose.

Figure 17-3 shows the data displayed as a bar chart.

Figure 17-3: Dice roll data as a bar chart

Beneath each bar is the outcome, the count of the number of times that
outcome was rolled, and the percentage of the total number of rolls that
count represents. The height of each bar corresponds to the count (or per-
centage). Clicking Roll Dice runs the simulation again, using the number
of rolls specified in the input field. The user can click the different radio
buttons to show different views of the same data. If the user selects the Pie
Chart radio button, the data is displayed as in Figure 17-4.

370 Chapter 17

Figure 17-4: Dice roll data as a pie chart

If the user selects the Text radio button, the data is displayed as in
Figure 17-5.

Figure 17-5: Dice roll data as text

Design Patterns and Wrap-Up 371

The user can change the value in the “Number of rolls” field to roll the
dice as many times as they wish. This data in this program is based on statistics
and randomness. With different sample sizes the exact counts will obviously
vary, but the percentages should always be approximately the same.

I won’t show the full listing of the program here, but will focus on a few
key lines that demonstrate the setup and the flow of control in the MVC
pattern. The full program is available for download with the rest of the
book’s resources, in the MVC_RollTheDice folder. The folder contains the
following files:

Main_MVC.py   The main Python file

Controller.py   Contains the Controller class

Model.py   Contains the Model class

BarView.py   Contains the BarView class that displays the bar chart

Bin.py   Contains the Bin class that draws a single bar in the bar chart

PieView.py   Contains the PieView class that displays the pie chart

TextView.py   Contains the TextView class that displays the text view

Constants.py   Contains constants that are shared by multiple modules

The main program instantiates a Controller object and runs the main
loop. Code in the main loop forwards all events (other than the pygame.QUIT
event) to the controller to handle.

The Controller

The controller is the supervisor of the whole program. It starts by instan-
tiating the Model object. It then instantiates one of each of the different
view objects: BarView, PieView, and TextView. Here is the startup code in the
__init__() method of the Controller class:

Instantiate the model
self.oModel = Model()
Instantiate different view objects
self.oBarView = BarView(self.window, self.oModel)
self.oPieView = PieView(self.window, self.oModel)
self.oTextView = TextView(self.window, self.oModel)

When the Controller object instantiates these View objects, it passes in
the Model object so each View object can request information directly from
the model. Different implementations of the MVC pattern might handle
communication between these three elements differently; for example, a
controller could act as an intermediary, requesting data from the model
and forwarding it on to the current view, rather than allowing the model
and view to communicate directly.

The controller draws and reacts to everything outside the black rectan-
gle in the window, including the title, the image of the dice, and the radio
buttons. It draws the Quit and Roll Dice buttons and reacts when they’re
clicked, and it handles any changes the user makes to the number of rolls.

372 Chapter 17

The Controller object keeps a current View object, which determines
which view is currently displayed. We set it by default to the BarView object
(the bar chart):

self.oView = self.oBarView

When the user clicks a radio button, the Controller sets its current View
object to the newly selected view and tells the new View object to update
itself by calling its update() method:

if self.oBarButton.handleEvent(event):
 self.oView = self.oBarView
 self.oView.update()
elif self.oPieButton.handleEvent(event):
 self.oView = self.oPieView
 self.oView.update()
elif self.oTextButton.handleEvent(event):
 self.oView = self.oTextView
 self.oView.update()

At startup, and whenever the user clicks Roll Dice, the controller vali-
dates the number of rolls specified in the “Number of rolls” field and tells
the model to generate new data:

self.oModel.generateRolls(nRounds)

All the views are polymorphic, so in each frame the Controller object
calls the draw() method of the current View object:

self.oView.draw() # tell the current view to draw itself

The Model

The model is responsible for obtaining (and potentially updating) informa-
tion. In this program, the Model object is simple: it simulates rolling a pair
of dice many times, stores the results in instance variables, and reports the
data when a View object requests it.

When asked to generate data, the model runs a loop simulating rolling
the dice and stores its data in two dictionaries: self.rollsDict, which uses
each outcome as a key and the count as a value, and self.percentsDict, which
uses each outcome as a key and the percentage of rolls as a value.

In more complex programs, the model could get its data from a data-
base, the internet, or other sources. For example, a Model object could main-
tain stock information, population data, city housing data, temperature
readings, and so on.

In this model, the getRoundsRollsPercents() method is called by the
View objects to retrieve all the data at once. However, a model may contain
more information than any one view might need. Therefore, different View
objects can call different methods in the Model object to request different
information from the same model. To support this, in the sample program

Design Patterns and Wrap-Up 373

I’ve included a number of additional getter methods (getNumberOfRounds(),
getRolls(), and getPercents()) that a programmer could use when building a
new View object, to get only the data that the new view might want to display.

The View

A View object is responsible for displaying data to the user. In our sample
program, we have three different View objects that display the same under-
lying information in three different forms; each displays the information
within the black rectangle in the window. At startup, and when the user
clicks Roll Dice, the controller calls the update() method of the current View
object. All View objects then make the same call to the Model object to get the
current data:

nRounds, resultsDict, percentsDict = self.oModel.getRoundsRollsPercents()

The View object then formats the data in its own way and presents it to
the user.

Advantages of the MVC Pattern
The MVC design pattern breaks up responsibility into separate classes that
act independently but work collectively. Building the components as dis-
tinct classes and minimizing the interactions between the resulting objects
allows each individual component to be less complex and less error prone.
Once the interface of each component is defined, the code of the classes
can even be written by different programmers.

With the MVC approach, each component demonstrates the core OOP
concepts of encapsulation and abstraction. Using an MVC object structure,
the model can change the way it represents the data internally without
affecting the controller or the view. As mentioned previously, the model
might contain more data than any single view needs. And as long as the
controller doesn’t change the way it communicates with the model, and
the model continues to return the requested information to the view in an
agreed-upon way, the model can add new data without breaking the system.

The MVC model also makes it easy to add enhancements. For example,
in our dice-rolling program, the model could keep track of the count of the
different combinations of rolls of the two dice that make up each outcome,
such as getting a 5 by rolling a 1 and a 4 or a 2 and a 3. We could then mod-
ify the BarChart view to obtain this additional information from the model
and show each bar split into smaller bars to display the percentages of each
combination.

Each of the View objects is entirely customizable. The TextView could use
different fonts and font sizes, or a different layout. The PieView could show
the wedges in different colors. The bars in the BarView could be thicker or
taller, or be shown in different colors, or even be displayed horizontally.
Any such changes would be made only in the appropriate View object, com-
pletely independent of the model or the controller.

374 Chapter 17

The MVC pattern also makes it easy to add a new way to view the data,
by writing a new View class. The only additional changes required would be
to have the controller draw another radio button, instantiate the new View
object, and call the new View object’s update() method when the user selects
the new view.

N O T E 	 MVC and other design patterns are independent of any specific computer language
and can be used in any language that supports OOP. If you’re interested in learning
more, I suggest that you search the web for OOP design patterns such as the Factory,
Flyweight, Observer, and Visitor patterns; there are numerous video and text tutori-
als (as well as books) available on all of these. For a general introduction, Design
Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley) by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (the Gang of Four)
is considered the bible of design patterns.

Wrap-Up
When thinking about object-oriented programming, remember my initial
definition of an object: data plus code that acts on that data over time.

OOP gives you a new way to think about programming, offering an easy
and convenient way to group together data and code that acts on that data.
You write classes and instantiate objects from those classes. Each object gets
a set of all instance variables defined in the class, but the instance variables
in different objects can contain different data and remain independent of
each other. The methods of the objects can work differently because they’re
working on different data. Objects can be instantiated at any time and can
be destroyed at any time.

When instantiating multiple objects from one class, you typically build
a list or dictionary of objects, then later iterate over that list or dictionary,
calling methods of each object.

As a final reminder, the three main tenets of OOP are:

Encapsulation   Everything in one place, objects own their data.

Polymorphism   Different objects can implement the same methods.

Inheritance   A class can extend or modify the behavior of another class.

Objects often work in hierarchies; they can use composition to instanti-
ate other objects and can call methods of lower-level objects to ask them to
do work or provide information.

To give you a clear visual representation of OOP in action, most of the
examples in this book focused on widgets and other objects that can be
useful in a gaming environment. I developed the pygwidgets and pyghelpers
packages to demonstrate many different OOP techniques and to allow you
to easily use GUI widgets in pygame programs. I hope you find these pack-
ages useful and go on to use them to develop fun or useful programs of
your own.

Design Patterns and Wrap-Up 375

More importantly, I hope that you recognize that object-oriented pro-
gramming is a general-purpose approach that can be applied in a wide
variety of circumstances. Any time you see two or more functions that need
to operate on a shared set of data, you should consider building a class and
instantiating an object. You may also want to consider building an object
manager object to manage a group of objects.

With all that said, I’d like to offer my congratulations: you’ve made it
to the end of the book! Although actually, this should be considered the
beginning of your journey into object-oriented programming. Hopefully,
the concepts described in this book have given you a framework that you
can build on—but the only way to truly get a handle on how OOP works
is to write lots and lots of code. Over time, you will start to notice patterns
that you will use again and again in your code. Understanding how to struc-
ture your classes is a difficult process. Only through experience will it begin
to become easier to ensure that you have the proper methods and instance
variables in the correct classes.

Practice, practice, practice!

I N D E X

Symbols
+ operator example, polymorphism,

193–194
* (asterisk), using with import

statement, 61
@ (at) property, 174–177
== (equal to), magic method

name, 196
> (greater than), magic method

name, 196
>= (greater than or equal to), magic

method name, 196
< (less than), magic method

name, 196
<= (less than or equal to), magic

method name, 196
!= (not equal to), magic method

name, 196

A
abc (abstract base class) module,

Python Standard Library, 232
AbortTransaction exception, 79, 81
absolute path, using with pygame, 101
abstract base class (abc) module,

Python Standard Library, 232
abstract classes and methods, 231–234.

See also classes; methods
abstraction, 179–181
Account class

error handling in, 59
with exceptions, 78–79
testing, 62

Account objects, 59, 71
dictionary of, 66–67
in lists, 64–66

accounts, creating, 62–64
Alert dialog, Dodger game, 343
angle brackets (<>), values in, 16

Animation class, 149, 304–306
animation classes

building, 296–304
merging, 304
in pygwidgets, 304–309
SimpleAnimation class, 296–300
SimpleSpriteSheetAnimation class,

300–304
animation program, pygwidgets

package, 308–309
Answer dialogs, Dodger game, 345–347
anti-aliased line, drawing, 118
API (application programming

interface), 137, 158
arc, drawing, 118
arguments

methods and parameters, 144
passing to methods, 40–41
rearranging in calls to methods,

53
asterisk (*), using with import

statement, 61
at (@) property, 174–177

B
background music, playing in pygame,

115–116
Baddies and Goodies, 347
Ball class, 122–125
Ball objects, creating, 125–127
Balloon game

main code, 252–256
module of constants, 253
object diagram, 252
project folder, 252
screenshot, 251
source files, 252

balloon manager, 256–258
Balloon sample program, 251–261

378 Index

Balloon class and objects,
258–261

bank account class, 58–60
bank account simulations. See also

procedural implementations
operations and data, 7–8
table of data, 15–16

Bank class, 70, 79–81
Bank object, 70–71, 82
bank program, using exceptions in,

78–83
base class, inheritance, 212–214,

227–231
Blackjack deck, 278
blit() method, 102, 114, 124, 137
Boolean True, 105
Button class, building, 128–130
buttons, building, 131–132

C
callbacks, 137–141
CanastaDeck class, 279
Card class, 268–270
card games. See also Higher or Lower

card game
Blackjack, 278
Card class, 268–270
Deck class, 270–272
Higher or Lower game, 272–276
testing with __name__, 276–278
with unusual decks, 279

Cartesian coordinate system,
91–95, 201

catching exceptions, 76
child class, inheritance, 212
circle, drawing, 119
Circle class, 187–190, 227, 230
class code, importing, 60–61
classes. See also abstract classes and

methods
building, 33–35
creating instances from, 31–32
creating objects from, 28–30
form of, 26
implementing data types as, 32–33
and inheritance, 212–213
inheriting from same base class,

227–231

inside vs. outside, 164–165
making available, 29–30
and methods, 51
and objects, 23–25
objects and instantiation, 25–33
representing physical objects as,

35–44
in use, 45
writing, 26–27

class hierarchy, inheritance, 236–238
class scope, 27
class statement, inheritance, 216
class variables. See also variables

constants, 249–250
for counting, 250
creating, 248–249

client code
explained, 164
using direct access, 170

collidepoint(), 104
comparison operator magic methods,

195–196
composition, 71
composition and inheritance, 238
Controller object, 371–372
CountDownTimer class, 293–294
counting objects, 250
CountUpTimer class, pyghelpers package,

291–293
CPython, 242
customAnswerDialog dialog, Dodger

game, 347
CustomButton class, 148, 235–236
CustomCheckBox class, pygwidgets

package, 149
CustomRadioButton class, pygwidgets

package, 149
customYesNoDialog dialog, Dodger

game, 345

D
data, validating, 168–170
databases, accessing with objects and

XTRAS, 178–179
data types, implementation as classes,

32–33
debugging approach, 203
Deck class, 270–272

Index 379

decorators and at (@) property,
174–177

__del__() method, 246–248, 260
design patterns, MVC (Model View

Controller), 367–374
dice roll data, MVC (Model View

Controller) design pattern,
369–370

__dict__ dictionary, 261–263
dictionary

of account objects, 66–67
using with instance variables,

261–263
DimmerSwitch class, 33, 48–50, 52–53
DimmerSwitch objects, creating, 50, 53
direct access, avoiding, 166–170
Director from Macromedia project, 178
DisplayMoney class, 222–227
DisplayText class, 149, 222
Dodger game

Alert dialog, 343
Answer dialogs, 345–347
customAnswerDialog dialog, 347
customYesNoDialog dialog, 345
extensions to, 366
implementation, 348
modal dialogs, 342–347
overview, 347
ScenePlay class, 351–355
textYesNoDialog dialog, 343
Yes/No dialog, 344

Don’t Repeat Yourself (DRY), 253
Dragger class, pygwidgets package, 149
drawing shapes, 116–120
draw() method used with pygwidgets,

150, 155, 157, 193, 308
draw() method used with scenes, 325
draw.rect(), 187
DRY (Don’t Repeat Yourself), 253

E
educational project, 178–179
ellipse, drawing, 119
Ellipse class, 192
Employee class, inheritance, 218
encapsulation

decorators and @property, 174–177
direct access, 166–172

with functions, 164
interpretations of, 165–172
making instance variables more

private, 172–173
with objects, 164–165
in pygwidgets classes, 177

enter() method used with scenes, 325
__eq__() magic method name, 196,

198–199
equal to (==), magic method name, 196
error handling

in Account class, 59
with exceptions, 76–78

event-driven programs, 95–96
event loop, 99
except and try, 76–77
exceptions

in bank program, 78–83
error handling with, 76–78
handling, 81–83

F
file display example, 368
Fraction class, magic methods,

205–208
functions

encapsulation with, 164
len(), 164
vs. methods, 28
super(), 216
vars(), 52

G
Game class, 274
Game object, 272
games, transient objects in, 242
garbage collection, 248
__ge__() magic method name, 196
getrefcount() function, 244
getSceneKey() method used with

scenes, 328
getters and setters, 170–171, 175–176
Ghostbusters, 138
GitHub repository, accessing, 157
global scope, 27
Goodies and Baddies, 347
goToScene() method used with

scenes, 326

380 Index

graphic file formats, using with
pygame, 100–101

greater than (>), magic method
name, 196

greater than or equal to (>=), magic
method name, 196

__gt__() magic method name, 196, 198
GUI programs, event-driven model,

95–96

H
handleEvent() method used with

pygwidgets, 150, 192, 221,
307, 312

handleInputs() method used with
scenes, 363

help() function, 152
Higher or Lower card game, 268.

See also card games
Game object, 274–276
implementation, 4–7
main program, 272–274
representing data, 4
reusable code, 7

HighScoresData class, 363

I
IDLE development environment,

90, 100–101
Image class, pygwidgets package,

149. See also subimages
ImageCollection class, pygwidgets

package, 149, 157
implementation vs. interface,

84–85, 137
importing class code, 60–61
import statements, 98
inheritance. See also multiple

inheritance
abstract classes and methods,

231–234
base class, 212
class hierarchy, 236–238
client’s view of subclass, 218–219
and composition, 238
difficulty of programming with,

238–239
DisplayMoney class, 222–227

employee and manager example,
214–218

example usage, 224–227
implementing, 213–214
InputNumber class, 219–222,

224–227
“is a” relationship, 213
Law of Demeter, 238
in object-oriented programming,

212–213
and pygwidgets, 234–236
real-world examples, 219–227
from same base class, 227–231
subclass, 212
test code, 217–218
use by pygwidgets, 234–236

initialization parameters, 43–44
__init__() method, 28, 37, 43, 216

Account class, 59, 79
Ball class, 123
Bank class, 73
inheritance examples, 228–229,

232–233
InputNumber, 221
pronouncing, 194
property decorators, 175–176
SceneMgr class, 335
subclass in inheritance, 216
using, 27

input() function, 133, 155
InputNumber class, 219–222, 224–227
InputText class, 149, 219, 222
installing

pygame, 90–91
pyghelpers, 287
pygwidgets package, 149–150

instance and scope variables, 27–28
instances, 26, 31–32, 41–43. See also

multiple instances
instance scope, 27
instance variables. See also slots

changing into calculations,
167–168

changing names of, 166–167
using, 27, 165

instantiate, explained, 26
instantiation process, 25–33
interactive menu, building, 68–70

Index 381

interface vs. implementation, 84–85, 137
Invent Your Own Computer Games with

Python, 341
“is a” relationship, inheritance, 213
isInstance() function, 196
items() method, 271

J
JSON format, 363–365

K
keyword parameters, pygame, 145–146

L
Law of Demeter, inheritance, 238
__le__() magic method name, 196
leave() method used with scenes, 325
len() function, 15, 164
less than (<), magic method name, 196
less than or equal to (<=), magic

method name, 196
LIFO (last in, first out) order, 179
LightSwitch class and test code, 30
light switch example, 22–23, 25–31
LightSwitch object, instantiating, 29
line, drawing, 119
Lingo language, 178
local scope, 27
__lt__() magic method name, 196,

198, 200

M
Macromedia project, 178
magic methods, 194–201. See also

methods
Manager class, inheritance, 219
memory management, slots, 261–263
memory used by objects. See also objects

Balloon sample program, 251–261
class variables, 248–250
managing with slots, 261–263

mental models, 49–52
menu, making interactive, 68–70
methods. See also abstract classes and

methods; magic methods
calling, 30, 41
calling for objects, 30–31
calling on lists of objects, 83–84

and classes, 51
vs. functions, 28
passing arguments to, 40–41

modal dialogs, Dodger game, 342–347
Model object, 371–372
module of constants, Balloon game, 253
mouse click, detecting in pygame,

102–104
MOUSEDOWN event, 257
multiple inheritance, 239. See also

inheritance
multiple instances, 41–43. See also

instances
music, playing in pygame, 115–116
MVC (Model View Controller) design

pattern
advantages of, 373–374
Controller object, 371–372
dice roll data, 369–370
file display example, 368
Model object, 372–373
overview, 367–368
statistical display example, 368–371
View object, 373

N
__name__, testing card games with,

276–278
naming convention, 26
__ne__() magic method name, 196
not equal to (!=), magic method

name, 196

O
object composition, 71
object lifetime

cascading deletion, 246–248
death notice, 246–248
garbage collection, 246–248
reference count, 242–246
transaction objects, 242
transient objects, 242

object manager object, creating, 70–76
object-oriented programming (OOP)

explained, 3
as solution, 45
tenets, 374
wrap-up, 374–375

382 Index

object-oriented pygame.
See also pygame

Ball class, 122–125
Ball objects, 125–127
callbacks, 137–141
demo ball with SimpleText and

SimpleButton, 135–137
interface vs. implementation, 137
program with buttons, 131–132
reusable object-oriented button,

127–132
reusable object-oriented text

display, 133–135
SimpleButton, 130–131
SimpleText class, 133–135
steps to display text, 133

object-oriented solutions
classes, 19–20

objects. See also memory used by
objects; physical objects

calling methods of, 30–31
calling methods on lists of,

83–84
and classes, 23–25
counting, 250
creating from classes, 28–30
definition of, 33
encapsulation with, 164
garbage collection, 248
inside vs. outside, 164–165
owning data, 165
reference count, 242–248
sending messages to, 184
string representations of values in,

203–205
transient type, 242
with unique identifiers, 66
variables referring to, 244

object scope, 27
OOP (object-oriented programming)

explained, 3
as solution, 45
tenets, 374
wrap-up, 374–375

operators
magic methods, 194–201
polymorphism for, 193–203

o prefix, 26

P
parent class, inheritance, 212
path, using with pygame, 100
pathname, using with pygame, 100
patterns, extending with

polymorphism, 192
physical objects. See also objects

building software models of,
22–23

classes and objects, 23–25, 45
classes, objects, and instantiation,

25–33
complicated classes, 33–44
OOP as solution, 45
representing as classes, 35–44

PIE (polymorphism, inheritance,
encapsulation), 161

PinochleDeck class, 279
pixels

colors, 94–95
in window coordinate

system, 91
playing sounds, 114–116
Play scene, Rock, Paper, Scissors

game, 315
polygon, drawing, 119
polymorphism

classic example of, 184–185
extending patterns, 192
Fraction class with magic methods,

205–208
magic methods, 194–201
main program creating shapes,

190–192
for operators, 193–203
pygame shapes, 185–192
and pygwidgets, 192–193
sending messages to real-world

objects, 184
string representations of values in

objects, 203–205
vector example, 201–203

pop operation, using with
stacks, 179

positional parameters, pygame, 145
primitive shapes, drawing in pygame,

116–120
print() function, 133, 205

Index 383

procedural implementations. See also
bank account simulations

classes, 19–20
Higher or Lower card game, 3–4
problems with, 18–19, 45

properties
@ (at) and decorators, 174–177
and abstraction, 181
explained, 174

push operation, using with stacks, 179
PyCharm IDE, 100–101
*.py file extension, 61
pygame. See also object-oriented pygame

anti-aliased line, 118
arc, 119
bringing up blank window, 97–100
Cartesian coordinate system, 91–94
circle, 119
colors in, 94–95
detecting mouse click, 102–105
drawing images, 100–102
drawing shapes, 116–120
ellipse, 119
event-driven programs, 95–96
handling keyboard, 105–109
installing, 90–91
line, 119
location-based animation, 109–111
pixel colors, 94–95
playing sounds, 114–116
polygon, 119
primitive shapes, 118–120
recognizing key presses, 105–107
rect objects, 104, 107, 111–114, 119
repeating keys in continuous

mode, 107–109
Splash scene, 314
state machine example, 314–319
window coordinate system, 91–95

pygame.display.set_mode() function, 98
pygame GUI widgets. See also

pygwidgets package
arguments, functions, and

methods, 144–148
keywords and default values, 148
None as default value, 146–147
positional and keyword

parameters, 145–146

pygame.Rect(), 104
pygame shapes

Circle and Triangle shape classes,
187–190

Square shape class, 186–187
PygAnimation base class, 304, 307–308
pyghelpers package

classes for tracking time, 290
CountDownTimer class, 293–294
CountUpTimer class, 291–293
installing, 287

pygwidgets classes, encapsulation in, 177
pygwidgets package. See also pygame

GUI widgets
adding images, 151
Animation class, 304–309
animation program, 308–309
button object, 154
buttons, 152–154
checkboxes, 152–154
classes, 148–149, 157
class hierarchy, 237
consistency of API, 158
CustomButton class, 153–154
design approach, 150–151
DisplayText class, 155, 222
example program, 157–158
goals and classes, 148–149
images, 151
and inheritance, 234–236
InputText class, 219
polymorphism, 192–193
PygAnimation base class, 307–308
radio buttons, 152–154
setting up, 149–150
sprite module, 151
SpriteSheetAnimation class, 306–307
TextButton class, 152–153
text output and input, 154–157
using buttons, 154

PyPI (Python Package Index), 149
Python, philosophy of, 242
Python Software Foundation, 242
Python Standard Library

abc (abstract base class) module, 232
calls to, 76–77
getrefcount() function, 244

Python Tutor website, 50, 243

384 Index

R
raise statement and custom exceptions,

77–78
RAM memory space, 262
random package, 104
real-world objects, sending messages

to, 184
receive() method used with scenes, 334
rectangle, drawing, 120
Rectangle class

inheritance example, 233–234
with magic methods, 196–198

reference count, 242–246
decrementing, 245–246
incrementing, 245

relative path, using with pygame,
100–101

respond() method used with scenes, 333
Results scene, Rock, Paper, Scissors

game, 315–316
reusable object-oriented button,

building, 127–132
reusable object-oriented text display,

building, 133–135
RGB (red, green, blue), 94
Rock, Paper, Scissors game

Play scene, 315
Results scene, 315–316
Splash scene, 314
using scenes, 328–332

run() method of the scene manager,
336, 349

S
Sample class, 250
Scene base class, 322
scene manager

building scenes, 323–326
communication between scenes,

338–340
demo program, 320–328
example scene, 326–328
features, 319–320
implementation of, 334–340
main methods, 337–338
main program, 322–323
methods for implementing scenes,

324–325

navigating between scenes, 326
project folder, 321
quitting program, 326
Rock, Paper, Scissors, 328–332
run() method, 336–337
using, 319–320

SceneMgr class, 337
ScenePlay class, Dodger game,

351–355
scenes

communication between, 332–334
current and target, 332
state machine approach, 312–319
testing communications among,

334
scope and instance variables,

27–28
screensaver ball, building with

object-oriented pygame, 121–127
“self,” meaning of, 52–55
self parameter, 41–42
self. prefix, 27
send() method used with scenes, 333
sendAll() method used with scenes, 334
setters and getters, 170–171, 175–176
Shape class

inheritance example, 232–233
using as base class, 228

shapes, drawing in pygame, 116–120
SimpleAnimation class, 296–300
SimpleButton class, 129, 131–132,

139–141
SimpleButton objects, 130–131,

137–138, 141
SimpleText class, 133–137
SimpleText object, 135
Slider class, 193
Slider Puzzle user interface, 290, 293
slots, using for memory management,

261–263. See also instance
variables

software models, building for physical
objects, 22–23

sound effects, playing in pygame,
114–116

SpaceShip class, 249
special methods, 194
Splash scene, 313–314, 347

Index 385

SpriteSheetAnimation class, 149, 304,
306–307

sprite sheet image, 300
Square class, 195, 227

inheritance example, 229
pygame shapes, 186–187
for reference counting, 243

Square object, 243
Stack class, 181
stack operations, 179–180
state diagram, 316
state machine, pygame example,

312–319
statistical display example, 368–373
__str__() method, 203–204
subclasses

client’s view of, 218–219
inheritance, 212–213, 215–217
inheriting from base class, 227

subimages, creating, 300.
See also Image class

superclass, inheritance, 212
super() function, 216
Sweigart, Al, 341

T
temporary variable, using, 66
test code

accounts, 62–64
creating, 61–62
inheritance, 217–218

test programming, 177
textAnswerDialog dialog, Dodger

game, 346
TextButton class, 148, 235
TextCheckBox class, pygwidgets

package, 149
text display, building, 133–135
TextRadioButton class, pygwidgets

package, 149
textYesNoDialog dialog, Dodger

game, 343
throwing exceptions, 76
time, displaying, 290–294
Timer class, 287–290
timer demonstration program, 282
timer event, 284–285
Timer object, 288

timers
building into main loop, 286
calculating elapsed time,

285–287
counting frames, 283
demonstration program, 282
implementing, 283–287
installing pyghelpers, 287
overview, 281–282

toggle, using, 38
transaction objects, 242
transient objects, 242
Triangle class, 187, 227, 230–231
try/except techniques, 76–81
tuple, setting x- and y-coordinates

as, 151
TV class, creating, 35–40
TV objects, creating, 42
type() function, 32

U
update() method used with scenes, 325

V
variables. See also class variables

referring to same object, 244
using temporarily, 66

vars() function, 52
vector example, polymorphism,

201–203
View object, 371, 373

W
WidgetWithFrills class, 214
window coordinate system, pygame,

91–95
working directory, using with

pygame, 100

X
x- and y-coordinates, setting as

tuple, 151
XTRAs and objects, accessing

databases with, 178–179

Y
Yes/No and Alert dialogs, Dodger

game, 342–345

Never before has the world relied so heavily on the Internet
to stay connected and informed. That makes the Electronic
Frontier Foundation’s mission—to ensure that technology
supports freedom, justice, and innovation for all people—
more urgent than ever.

For over 30 years, EFF has fought for tech users through
activism, in the courts, and by developing software to over-
come obstacles to your privacy, security, and free expression.
This dedication empowers all of us through darkness. With
your help we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

NO STARCH PRESS

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com
web:
www.nostarch.com

WRITE GREAT CODE, VOLUME 3
Engineering Software
by Randall Hyde
376 pp., $49.95
ISBN: 978-1-59327-979-0

THE SECRET LIFE OF PROGRAMS
Understand Computers—Craft Better Code
by Jonathan E. Steinhart
504 pp., $44.99
ISBN: 978-1-59327-970-7

ALGORITHMIC THINKING,
2ND EDITION
Learn Algorithms to Level Up
Your Coding Skills
by Daniel Zingaro
408 pp., $49.99
ISBN: 978-1-7185-0322-9

THE MISSING README
A Guide for the New Software Engineer
by Chris Riccomini and
Dmitriy Ryaboy
288 pp., $24.99
ISBN: 978-1-7185-0183-6

SERIOUS PYTHON
Black-Belt Advice on Deployment,
Scalability, Testing, and More
by Julien Danjou
240 pp., $34.95
ISBN: 978-1-59327-878-6

BEYOND THE BASIC STUFF
WITH PYTHON
Best Practices for Writing Clean Code
by Al Sweigart
384 pp., $39.99
ISBN: 978-1-59327-966-0

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/object-oriented-python/ for errata and more information.

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

I R V K A L B

O B J E C T - O R I E N T E D

P Y T H O N
M A S T E R O O P B Y

B U I L D I N G G A M E S A N D G U I S

K
A

L
B

O
B

JE
C

T
-

O
R

IE
N

T
E

D
 P

Y
T

H
O

N

Object-oriented programming (OOP) is a paradigm
that combines data and code into cohesive units,
allowing you to think differently about computational
problems and solve them in a highly reusable way.
Aimed at intermediate-level programmers, Object-
Oriented Python is a hands-on tutorial that goes deep
into the core tenets of OOP, showing you how to use
encapsulation, polymorphism, and inheritance to write
games and apps using Python.

The book begins by demonstrating key problems
inherent in procedural programming, then guides you
through the basics of creating classes and objects in
Python. You’ll build on this groundwork by developing
buttons, text fi elds, and other GUI elements that are
standard in event-driven environments. You’ll also use
many real-world code examples and two pygame-
based packages to help turn theory into practice,
enabling you to easily write interactive games and
applications complete with GUI widgets, animations,
multiple scenes, and reusable game logic. In the final
chapter, you’ll bring it all together by building a
fully functional video game that incorporates many
of the OOP techniques and GUI elements covered in
the book.

You’ll learn how to:

• Create and manage multiple objects using an object
manager object

• Use encapsulation to hide the inner details of objects
from client code

• Use polymorphism to defi ne one interface and
implement it in multiple classes

• Apply inheritance to build on existing code

Object-Oriented Python is a visual, intuitive guide to
fully understanding how OOP operates and how you
can use it to make your code more maintainable,
readable, and effi cient—without sacrifi cing
functionality.

A B O U T T H E A U T H O R

Irv Kalb is an adjunct professor at UCSC Silicon
Valley Extension and the University of Silicon Valley,
where he teaches introductory and object-oriented
programming courses in Python. He is also the author
of Learn to Program with Python 3: A Step-by-Step
Guide to Programming.

B U I LT W I T H
P Y T H O N 3 . x A N D

P Y G A M E 2 . x

T A K E C O N T R O L
O F Y O U R P Y T H O N

O B J E C T S

®

	Acknowledgments
	Introduction
	Part I: Introducing Object-oriented Programming
	Chapter 1: Procedural Python Examples
	Higher or Lower Card Game
	Bank Account Simulations
	Common Problems with Procedural Implementation
	Object-Oriented Solution—First Look at a Class
	Summary

	Chapter 2: Modeling Physical Objects with Object-Oriented Programming
	Building Software Models of Physical Objects
	Introduction to Classes and Objects
	Classes, Objects, and Instantiation
	Building a Slightly More Complicated Class
	Representing a More Complicated Physical Object as a Class
	Classes in Use
	OOP as a Solution
	Summary

	Chapter 3: Mental Models of Objects and the Meaning of “self”
	Revisiting the DimmerSwitch Class
	High-Level Mental Model #1
	A Deeper Mental Model #2
	What Is the Meaning of “self”?
	Summary

	Chapter 4: Managing Multiple Objects
	Bank Account Class
	Importing Class Code
	Creating Some Test Code
	Creating an Object Manager Object
	Better Error Handling with Exceptions
	Using Exceptions in Our Bank Program
	Calling the Same Method on a List of Objects
	Interface vs. Implementation
	Summary

	Part II: Graphical User interfaces with Pygame
	Chapter 5: Introduction to Pygame
	Installing Pygame
	Window Details
	Event-Driven Programs
	Using Pygame
	Playing Sounds
	Drawing Shapes
	Summary

	Chapter 6: Object-Oriented Pygame
	Building the Screensaver Ball with OOP Pygame
	Building a Reusable Object-Oriented Button
	Building a Reusable Object-Oriented Text Display
	Demo Ball with SimpleText and SimpleButton
	Interface vs. Implementation
	Callbacks
	Summary

	Chapter 7: Pygame GUI Widgets
	Passing Arguments into a Function or Method
	The pygwidgets Package
	The Importance of a Consistent API
	Summary

	Part III: Encapsulation, Polymorphism, and Inheritance
	Chapter 8: Encapsulation
	Encapsulation with Functions
	Encapsulation with Objects
	Interpretations of Encapsulation
	Making Instance Variables More Private
	Decorators and @property
	Encapsulation in pygwidgets Classes
	A Story from the Real World
	Abstraction
	Summary

	Chapter 9: Polymorphism
	Sending Messages to Real-World Objects
	A Classic Example of Polymorphism in Programming
	Example Using Pygame Shapes
	pygwidgets Exhibits Polymorphism
	Polymorphism for Operators
	Creating a String Representation of Values in an Object
	A Fraction Class with Magic Methods
	Summary

	Chapter 10: Inheritance
	Inheritance in Object-Oriented Programming
	Implementing Inheritance
	Employee and Manager Example
	The Client’s View of a Subclass
	Real-World Examples of Inheritance
	Multiple Classes Inheriting from the Same Base Class
	Abstract Classes and Methods
	How pygwidgets Uses Inheritance
	Class Hierarchy
	The Difficulty of Programming with Inheritance
	Summary

	Chapter 11: Managing Memory Used by Objects
	Object Lifetime
	Class Variables
	Putting It All Together: Balloon Sample Program
	Managing Memory: Slots
	Summary

	Part IV: Using OOP in Game Development
	Chapter 12: Card Games
	The Card Class
	The Deck Class
	The Higher or Lower Game
	Testing with __name__
	Other Card Games
	Summary

	Chapter 13: Timers
	Timer Demonstration Program
	Three Approaches for Implementing Timers
	Installing pyghelpers
	The Timer Class
	Displaying Time
	Summary

	Chapter 14: Animation
	Building Animation Classes
	Animation Classes in pygwidgets
	Summary

	Chapter 15: Scenes
	The State Machine Approach
	A pygame Example with a State Machine
	A Scene Manager for Managing Many Scenes
	A Demo Program Using a Scene Manager
	Rock, Paper, Scissors Using Scenes
	Communication Between Scenes
	Implementation of the Scene Manager
	Summary

	Chapter 16: Full Game: Dodger
	Modal Dialogs
	Building a Full Game: Dodger
	Summary

	Chapter 17: Design Patterns and Wrap-Up
	Model View Controller
	Wrap-Up

	Index
	Blank Page

