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Introduction

“Optimization” is a broad enough term to encompass performance tuning, personal 

improvement, and marketing via social engine and invariably evinces high hopes and 

expectations from readers. As such, we find it prudent to begin this book not with 

an introduction to what is covered, but rather, why this book exists and what will not 

be covered, to avoid disappointing any readers who approach it with inappropriate 

expectations. Then, we proceed with what this book is about, the target audience, what is 

covered, and how to get the most use out of it.

�Why We Wrote This Book
Like many authors, we wrote this book because we felt we could not not write it. We 

are both educators and practitioners; hence, we see both how and what computer 

science students are taught in class and what knowledge they lack when they enter the 

workforce. We do not like what we see and hope this book will help bridge this gap.

When learning about data management, most students never see a real production 

database, and even more alarming, many of their professors never see one, either. While 

lack of exposure to real-life systems affects all computer science students, the education 

of future database developers and database administrators (DBAs) suffers the most. 

Using a small training database, one can learn how to write syntactically correct SQL 

and even write a SELECT statement that properly asks for the desired result. However, 

learning to write performant queries requires a production-sized dataset. Moreover, it 

might not be evident that performance might present a problem if a student is operating 

on a dataset that can easily fit into the computer’s main memory and return a result in 

milliseconds regardless of the complexity of the query.

In addition to lacking exposure to realistic datasets, students often don’t use DBMSs 

that are widely used in industry. While the preceding statement is true in relation 

to many DBMSs, in the case of PostgreSQL, it is even more frustrating. PostgreSQL 
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originated in an academic environment and is maintained as an open source project, 

making it an ideal database for teaching relational theory and demonstrating database 

internals. However, so far, few academic institutions have adopted PostgreSQL for their 

educational needs.

While PostgreSQL is rapidly developing and becoming a more powerful tool, 

more and more businesses favor it over proprietary DBMSs in an attempt to reduce 

costs. More and more IT managers are looking for employees who are familiar with 

PostgreSQL. More and more potential candidates learn to use PostgreSQL on their own 

and miss opportunities to get the most out of it.

We hope that this book will help all interested parties: candidates, hiring managers, 

database developers, and organizations that are switching to PostgreSQL for their data 

needs.

�What Won’t Be Covered
Many people believe that optimization is a sort of magic possessed by an elite circle of 

wizards. They believe that they can be admitted into this circle if they receive tokens of 

sacred knowledge from their elders. And as soon as they have the keys, their abilities will 

have no limits.

Since we are aware of these misconceptions, we want to be transparent from the 

very beginning. The following is the list of topics that are often discussed in books about 

optimization that will not be covered in this book:

•	 Server optimization – Because it is not expected on a daily basis

•	 Most system parameters – Because database developers are not likely 

to have privileges to alter them

•	 Distributed systems – Because we do not have enough industrial 

experience with them

•	 Transactions – Because their impact on performance is very limited

•	 New and cool features – Because they change with every new release 

and our goal is to cover the fundamentals

•	 Black magic (spells, rituals, etc.) – Because we are not proficient  

in them
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There are plenty of books available that cover all of the topics listed in the preceding 

list, except probably black magic, but this book is not one of them. Instead, we focus on 

everyday challenges database developers face: when that one application page keeps 

timing out, when a customer is kicked out of the application just before the “Contract 

Signed” page, when the CEO dashboard is showing an hourglass instead of yesterday’s 

product KPI, and when procuring more hardware is not an option.

Everything we present in this book has been tested and implemented in an industrial 

environment, and though it may look like black magic, we will explain any query 

performance improvement or lack thereof.

�Target Audience
Most of the time, a book about optimization is viewed as a book for DBAs. Since our goal 

is to prove that optimization is more than just building indexes, we hope that this book 

will be beneficial for a broader audience.

This book is for IT professionals working in PostgreSQL who want to develop 

performant and scalable applications. It is for anyone whose job title contains the 

words “database developer” or “database administrator” or who is a backend developer 

charged with programming database calls. It is also useful to system architects involved 

in the overall design of application systems running against a PostgreSQL database.

What about report writers and business intelligence specialists? Unfortunately, large 

analytical reports are most often thought of as being slow by definition. However, if a 

report is written without considering how it will perform, the execution time might end 

up being not just minutes or hours, but years! For most analytical reports, execution time 

can be significantly reduced by using simple techniques covered in this book.

�What Readers Will Learn
In this book, the readers will learn how to

•	 Identify optimization goals in OLTP (Online Transaction Processing) 

and OLAP (Online Analytical Processing) systems.

•	 Read and understand PostgreSQL execution plans.

•	 Identify indexes that will improve query performance.
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•	 Optimize full table scans.

•	 Distinguish between long queries and short queries.

•	 Choose the right optimization technique for each query type.

•	 Avoid the pitfalls of ORM frameworks.

At the end of the book, we present the Ultimate Optimization Algorithm, which 

guides a database developer through the process of producing the most performant 

query.

�The Postgres Air Database
Throughout this book, examples are built on one of the databases of a virtual airline 

company called Postgres Air. This company connects over 600 virtual destinations 

worldwide, offers about 32,000 direct virtual flights weekly, and has over 100,000 virtual 

members in its frequent flyer program and many more passengers every week. The 

company fleet consists of virtual aircraft. As operations are entirely virtual, the company 

is not affected by the COVID-19 pandemic.

Please note that all data provided in this database is fictional and provided for 

illustrative purposes only. Although some data appears very realistic (especially 

descriptions of airports and aircraft), they cannot be used as sources of information 

about real airports or aircraft. All phone numbers, email addresses, and names are 

generated.

To install the training database on your local system, please access the shared 

directory postgres_air_dump using this link: https://drive.google.com/drive/

folders/13F7M80Kf_somnjb-mTYAnh1hW1Y_g4kJ?usp=sharing

You can also use a QR code as shown in Figure 1.
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This shared directory contains data dump of the postgres_air schema in three 

formats: directory format, default pg_dump format, and compressed SQL format.

The total size of each is about 1.2 GB. Use directory format if you prefer to download 

smaller files (the max file size is 419 MB). Use SQL format if you want to avoid warnings 

about object ownership.

For directory format and default format, use pg_restore (www.postgresql.org/

docs/12/app-pgrestore.html). For SQL format, unzip the file and use psql for restore.

In addition, after you restore the data, you will need to run the script in Listing 1 to 

create several indexes.

Listing 1.  Initial set of indexes

SET search_path TO postgres_air;

CREATE INDEX flight_departure_airport ON

flight(departure_airport);

CREATE INDEX flight_scheduled_departure ON postgres_air.flight   

(scheduled_departure);

CREATE INDEX flight_update_ts ON postgres_air.flight  (update_ts);

CREATE INDEX booking_leg_booking_id ON postgres_air.booking_leg   

(booking_id);

CREATE INDEX booking_leg_update_ts ON postgres_air.booking_leg   

(update_ts);

CREATE INDEX account_last_name

  ON account (last_name);

Figure 1.  QR code to access the database dump
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We will use this database schema to illustrate the concepts and methods that are 

covered in this book. You can also use this schema to practice optimization techniques.

This schema contains data that might be stored in an airline booking system. We 

assume that you have booked a flight online, at least once, so the data structure should 

be easily understood. Of course, the structure of this database is much simpler than the 

structure of any real database of this kind.

Anyone who books a flight needs to create an account, which stores login 

information, first and last names, and contact information. We also store data about 

frequent flyers, which might or might not be attached to an account. A person who 

makes a booking can book for several passengers, who might or might not have their 

accounts in the system. Each booking may include several flights (legs). Before the flight, 

each traveler is issued a boarding pass with a seat number.

The Entity-Relationship (ER) diagram for this database is presented in Figure 2.

•	 airport stores information about airports and contains the airport’s 

three-character (IATA) code, name, city, geographical location, and 

time zone.

•	 flight stores information about flights between airports. For each 

flight, the table stores a flight number, arrival and departure airports, 

scheduled and actual arrival and departure times, aircraft code, and 

flight status.

•	 account stores login credentials, the account holder’s first and 

last names, and possibly a reference to a frequent flyer program 

membership; each account may potentially have multiple phone 

numbers, which are stored in the phone table.

•	 frequent_flyer stores information about membership in the frequent 

flyer program.

•	 booking contains information about booked trips; each trip may have 

several booking legs and several passengers.

•	 booking_leg stores individual legs of bookings.

•	 passenger stores information about passengers, linked to each booking. 

Note that a passenger ID is unique to a single booking; for any other 

booking, the same person will have a different passenger ID.
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•	 aircraft provides the aircraft’s description, and the seat table stores 

seat maps for each of aircraft types.

•	 Finally, the boarding_pass table stores information about issued 

boarding passes.

Figure 2.  ER diagram of the booking schema
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CHAPTER 1

Why Optimize?
This chapter covers why optimization is such an important part of database 

development. You will learn the differences between declarative languages, like SQL, 

and imperative languages, like Java, which may be more familiar, and how these 

differences affect programming style. We also demonstrate that optimization applies not 

only to database queries but also to database design and application architecture.

�What Do We Mean by Optimization?
In the context of this book, optimization means any transformation that improves system 

performance. This definition is purposely very generic, since we want to emphasize that 

optimization is not a separate development phase. Quite often, database developers 

try to “just make it work” first and optimize later. We do not think that this approach 

is productive. Writing a query without having any idea of how long it will take to run 

creates a problem that could have been avoided altogether by writing it the right way 

from the start. We hope that by the time you finish this book, you’ll be prepared to 

optimize in precisely this fashion: as an integrated part of query development.

We will present some specific techniques; however, the most important thing is to 

understand how a database engine processes a query and how a query planner decides 

what execution path to choose. When we teach optimization in a classroom setting, 

we often say, “Think like a database!” Look at your query from the point of view of a 

database engine, and imagine what it has to do to execute that query; imagine that you 

have to do it yourself instead of the database engine doing it for you. By thinking about 

the scope of work, you can avoid imposing suboptimal execution plans. This is discussed 

in more detail in subsequent chapters.

If you practice “thinking like a database” long enough, it will become a natural way 

of thinking, and you will be able to write queries correctly right away, often without the 

need for future optimization.

https://doi.org/10.1007/978-1-4842-6885-8_1#DOI
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�Why It Is Difficult: Imperative and Declarative
Why isn’t it enough to write a SQL statement which returns the correct result? That’s 

what we expect when we write application code. Why is it different in SQL, and why is it 

that two queries that yield the same result may drastically differ in execution time? The 

underlying source of the problem is that SQL is a declarative language. That means that 

when we write a SQL statement, we describe the result we want to get, but we do not 

specify how that result should be obtained. By contrast, in an imperative language, we 

specify what to do to obtain a desired result—that is, the sequence of steps that should 

be executed.

As discussed in Chapter 2, the database optimizer chooses the best way of doing it. 

What is best is determined by many different factors, such as storage structures, indexes, 

and data statistics.

Let’s look at a simple example; consider the queries in Listing 1-1 and Listing 1-2.

Listing 1-1.  A query selecting flights with the BETWEEN operator.

SELECT flight_id

      ,departure_airport

      ,arrival_airport

FROM flight

WHERE scheduled_arrival BETWEEN

'2020-10-14' AND '2020-10-15';

Listing 1-2.  A query selecting flights by casting to date.

SELECT flight_id

,departure_airport

,arrival_airport

FROM flight

WHERE scheduled_arrival:: date='2020-10-14';

These two queries look almost identical and should yield identical results. However, 

the execution time will be different because the work done by the database engine will 

be different. In Chapter 5, we will explain why this happens and how to choose the best 

query from a performance standpoint.

Chapter 1  Why Optimize?
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Thinking imperatively is natural for humans. Generally, when we think about 

accomplishing a task, we think about the steps that we need to take. Similarly, when we 

think about a complex query, we think about the sequence of conditions we need to 

apply to achieve the desired result. However, if we force the database engine to follow 

this sequence strictly, the result might not be optimal.

For example, let’s try to find out how many people with frequent flyer level 4 fly out 

of Chicago for Independence Day. If at the first step you want to select all frequent flyers 

with level 4, you may write something like this:

SELECT * FROM frequent_flyer WHERE level =4

Then, you may want to select these people’s account numbers:

SELECT * FROM account WHERE frequent_flyer_id IN (

      SELECT frequent_flyer_id FROM frequent_flyer WHERE level =4

)

And then, if you want to find all bookings made by these people, you might write the 

following:

WITH level4 AS (SELECT * FROM account WHERE

frequent_flyer_id IN (

      SELECT frequent_flyer_id FROM frequent_flyer WHERE level =4

)

SELECT * FROM booking WHERE account_id IN

(SELECT account_id FROM level4)

Possibly, next, you want to find which of these bookings are for the flights which 

originate in Chicago on July 3. If you continue to construct the query in a similar manner, 

the next step will be the code in Listing 1-3.

Listing 1-3.  Imperatively constructed query

WITH bk AS (

WITH level4 AS (SELECT * FROM account WHERE

frequent_flyer_id IN (

      SELECT frequent_flyer_id FROM frequent_flyer WHERE level =4

))

Chapter 1  Why Optimize?
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SELECT * FROM booking WHERE account_id IN

(SELECT account_id FROM level4

) )

SELECT * FROM bk WHERE bk.booking_id IN

   (SELECT booking_id FROM booking_leg WHERE

        Leg_num=1 AND is_returning IS false

        AND flight_id IN (

SELECT flight_id FROM flight

      WHERE

           departure_airport IN ('ORD', 'MDW')

           AND scheduled_departure:: DATE='2020-07-04')

      )

At the end, you may want to calculate the actual number of travelers. This can be 

achieved with the query in Listing 1-4.

Listing 1-4.  Calculating a total number of passengers

WITH bk_chi AS (

WITH bk AS (

WITH level4 AS (SELECT * FROM account WHERE

frequent_flyer_id IN (

      SELECT frequent_flyer_id FROM frequent_flyer WHERE level =4

))

SELECT * FROM booking WHERE account_id IN

(SELECT account_id FROM level4

) )

SELECT * FROM bk WHERE bk.booking_id IN

   (SELECT booking_id FROM booking_leg WHERE

        Leg_num=1 AND is_returning IS false

        AND flight_id IN (

SELECT flight_id FROM flight

      WHERE

           departure_airport IN ('ORD', 'MDW')

           AND scheduled_departure:: DATE='2020-07-04')

))

SELECT count(*) from passenger WHERE booking_id IN (

      SELECT booking_id FROM bk_chi)

Chapter 1  Why Optimize?
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With the query constructed like this, you are not letting the query planner choose 

the best execution path, because the sequence of actions is hard-coded. Although the 

preceding statement is written in a declarative language, it is imperative by nature.

Instead, to write a declarative query, simply specify what you need to retrieve from 

the database, as shown in Listing 1-5.

Listing 1-5.  Declarative query to calculate the number of passengers

SELECT count(*) FROM

booking bk

JOIN booking_leg bl ON bk.booking_id=bl.booking_id

JOIN flight f ON f.flight_id=bl.flight_id

JOIN account a ON a.account_id=bk.account_id

JOIN frequent_flyer ff ON ff.frequent_flyer_id=a.frequent_flyer_id

JOIN passenger ps ON ps.booking_id=bk.booking_id

WHERE level=4

AND leg_num=1

AND is_returning IS false

AND departure_airport IN ('ORD', 'MDW')

AND scheduled_departure BETWEEN '2020-07-04'

AND '2020-07-05'

This way, you allow the database to decide which order of operations is best, which 

may vary depending on the distribution of values in the relevant columns.

You may want to run these queries after all required indexes are built in Chapter 5.

�Optimization Goals
So far, we have implied that a performant query is a query which is executed fast. 

However, that definition is neither precise nor complete. Even if, for a moment, we 

consider reduction of execution time as the sole goal of optimization, the question 

remains: what execution time is “good enough.” For a monthly general ledger of a big 

corporation, completion within one hour may be an excellent execution time. For a daily 

marketing analysis, minutes might be great. For an executive dashboard with a dozen 

reports, refresh within 10 seconds may be the best time we can achieve. For a function 

called from a web application, even a hundred milliseconds can be alarmingly slow.

Chapter 1  Why Optimize?
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In addition, for the same query, execution time may vary at different times of day or 

with different database loads. In some cases, we might be interested in average execution 

time. If a system has a hard timeout, we may want to measure performance by capping 

the maximum execution time. There is also a subjective component in response time 

measurement. Ultimately, a company is interested in user satisfaction. Most of the time, 

user satisfaction depends on response time, but it is also a subjective characteristic.

However, beyond execution time, other characteristics may be taken into account. 

For example, a service provider may be interested in maximizing system throughput. 

A small startup may be interested in minimizing resource utilization without 

compromising the system's response time. We know one company which increased 

the system's main memory to keep the execution time fast. Their goal was to make sure 

that the whole database could fit into main memory. That worked for a while until the 

database grew bigger than any main memory configuration available.

How do we define optimization goals? We use the familiar SMART goal framework. 

SMART goals are

•	 Specific

•	 Measurable

•	 Achievable (attainable)

•	 Result-based (relevant)

•	 Time-bound (time-driven)

Most people know about SMART goals applied to health and fitness, but the same 

concept is perfectly applicable to query optimization. Examples of SMART goals are 

presented in Table 1-1.
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�Optimizing Processes
It is essential to bear in mind that a database does not exist in a vacuum. A database is 

the foundation for multiple, often independent applications and systems. For any user 

(external or internal), overall system performance is the one they experience and the one 

that matters.

At the organization level, the objective is to reach better performance of the whole 

system. It might be response time or throughput (essential for the service provider) or 

(most likely) a balance of both. Nobody is interested in database optimizations that have 

no impact on overall performance.

Database developers and DBAs often tend to over-optimize any bad query that 

comes to their attention, just because it is bad. At the same time, their work is often 

isolated from both application development and business analytics. This is one reason 

optimization efforts may appear to be less productive than they could be. A SQL query 

cannot be optimized in isolation, outside the context of its purpose and the environment 

in which it is executed.

Table 1-1.  SMART goal examples

Characteristic Bad Example Good Example

Specific All pages should respond fast. Each function execution should be completed 

before a system-defined timeout.

Measurable Customers shouldn’t wait 

too long to complete their 

application.

Response time of the registration page should 

not exceed 4 seconds.

Achievable Daily data refresh time in the 

data warehouse should never 

increase.

When source data volume grows, the daily 

data refresh time should grow not more than 

logarithmically.

Result-based Each report refresh should run as 

fast as possible.

Refresh time for each report should be short 

enough to avoid lock waits.

Time-bound We will optimize as many reports 

as we can.

By the end of the month, all financial reports 

should run in under 30 seconds.
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Since queries might not be written declaratively, the original purpose of a query 

might not be evident. Finding out the business intent of what is to be done might be the 

first and the most critical optimization step. Moreover, questions about the purpose of a 

report might lead to the conclusion that it is not needed at all. In one case, questioning 

the purpose of the most long-running reports allowed us to cut the total traffic on the 

reporting server by 40%.

�Optimizing OLTP and OLAP
There are many ways to classify databases, and different database classes may differ in 

both performance criteria and optimization techniques. Two major classes are OLTP 

(Online Transaction Processing) and OLAP (Online Analytical Processing). OLTP 

databases support applications, and OLAP databases support BI and reporting. Through 

the course of this book, we will emphasize different approaches to OLTP and OLAP 

optimization. We will introduce the concepts of short queries and long queries and 

explain how to distinguish one from the other.

Hint I t does not depend on the length of the SQL statement.

In the majority of cases, in OLTP systems we are optimizing short queries and in 

OLAP systems both short and long queries.

�Database Design and Performance
We have already mentioned that we do not like the concept of “first write and then 

optimize” and that this book's goal is to help you write queries right right away. When 

should a developer start thinking about performance of the query they are working on? 

The answer is the sooner, the better. Ideally, optimization starts from requirements. In 

practice, this is not always the case, although gathering requirements is essential.

To be more precise, gathering requirements allows us to come up with the best 

database design, and database design can impact performance.

If you are a DBA, chances are, from time to time, you get requests to review new 

tables and views, which means you need to evaluate someone else’s database design. 

If you do not have any exposure to what a new project is about and the purpose of the 

new tables and views, there is not much you can do to determine whether the proposed 
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design is optimal. The only thing you may be able to evaluate without going into 

the details of the business requirements is whether the database design is normalized. 

Even that might not be obvious without knowing the business specifics.

The only way to evaluate a proposed database design is to ask the right questions. 

The right questions include questions about what real-life objects the tables represent. 

Thus, optimization starts with gathering requirements. To illustrate that statement, let’s 

look at the following example: in this database, we need to store user accounts, and we 

need to store each account holder’s phone number(s). Two possible designs are shown 

in Figures 1-1 and 1-2, respectively.

Which of the two designs is the right one? It depends on the intended usage of the 

data. If phone numbers are never used as search criteria and are selected as a part of an 

account (to be displayed on the customer support screen), if UX has fields labeled with 

specific phone types, then a single-table design is more appropriate.

However, if we want to search by phone number regardless of type, having all phones 

in a separate table will make the search more performant.

Figure 1-1.  Single-table design

Figure 1-2.  Two-table design
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Also, users are often asked to indicate which phone number is their primary phone. 

It is easy to add one Boolean attribute is_primary to the two-table design, but it will be 

more complicated in the one-table design. An additional complication might arise when 

somebody does not have a landline or a work phone, which happens often. On the other 

hand, people often have more than one cell phone, or they might have a virtual number, 

like Google Voice, and they might want to record that number as the primary number to 

reach them. All these considerations are in favor of the two-table design.

Lastly, we can evaluate the frequency of each use case and how critical response 

time is in each case.

�Application Development and Performance
We are talking about application development, not just the database side of development 

because once again, database queries are not executed by themselves—they are parts of 

applications. Traditionally, optimizing the individual queries is viewed as “optimization,” 

but we are going to take a broader approach.

Quite often, although each database query executed by an application returns 

results in less than 0.1 seconds, an application page response time may amount to 10 

seconds or more. Technically speaking, optimization of such processes is not a “database 

optimization” in its traditional meaning, but there is a lot a database developer can do to 

improve the situation. We cover a relevant optimization technique in Chapters 10 and 13.

�Other Stages of the Lifecycle
The life of an application does not end after release in production, and the optimization 

is a continuous process as well. Although our goal should be to optimize long-term, it 

is hard to predict how exactly the system will evolve. It is a good practice to continually 

keep an eye on the system performance, not only on the execution times but on trends.

A query may be very performant, and one might not notice that the execution 

time started to increase because it is still within acceptable limits, and no automated 

monitoring system will be alerted.

Query execution time may change because data volume increased or the data 

distribution changed or execution frequency increased. In addition, we expect new 

indexes and other improvements in each new PostgreSQL release, and some of them 

may be so significant that they prompt rewriting original queries.
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Whatever the cause of the change is, no part of any system should be assumed to be 

optimized forever.

�PostgreSQL Specifics
Although the principles described in the previous section apply to any relational 

database, PostgreSQL, like any other database, has some specifics that should be 

considered. If you have some previous experience in optimizing other databases, you 

might find a good portion of your knowledge does not apply. Do not consider this a 

PostgreSQL deficiency; just remember that PostgreSQL does lots of things differently.

Perhaps the most important feature you should be aware of is that PostgreSQL does 

not have optimizer hints. If you previously worked with a database like Oracle, which 

does have the option of “hinting” to the optimizer, you might feel helpless when you 

are presented with the challenge of optimizing a PostgreSQL query. However, here is 

some good news: PostgreSQL does not have hints by design. The PostgreSQL core team 

believes in investing in developing a query planner which is capable of choosing the 

best execution path without hints. As a result, the PostgreSQL optimization engine is one 

of the best among both commercial and open source systems. Many strong database 

internal developers have been drawn to Postgres because of the optimizer. In addition, 

Postgres has been chosen as the founding source code base for several commercial 

databases partly because of the optimizer. With PostgreSQL, it is even more important to 

write your SQL statements declaratively, allowing the optimizer to do its job.

Another PostgreSQL feature you should be aware of is the difference between 

the execution of parameterized queries and dynamic SQL. Chapter 12 of this book is 

dedicated to the use of dynamic SQL, an option which is often overlooked.

With PostgreSQL, it is especially important to be aware of new features and 

capabilities added with each release. In recent years, Postgres has had over 180 of them 

each year. Many of these features are around optimization. We are not planning to cover 

them all; moreover, between the writing of this chapter and its publication, there will 

indubitably be more. PostgreSQL has an incredibly rich set of types and indexes, and it 

is always worth consulting recent documentation to check whether a feature you wanted 

might have been implemented.

More PostgreSQL specifics will be addressed later in the book.
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�Summary
Writing a database query is different from writing application code using imperative 

languages. SQL is a declarative language, which means that we specify the desired 

outcome, but do not specify an execution path. Since two queries yielding the same 

result may be executed differently, utilizing different resources and taking a different 

amount of time, optimization and “thinking like a database” are core parts of SQL 

development.

Instead of optimizing queries that are already written, our goal is to write 

queries correctly from the start. Ideally, optimization begins at the time of gathering 

requirements and designing the database. Then, we can proceed with optimizing both 

individual queries and the way the database calls from the application are structured. 

But optimization does not end there; in order to keep the system performant, we need to 

monitor performance throughout the system lifecycle.

Chapter 1  Why Optimize?
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CHAPTER 2

Theory: Yes, We Need It!
In order to write performant queries, a database developer needs to understand how 

queries are processed by a database engine. And to do that, we need to know the basics 

of relational theory. If the word “theory” sounds too dry, we can call it “the secret life of 

a database query.” In this chapter, we will take a look at this “secret life,” explaining what 

happens to a database query between the moment you click “Execute” or press Enter 

and the moment you see the result set returned from the database.

As discussed in the last chapter, a SQL query specifies what results are needed or 

what must be changed in the database but does not specify how exactly the expected 

results should be achieved. It is the job of the database engine to convert the source SQL 

query into executable code and execute it. This chapter covers the operations used by 

the database engine as it interprets a SQL query and their theoretical underpinning.

�Query Processing Overview
In order to produce query results, PostgreSQL performs the following steps:

•	 Compile and transform a SQL statement into an expression 

consisting of high-level logical operations, known as a logical plan.

•	 Optimize the logical plan and convert it into an execution plan.

•	 Execute (interpret) the plan and return results.

�Compilation
Compiling a SQL query is similar to compiling code written in an imperative language. 

The source code is parsed, and an internal representation is generated. However, the 

compilation of SQL statements has two essential differences.

https://doi.org/10.1007/978-1-4842-6885-8_2#DOI
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First, in an imperative language, the definitions of identifiers are usually included 

in the source code, while definitions of objects referenced in SQL queries are mostly 

stored in the database. Consequently, the meaning of a query depends on the database 

structure: different database servers can interpret the same query differently.

Second, the output of an imperative language compiler is usually (almost) 

executable code, such as byte code for a Java virtual machine. In contrast, the output 

of a query compiler is an expression consisting of high-level operations that remain 

declarative—they do not give any instruction on how to obtain the required output. A 

possible order of operations is specified at this point, but not the manner of executing 

those operations.

�Optimization and Execution
The instructions on how to execute the query appear at the next phase of query 

processing, optimization. An optimizer performs two kinds of transformations: it 

replaces logical operations with their execution algorithms and possibly changes the 

logical expression structure by changing the order in which logical operations will be 

executed.

Neither of these transformations is straightforward; a logical operation can be 

computed using different algorithms, and the optimizer tries to choose the best one. 

The same query may be represented with several equivalent expressions producing the 

same result but requiring a significantly different amount of computational resources 

for execution. The optimizer tries to find a logical plan and physical operations 

that minimize required resources, including execution time. This search requires 

sophisticated algorithms that are out of scope for this book. However, we do cover how 

an optimizer estimates the amount of resources needed for physical operations and how 

these resources depend on the specifics of how data is stored.

The output of the optimizer is an expression containing physical operations. 

This expression is called a (physical) execution plan. For that reason, the PostgreSQL 

optimizer is called the query planner.

Finally, the query execution plan is interpreted by the query execution engine, 

frequently referred to as the executor in the PostgreSQL community, and output is 

returned to the client application.

Let’s take a closer look at each step of query processing and the operations each uses.

Chapter 2  Theory: Yes, We Need It!
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�Relational, Logical, and Physical Operations
To go deeper into how SQL is understood by the database engine, we must at last 

confront this chapter’s titular concern: theory. Many modern database management 

systems, including PostgreSQL, are called relational because they are based on relational 

theory.1 Despite some bad press (that theory is dry, incomprehensible, or irrelevant), 

understanding a small part of relational theory is essential to master optimization—

specifically, relational operations. To be more precise, we will need to understand how 

relational operations correspond to logical operations and the query language used in 

queries. The previous section covered three steps of query processing at a high level; 

this section describes each level in more detail, starting with descriptions of relational 

operations.

Some readers may think the material covered here is trivial and find it already 
familiar, while others may feel that this is introducing an unnecessary complication. 
For now, hang in there and trust that this is building a foundation for what comes 
next.

�Relational Operations
The central concept of relational theory is a relation. For our purposes, we view a relation 

as a table, although academics may quibble that this elides some subtle but important 

differences.

Any relational operation takes one or more relations as its arguments and produces 

another relation as its output. This output can be used as an argument for another 

relational operation producing yet another relation that, in turn, can become an 

argument. This way, we can build complex expressions and represent complex queries. 

The possibility to construct complex expressions makes the set of relational operations 

(called relational algebra) a powerful query language.

Moreover, expressions in relational algebra can be used to define additional 

operations.

The first three operations to be discussed are filter, project, and product.

1�C. J. Date, An Introduction to Database Systems; J. Ullman, Principles of Database Systems, 
Second Edition
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The filter operation (represented in Figure 2-1) is often called selection, and is called 

restriction in relational theory. We prefer to use the term filter to avoid confusion with 

the SQL SELECT statement, while the term restriction has too deep of mathematical 

origins. This operation accepts a single relation as an argument and includes in its 

output all tuples (or rows) satisfying the condition specified as a filtering condition, for 

example:

SELECT * FROM flight

      WHERE departure_airport='LAG'

            AND (arrival_airport='ORD'

                 OR arrival_airport='MDW')

            AND scheduled_departure BETWEEN '2020-05-27' AND

                                            '2020-05-28'

Here, we start from the relation flight and apply restrictions on the values of 

arrival_airport, departure_airport, and scheduled_departure attributes. The 

result is a set of records, that is, also a relation.

Figure 2-1.  Filter
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The project operation (represented in Figure 2-2) similarly takes a single relation as 

an argument and removes some attributes (columns). The relational project operation 

also removes duplicates from the output, while the SQL project operation does not, for 

example:

SELECT city, zip FROM address

when executed in PostgreSQL will return as many rows as there are records in the 

address table. But if we perform the relational operation project, it would leave one 

record for each zip code. To achieve the same result in PostgreSQL, we would need to 

add the distinct keyword:

SELECT DISTINCT city, zip FROM address

Figure 2-2.  Project
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The product operation (also called Cartesian product, and represented by Figure 2-3)  

produces the set of all pairs of rows from its first and second arguments. It is very difficult 

to find a real-life, useful example of a product, but let’s imagine we want to find all 

possible flights which might exist (from any airport in the world to any airport in the 

world). The product operation will look like this:

SELECT d.airport_code AS departure_airport

       a.airport_code AS arrival_airport

FROM  airport a,

      airport d

Now that we have covered these primary relational operations, you may feel cheated: 

where is the join operation? We know that join operations are essential. The answer 

is hidden in plain sight: a join operation can be expressed as a product followed by 

filtering. From a relational theory point of view, a join operation is redundant. This is a 

perfect example of how a declarative language works; the formal definition is one way 

(but not the only way) to find the result of a join. If we compute a Cartesian product of 

two relations and then apply a filter, we will obtain the desired result. But hopefully, 

no database engine would use this approach on a larger dataset; it could literally take 

years! In Chapter 3, we will discuss how joins can be implemented more efficiently than 

straightforward computation based on the formal definition.

Relational operations also include grouping, union, intersection, and set difference.

The last piece of relational theory which we need for optimization is equivalence 

rules. All relational operations satisfy several equivalence rules, including

•	 Commutativity – JOIN(R,S) = JOIN (S,R)

Figure 2-3.  Product
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Commutativity means that the order of two relations is not important. If we have two 

relations, R and S, then R JOIN S will produce the same result as S JOIN R.

•	 Associativity – JOIN(R, JOIN(S,T) = JOIN(JOIN(R,S), T)

Associativity means that if we have three relations, R, S, and T, we can choose to first 

perform R JOIN S and then JOIN T to the result or we can first perform S JOIN T and then 

JOIN R to the result of the first JOIN, and the results will be equivalent in both cases.

•	 Distributivity – JOIN(R, UNION(S,T)) = UNION(JOIN(R,S), JOIN(R, T))

Distributivity means that if we are joining a relation with a UNION of two other 

relations, the result will be the same as when we perform two joins, R JOIN S and R JOIN 

T separately, and then UNION the results.

The equivalence rules listed in the preceding text are just examples among dozens. 

Why is it important to know about these rules? For efficiency, it might be better to 

execute operations in a different order than they are listed in. There will be multiple 

examples of such transformations in subsequent chapters. Equivalences ensure that a 

query may be represented with several different expressions, providing the impetus for 

an optimizer.

�Logical Operations
The set of logical operations needed for representation of SQL queries includes all 

relational operations, but the semantics is different. As noted earlier, the SQL project 

operation does not remove duplicates. An additional operation for removal of duplicates 

is included.

Other additional operations are needed to represent SQL constructs that cannot 

be expressed in relational theory, for example, left, right, and full outer joins produce a 

result that is not a relation (but still is a SQL table).

Many equivalence rules are also valid for logical operations. For any relatively 

complex query, an optimizer can choose the best from a huge number of expressions. 

More information about relational theory can be found in the resources found in the 

end notes.

Chapter 2  Theory: Yes, We Need It!



20

�Queries as Expressions: Thinking in Sets
Writing declarative queries is not an easy task for humans. People are more familiar with 

actions than with rules or conditions. Thinking in sets2 makes it easier: we can think about 

actions on tables and operations on tables, rather than on individual objects (or rows).

All logical operations mentioned earlier can be easily expressed in SQL. These 

operations accept tables as arguments, both tables stored in the database and tables that 

are the result output of previous operations.

A PostgreSQL expression written as a SQL query will be processed by the optimizer 

and will mostly likely be replaced with another, equivalent expression, using the 

equivalence rules discussed earlier.

Since the result of any relational operation is a relation, it can be passed directly to 

the next relational operation, without the need for intermediate storage. Some database 

developers choose to create temporary tables to store intermediate results, but such 

practices can produce unneeded computational overhead and block the optimizer.

In more theoretical words, the previous paragraph states that the ability of an 

optimizer to produce an efficient execution plan depends on two factors:

•	 A rich set of equivalences provides for a large space of equivalent 

expressions.

•	 Relational operations produce no side effects, such as temporary 

tables—that is, the only thing produced is the result of the operation.

�Operations and Algorithms
In order to make a query executable, logical operations must be replaced with physical 

operations (also called algorithms). In PostgreSQL, this replacement is performed by the 

query planner, and the overall execution time of a query depends on which algorithms 

are chosen and whether they are chosen correctly.

When we move from the logical to the physical level, mathematical relations are 

transformed into tables which are stored in the database, and we need to identify ways 

to retrieve data from the tables. Any stored data must be extracted with one of the data 

access algorithms discussed in the next chapter. Usually, data access algorithms are 

combined with operations consuming their results.

2�Joe Celko, Joe Celko’s Thinking in Sets: Auxiliary, Temporal, and Virtual Tables in SQL (The 
Morgan Kaufmann Series in Data Management Systems)
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More complex logical operations, such as join, union, and grouping, can be 

implemented with several alternative algorithms. Sometimes a complex logical 

operation is replaced with multiple physical operations.

These algorithms are discussed in detail in Chapter 3.

�Summary
The database engine interprets SQL queries by parsing them into a logical plan, 

transforming the results, choosing algorithms to implement the logical plan, and finally 

executing the chosen algorithms. The logical operations used by the database engine are 

based on operations derived from relational theory, and understanding these is crucial 

to thinking like a database.
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CHAPTER 3

Even More Theory: 
Algorithms
By now, those of you who are diligently reading this book without skipping chapters 

might be impatient. We are already in Chapter 3, and we are still talking about theory! 

When are we going to get to write code?

Very soon! This chapter covers the last part of query processing, and by the end, we 

will have all the pieces we need to understand execution plans.

Chapter 2 covered relational operations and stated that we need physical operations, 

or algorithms, to execute queries. Mapping these algorithms to logical operations is 

not straightforward; sometimes, a complex logical operation is replaced with multiple 

physical operations, or several logical operations are merged into a single physical 

operation.

This chapter describes these algorithms, starting from algorithms for data retrieval 

and then proceeding to algorithms for more complex operations.

Understanding these algorithms will allow us to go back to execution plans and get a 

better grasp of their components. Thus, we will be only one step away from our goal: 

learning how to tune queries.

�Algorithm Cost Models
Chapter 1 mentioned several ways of measuring the performance of a system, including 

response time, cost, and user satisfaction. These metrics are external to the database, 

and although external metrics are the most valuable, they aren’t available to the query 

optimizer.

https://doi.org/10.1007/978-1-4842-6885-8_3#DOI
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Instead, an optimizer uses internal metrics based on the amount of computing 

resources needed to execute a query or a single physical operation within a plan. The 

most important resources are those that affect execution time, namely, CPU cycles and 

I/O accesses (read/write disk blocks). Other resources, such as memory or disk space, 

have an indirect impact on execution time; for example, the amount of available memory 

will influence the ratio of CPU cycles and I/O accesses. The distribution of memory is 

controlled by server parameters and will not be covered in this text.

These two primary metrics, CPU cycles and number of I/O operations, are not 

directly comparable. However, in order to compare query execution plans, the optimizer 

has to combine them into a single cost function: the lower the cost, the better the plan. 

For several decades, the number of I/O operations was the dominating component of 

the cost because rotating hard drives are orders of magnitude slower than CPUs. This is 

not necessarily the case for modern hardware, so the optimizer must be tuned to use the 

correct ratio. This is also controlled via server parameters.

A cost model of a physical operation estimates the resources needed to execute 

the operation. Generally, the cost depends on the tables given as arguments to the 

operation. To represent cost models, we’ll use simple formulas with the following 

notation: for any table or relation R, TR and BR denote the number of rows in the table 

and the number of storage blocks occupied by the table, respectively. Additional 

notation will be introduced as needed.

The following section discusses physical operations, outlining algorithms and 

cost models for each. As the relative speed of CPU and external storage may vary in a 

wide range, CPU costs and I/O costs are considered separately. Two logical operations 

discussed in the previous chapter, project and filter, are not included. These are 

typically combined with the operation that precedes them, because they can be applied 

independently to a single row, without depending on other rows in the argument table.

�Data Access Algorithms
To begin executing a query, the database engine must extract stored data. This section 

concerns algorithms used to read data from database objects. In practice, these 

operations are often combined with their following operation in the query execution 

plan. This is advantageous in cases where it is possible to save execution time by 

avoiding reading that will be subsequently filtered out.
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The efficiency of such operations depends on the ratio of rows that are retained to 

the total rows in the stored table. This ratio is called selectivity. The choice of algorithm 

for a given read operation depends on the selectivity of filters that can be simultaneously 

applied.

�Storage Structures
It should come as no surprise that data is stored in files that reside on hard drives. 

Any file used for database objects is divided in blocks of the same length; by default, 

PostgreSQL uses blocks containing 8192 bytes each. A block is the unit that is transferred 

between the hard drive and the main memory, and the number of I/O operations 

needed to execute any data access is equal to the number of blocks that are being read or 

written.

Database objects consist of logical items (table rows, index records, etc.). PostgreSQL 

allocates space for these items in blocks. Several small items can reside in the same 

block; larger items may spread among several blocks. The generic structure of a block is 

shown in Figure 3-1.

Figure 3-1.  The generic block structure in PostgreSQL
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The allocation of items to blocks also depends on the type of the database object. 

Table rows are stored using a data structure called a heap: a row can be inserted in any 

block that has sufficient free space, without any specific ordering. Other objects (e.g., 

indexes) may use blocks differently.

�Full Scan
In a full scan, the database engine consecutively reads all of the rows in a table and 

checks the filtering condition for each row. To estimate the cost of this algorithm, we 

need a more detailed description, as shown in the pseudocode in Listing 3-1.

Listing 3-1.  Pseudocode for a full-scan data access algorithm

FOR each block IN a_table LOOP

      read block;

      FOR each row IN block LOOP

            IF filter_condition (row)

            THEN output (row)

            END IF;

      END LOOP;

END LOOP;

The number of I/O accesses is BR; the total number of iterations of the inner loop 

is TR. We also need to estimate the cost of operations producing the output. This cost 

depends on selectivity, denoted as S, and is equal to S * TR. Putting all these parts 

together, we can estimate the cost of a full scan as

c1 * BR + c2 * TR + c3 * S* TR

where constants c1, c2, and c3 represent properties of hardware.

A full scan can be used with any table; additional data structures are not needed. 

Other algorithms depend on the existence of indexes on the table, described in the 

following.
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�Index-Based Table Access
Note that until we got to physical operations, we did not even mention data access 

algorithms. We do not need to “read” relations—they are abstract objects. If we follow 

the idea that relations are mapped to tables, there is no other way to retrieve data than to 

read the whole table into the main memory. How else will we know which rows of data 

contain which values? But relational databases wouldn’t be such a powerful tool for data 

processing if we stopped there. All relational databases, including PostgreSQL, allow for 

building additional, redundant data structures, making data access dramatically faster 

than a simple sequential read.

These additional structures are called indexes.

How indexes are built will be covered later in this chapter; for now, we need to 

understand two facts about indexes. First, they are “redundant” database objects; they 

do not store any additional information that can’t be found in the source table itself.

Second, indexes provide additional data access paths; they allow us to determine 

what values are stored in the rows of a table without actually reading the table—this is 

how index-based access works. And, as mentioned previously, this happens entirely 

invisibly to the application.

If a filtering condition (or conditions) is encapsulated by an index on a table, the 

index can be used to access data from that table. The algorithm extracts a list of pointers 

to blocks that contain rows with values satisfying the filtering condition, and only these 

blocks are read from the table.

To get a table row from a pointer, the block containing this row must be read. The 

underlying data structure of a table is a heap, that is, rows are stored unordered. Their 

order is not guaranteed, nor does it correspond to properties of the data. There are 

two separate physical operations used by PostgreSQL to retrieve rows via indexes: 

index scan and bitmap heap scan. In an index scan, the database engine reads each 

entry of the index that satisfies the filter condition and retrieves blocks in index order. 

Because the underlying table is a heap, multiple index entries might point to the same 

block. To avoid multiple reads of the same block, the bitmap heap scan implemented 

in PostgreSQL builds a bitmap indicating the blocks that contain needed rows. Then 

all rows in these blocks are filtered. An advantage of the PostgreSQL implementation is 

that it makes it easy to use multiple indexes on the same table within the same query, by 

applying logical ANDs and ORs on the block bitmaps generated by each index.
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The cost model of this algorithm is much more complex. Informally, it can be 

described this way: for small values of selectivity, most likely, all rows satisfying the filtering 

conditions will be located in different blocks and, consequently, the cost is proportional to 

the number of result rows. For larger values of selectivity, the number of processed blocks 

approaches the total number of blocks. In the latter case, the cost becomes higher than the 

cost of a full scan because resources are needed to access the index.

�Index-Only Scan
Data access operations do not necessarily return entire rows. If some columns are not 

needed for the query, these columns can be skipped as soon as a row passes filtering 

conditions (if any). More formally, this means that the logical project operation is 

combined with data access. This combination is especially useful if an index used for 

filtering contains all columns that are needed for the query.

The algorithm reads data from the index and applies remaining filtering conditions 

if necessary. Usually there is no need to access table data, but sometimes additional 

checks are needed—this will be discussed in detail in Chapter 5.

The cost model for an index-only scan is similar to the model for index-based table 

access except that there’s no need to actually access table data. For small values of 

selectivity, the cost is approximately proportional to the number of returned rows. For 

large values of selectivity, the algorithm performs an (almost) full scan of the index. The 

cost of an index scan is usually lower than the cost of a full table scan because it contains 

less data.

�Comparing Data Access Algorithms
The choice of the best data access algorithm depends mostly on query selectivity. 

The relationship of cost to selectivity for different data access algorithms is shown 

in Figure 3-2. We intentionally omitted all numbers on this chart as they depend on 

hardware and table size, while the qualitative comparison does not.
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The line for a full scan is linear and is almost horizontal because the growth is due to 

generation of output. Typically, the cost of output generation is negligible in comparison 

with other costs for this algorithm.

The line representing the cost of index-based table access starts from (almost) 0 and 

grows quickly with the growth of selectivity. The growth slows down for large values of 

selectivity, where the cost is significantly higher than the cost of a full scan.

The most interesting point is the intersection of two lines: for smaller values of 

selectivity, index-based access is preferable, while a full scan is better for larger values 

of selectivity. The position of the intersection depends on hardware and may depend on 

the size of the table. For relatively slow rotating drives, index-based access is preferable 

only if selectivity does not exceed 2–5%. For SSDs or virtual environments, this value 

can be higher. On older spinning disk drives, random block access can be an order of 

magnitude slower than sequential access, so the additional overhead of indexes is higher 

for a given proportion of rows.

The line representing an index-only scan is the lowest, meaning that this algorithm is 

preferable if it is applicable (i.e., all needed columns are in the index).

The query optimizer estimates both the selectivity of a query and the selectivity of 

the intersection point for this table and this index. The query shown in Listing 3-2 has a 

range filtering condition that selects a significant portion of the table.

Listing 3-2.  A range filtering query executed with a full table scan

SELECT flight_no, departure_airport, arrival_airport

FROM flight

  WHERE scheduled_departure BETWEEN

'2020-05-15'  AND  '2020-08-31';

Figure 3-2.  Relationship of cost and query selectivity for different data access 
algorithms
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In this case, the optimizer chooses a full scan (see Figure 3-3).

However, a smaller range in the same query results in index-based table access. The 

query is shown in Listing 3-3 and its execution plan in Figure 3-4.

Listing 3-3.  Range filtering with index-based table access

SELECT flight_no, departure_airport, arrival_airport

FROM flight

  WHERE scheduled_departure BETWEEN

'2020-08-12'  AND  '2020-08-13';

In reality, the job of a query optimizer is much more complex: filtering conditions 

can be supported with multiple indexes with different values of selectivity. Multiple 

indexes can be combined to produce a block bitmap with fewer number of blocks to be 

scanned. As a result, the number of choices available to the optimizer is significantly 

larger than three algorithms.

Thus, there are no winners and losers among data access algorithms. Any algorithm 

can become a winner under certain conditions. Further, the choice of an algorithm 

depends on storage structures and statistical properties of the data. The database 

maintains metadata known as statistics for tables including information on things 

Figure 3-3.  Sequential scan

Figure 3-4.  Bitmap index scan (index-based access)
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such as column cardinality, sparseness, and so on. Usually these statistics are not 

known during application development and may change throughout the application 

lifecycle. Therefore, the declarative nature of the query language is essential for system 

performance. More specifically, as the table statistics change or if other costing factors 

are adjusted, a different execution plan can be chosen for the same query.

�Index Structures
This section begins with an abstract definition of what kind of storage structure can be 

called an index; briefly covers the most common index structures, such as trees and hash 

indexes; and touches on some PostgreSQL specifics.

We show how to estimate the scale of improvement for different types of indexes and 

how to detect cases when index usage won’t provide any performance benefits.

�What Is an Index?
One might assume that any person who works with databases knows what an index 

is. Alas, a surprising number of people, including database developers and report 

writers and, in some cases, even DBAs, use indexes, even create indexes, with only a 

superficial understanding of what indexes are and how they are structured. To avoid 

misunderstanding, we’ll begin with a definition of what we mean by an index.

There are many types of indexes, so it is foolhardy to search for structural 
properties to recognize an index. Instead, we define an index based on its usage. A 
data structure is called an index if it is:

• A  redundant data structure

• I nvisible to the application

•  Designed to speed up data selection based on certain criteria
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The redundancy means that an index can be dropped without any data loss and can 

be reconstructed from data stored elsewhere (in the tables, of course). Invisibility means 

that an application cannot detect if an index is present or absent. That is, any query 

produces the same results with or without an index. And finally, an index is created 

with the hope (or confidence) that it improves performance of a specific query or (even 

better!) several queries.

The performance improvement does not come for free. As an index is redundant, 

it must be updated when table data are updated. That produces some overhead for 

update operations that is sometimes not negligible. In particular, PostgreSQL indexes 

may have an outsized impact on vacuum operations. However, many database textbooks 

overestimate this overhead. Modern high-performance DBMSs use algorithms that 

reduce the cost of index updates, so usually, it is beneficial to create several indexes on a 

table.

Although index structures can differ significantly among index types, the speed-up 

is achieved due to a fast check of some filtering conditions specified in a query. Such 

filtering conditions specify certain restrictions on table attributes. Figure 3-5 shows the 

structure of the most common indexes.

The right part of Figure 3-5 shows a table, and the left represents an index that can 

be viewed as a special kind of a table. Each row of the index consists of an index key 

and a pointer to a table row. The value of an index key usually is equal to the value of a 

table attribute. The example in Figure 3-5 has airport code as its value; hence, this index 

supports search by airport code.

A column can have the same value in multiple rows of a table. If this column is 

indexed, the index must contain pointers to all rows containing this value of an index 

key. In PostgreSQL, an index contains multiple records, that is, the index key is repeated 

for every pointer to a table row.

Figure 3-5 explains how to reach the corresponding table row when an index record 

is located; however, it does not explain why an index row can be found much faster than 

a table row. Indeed, this depends on how the index is structured, and this is exactly what 

is discussed in the following subsections.

Chapter 3  Even More Theory: Algorithms



33

�B-Tree Indexes
The most common structure of an index is a B-tree. The structure of a B-tree is shown in 

Figure 3-6; airport codes are the index keys. The tree consists of hierarchically organized 

nodes that are associated with blocks stored on a disk.

Figure 3-5.  A structure of an index
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The leaf nodes (shown in the bottom row in Figure 3-6) contain index records exactly 

like those in Figure 3-5; these records contain an index key and a pointer to a table row. 

Non-leaf nodes (located at all levels except the bottom) contain records that consist of 

the smallest key (in Figure 3-5, the lowest alphanumeric value) in a block located at the 

next level and a pointer to this block. All records in all blocks are ordered, and at least 

half of the block capacity is used in every block.

Any search for a key K starts from the root node of the B-tree. During the block 

lookup, the largest key P not exceeding K is found, and then the search continues in the 

block pointed to by the pointer associated with P until the leaf node is reached, where a 

pointer refers to table rows. The number of accessed nodes is equal to the depth of the 

tree. Of course, the key K is not necessarily stored in the index, but the search finds either 

the key or the position where it could be located.

B-trees also support range search (expressed as a between operation in SQL). As 

soon as the lower end of the range is located, all index keys in the range are obtained 

with a sequential scan of leaf nodes until the upper end of the range is reached. A scan 

of leaf nodes is also needed to obtain all pointers if the index is not unique (i.e., an index 

value may correspond to more than one row).

Figure 3-6.  An example of a B-tree
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�Why Are B-Trees Used So Often?
We know from computer science that no lookup algorithm can find an index key 

among N different keys faster than in log N time (measured in CPU instructions). This 

performance is achieved with binary search on an ordered list or with binary trees. 

However, the cost of updates (such as insertions of new keys) can be very high for 

both ordered lists and binary trees: an insertion of a single record can cause complete 

restructuring. This makes both structures unusable for external storage.

In contrast, B-trees can be modified without significant overhead. When a record is 

inserted, the restructuring is limited to one block. If the block capacity is exceeded, then 

the block is split into two blocks, and the update is propagated to upper levels. In the 

worst case, the number of modified blocks cannot exceed the depth of the tree.

To estimate the cost of a B-tree search, we need to calculate the depth. If each block 

contains f pointers, then the number of blocks at each level is f times larger than in the 

previous one. Consequently, the depth of a tree containing N records is log N / log 

f. This formula gives the number of disk accesses needed for a single key search. The 

number of CPU instructions is limited for each block, and usually binary search is used 

inside a block. Consequently, the CPU cost is only slightly worse than the best that is 

theoretically possible. Block size in PostgreSQL is 8 Kb. An 8 Kb block can fit dozens of 

index records; consequently, an index with six to seven levels can accommodate billions 

of index records.

In PostgreSQL, a B-tree index can be created for any ordinal data type; that is, for any 

two distinct values of the data type, one value is less than the other. This includes user-

defined types.

�Bitmaps
A bitmap is an auxiliary data structure that is used internally in PostgreSQL for several 

different purposes. Bitmaps can be considered a kind of index: they are built to facilitate 

access to other data structures containing several data blocks. Typically, bitmaps are 

used to compactly represent properties of table data.

Usually a bitmap contains one bit for each block (8192 bytes). The value of the bit is 

1 if the block has a property and 0 if it hasn’t. Figure 3-7 shows how bitmaps are used to 

access data through multiple indexes
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The database engine starts by scanning both indexes and building a bitmap for 

each that indicates which data blocks contain table rows with requested values. These 

bitmaps are shown in the rows labeled Index 1 and Index 2. As soon as these bitmaps 

are created, the engine performs a bitwise logical AND operation to find which blocks 

contain requested values for both selection criteria. Finally, data blocks corresponding 

to 1s in the final bitmap are scanned. This means that blocks that satisfy only one of the 

two criteria in a logical AND never have to be accessed.

Note that requested values may reside in different rows in the same block. The 

bitmap ensures that relevant rows will not be missed, but does not guarantee that all 

scanned blocks contain a relevant row.

Bitmaps are very compact; however, bitmaps may occupy several blocks for very 

large tables. To speed up processing such bitmaps, PostgreSQL builds a hierarchical 

structure: an upper level indicates the blocks of the lower-level bitmap to be processed.

�Other Kinds of Indexes
PostgreSQL offers a variety of index structures supporting several data types and several 

classes of search conditions.

A hash index uses a hash function to calculate the address of an index block 

containing an index key. This type of index has better performance than a B-tree index 

for equality conditions. However, this index is completely useless for range queries. The 

cost estimation for hash index search does not depend on index size (in contrast with 

logarithmic dependency for B-trees).

An R-tree index supports a search on spatial data. An index key for an R-tree always 

represents a rectangle in a multidimensional space. A search returns all objects having a 

Figure 3-7.  Using bitmaps for table access through multiple indexes
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non-empty intersection with the query rectangle. The structure of an R-tree is similar to 

the structure of a B-tree; however, splitting overflowed nodes is much more complicated. 

R-tree indexes are efficient for a small number of dimensions (typically, two to three).

Other types of indexes available in PostgreSQL are useful for full text search, search 

in very large tables, and much more. Additional details on these topics are covered in 

Chapter 14. Any of these indexes can be relatively easily configured for user-defined data 

types. However, we do not discuss indexes on user-defined types in this book.

�Combining Relations
The real power of relational theory and SQL databases relies on combining data from 

several tables.

In this section, we describe algorithms for operations that combine data, including 

Cartesian product, joins, union, intersection, and even grouping. Surprisingly, most of 

these operations can be implemented with almost identical algorithms. For this reason, 

we discuss algorithms rather than the operations they implement. We will use the names 

R and S for input tables when describing these algorithms.

�Nested Loops
The first algorithm is for a Cartesian product, that is, the set of all pairs of rows from the 

input tables. The easy way to calculate the product is to loop over table R and, for each row 

of R, loop over S. The pseudocode for this simple algorithm is presented in Listing 3-4, and 

the graphical representation of the algorithm is shown in Figure 3-8.

Listing 3-4.  Pseudocode for nested loops

FOR row1 IN table1 LOOP

      FOR row2 IN table2 LOOP

       INSERT output row

  END LOOP

END LOOP

The time needed for this simple algorithm is proportional to the product of the sizes 

of the input tables: rows(R) * rows(S).
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A remarkable theoretical fact states that any algorithm that calculates a Cartesian 

product cannot perform better; that is, any algorithm’s cost will be proportional to the 

product of the sizes of its inputs or higher. Of course, some variations of this algorithm 

may perform better than others, but the cost remains proportional to the product.

Slight modifications of the nested loop algorithm can calculate nearly any 

logical operation that combines data from two tables. The pseudocode in Listing 3-5 

implements the join operation.

Listing 3-5.  Nested loop algorithm for a join operation

FOR row1 IN table1 LOOP

      FOR row2 IN table2 LOOP

    IF match(row1,row2) THEN

       INSERT output row

       END IF

  END LOOP

END LOOP

Observe that a nested loop join is a straightforward implementation of the abstract 

definition of a join, as a Cartesian product followed by a filter. As the nested loop join 

processes all pairs of rows from the input, the cost remains the same, although the size of 

the output is smaller than in the case of a Cartesian product.

Figure 3-8.  Nested loop algorithm
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In practice, one or both input tables are stored tables, rather than the result of preceding 

operations. If this is the case, a join algorithm can be combined with data access.

Although the processing cost remains the same, variations of the nested loop 

algorithm combined with a full scan execute nested loops on blocks of input tables and 

another level of nested loops on rows contained in these blocks. More sophisticated 

algorithms minimize the number of disk accesses by loading multiple blocks of the first 

table (outer loop) and processing all rows of these blocks with a single pass over S.

The abovementioned algorithms can work with any join conditions. However, the 

majority of joins we will ever need to execute are natural joins, that is, the join condition 

requires that some attributes of R are equal to the corresponding attributes of S.

The nested loop join algorithm can also be combined with index-based data access 

if the table S has an index on attributes used in the join condition. For natural joins, the 

inner loop of the index-based nested loop algorithm shrinks to few rows of S for each row 

of R. The inner loop can even vanish completely if the index on S is unique, for example, 

the join attribute of S is its primary key.

The index-based nested loop algorithm is usually the best choice if the number of 

rows in R is also small. However, index-based access becomes inefficient if the number of 

rows to be processed becomes high, as discussed in Chapter 2.

It is possible to formally prove that there does not exist an algorithm more 

performant for Cartesian products and joins with arbitrary conditions than nested 

loops. However, the important question is whether there exists a better algorithm for any 

specific types of join conditions. The next section shows this is true for natural joins.

�Hash-Based Algorithms
The output of a natural join consists of pairs of rows from R and S that have equal values 

on the join attributes. The idea of the hash join algorithm is simple: if the values are 

equal, then the hash values are also equal.

The algorithm partitions both input tables according to values of the hash function 

and then joins rows in each bucket independently. The schema of this algorithm is 

shown in Figure 3-9.
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The basic version of the hash join algorithm includes two phases:

	 1.	 During the build phase, all tuples of R are stored in buckets 

according to the values of the hash function.

	 2.	 In the probe phase, each row of table S is sent to an appropriate 

bucket. If matching rows of table R are in the bucket, output rows 

are produced.

The easiest way to find matching rows in the bucket is to use nested loops (actually 

loop over all rows in the bucket for each row of S). PostgreSQL uses a better matching 

algorithm based on Bloom filtering.

The two phases of the hash-based algorithm are shown as separate physical 

operations in the execution plan.

The cost of a hash join can be approximately estimated with the following formula, 

where JA is the join attribute:

cost(hash,R,S)=size(R)+size(S)+size(R)*size(S)/size(JA)

The first and second terms in this formula approximate the cost of a single pass over 

all the rows of R and S. The last term represents the size of the join result to be produced. 

Of course, the cost of output is the same for all join algorithms, but we did not need to 

include it in the nested loop algorithm cost estimation because it is smaller than the cost 

of nested loops.

Figure 3-9.  Hash join algorithm
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This formula shows that a hash-based algorithm is significantly better than nested 

loops for large tables and a large number of different values of the join attribute. For 

example, if the join attribute is unique in one of the input tables, then the last term will 

be equal to just the size of the other table.

The basic hash join algorithm works if all buckets produced at the build phase can fit 

into main memory. Another variation, called hybrid hash join, joins tables that cannot 

fit into main memory. The hybrid hash join partitions both tables so that partitions of 

one table can fit and then executes a basic algorithm for each pair of corresponding 

partitions. The cost of a hybrid hash join is higher because partitions are stored 

temporarily on the hard disk and both tables are scanned twice. However, the cost is still 

proportional to the sum of the sizes, rather than the product.

�Sort-Merge Algorithm
Another algorithm (called sort-merge) for natural joins is schematically shown in 

Figure 3-10.

The first phase of the algorithm sorts both input tables in ascending order by the join 

attribute.

When the input tables are properly ordered, the merge phase scans both input tables 

once and, for each value of the join attribute, calculates the Cartesian product of rows 

containing this value of the join attribute. Note that this product is a necessary part of the 

join result. New rows with the same value attribute cannot appear in the remaining part 

of input because the input tables are ordered.

Figure 3-10.  Sort-merge algorithm
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The cost of the merge phase can be expressed with the same formula as for a hash 

join, that is, proportional to the sum of sizes of input and output. The actual cost is 

somewhat lower because there is no need for the build phase.

The cost of sorting can be estimated with the following formula:

Size(R)*log(size(R)) + size(s)*log(size(S))

The sort-merge algorithm is especially efficient if one of both input tables is already 

sorted. This may happen in a series of joins with the same join attribute.

�Comparing Algorithms
Just as with data access algorithms, there are no default winners or losers. Any of the 

algorithms can be the best, depending on the circumstances. The nested loop algorithm 

is more universal and is the best for small index-based joins; a sort-merge and hash are 

more efficient for large tables, when applicable.

�Summary
Having covered cost models for algorithms, data access algorithms, the purpose and 

structure of indexes, and algorithms for more complex operations, such as joins, we 

finally have enough building blocks to move on to the full product of the query planner—

an execution plan.

The next chapter covers how to read and understand execution plans and improve 

them.
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CHAPTER 4

Understanding Execution 
Plans
At long last, it’s time to look at execution plans. Before we begin, let’s review our 

theoretical foundations. Chapter 3 explained how logical operations are mapped to their 

physical execution, covering data retrieval and more complex operations.

In this chapter, understanding these algorithms will allow us to interpret execution 

plans and get a better grasp of their components.

�Putting Everything Together: How an Optimizer 
Builds an Execution Plan
The output of the PostgreSQL optimizer is an execution plan. While a SELECT defines 

what needs to be done, an execution plan defines how to execute SQL operations.

The job of the optimizer is to build the best possible physical plan that implements a 

given logical plan. This is a complex process: sometimes, a complex logical operation is 

replaced with multiple physical operations, or several logical operations are merged into 

a single physical operation.

To build a plan, the optimizer uses transformation rules, heuristics, and cost-based 

optimization algorithms. A rule converts a plan into another plan with better cost. 

For example, filter and project operations reduce the size of the dataset and therefore 

should be executed as early as possible; a rule might reorder operations so that filter and 

project operations are executed sooner. An optimization algorithm chooses the plan with 

the lowest cost estimate. However, the number of possible plans (called the plan space) 

for a query containing several operations is huge—far too large for the algorithm to 

consider every single possible plan. After all, time spent choosing the correct algorithm 

contributes to the total execution time of the query. Heuristics are used to reduce the 

number of plans evaluated by the optimizer.

https://doi.org/10.1007/978-1-4842-6885-8_4#DOI
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�Reading Execution Plans
To paraphrase Elvis, a little less abstraction, a little more action, please. We’re ready to 

see execution plans in the wild. The query in Listing 4-1 selects all flights that departed 

from JFK and arrived at ORD with a scheduled departure on August 14, 2020. For each 

flight, the total number of passengers is calculated.

Listing 4-1.  A query selecting the number of passengers on specific flights

SELECT f.flight_no,

       f.actual_departure,

       count(passenger_id) passengers

  FROM flight f

       JOIN booking_leg bl ON bl.flight_id = f.flight_id

       JOIN passenger p ON p.booking_id=bl.booking_id

 WHERE f.departure_airport = 'JFK'

   AND f.arrival_airport = 'ORD'

   AND f.actual_departure BETWEEN

        '2020-08-14' and '2020-08-15'

GROUP BY f.flight_id, f.actual_departure;

A logical plan for this query is shown in Listing 4-2.

Listing 4-2.  The logical plan for the query in Listing 4-1

project f.flight_no,  f.actual_departure, count(p.passenger_id)[] (

   group [f.flight_no, f.actual_departure] (

      filter [f.departure_airport = 'JFK'] (

         filter [f.arrival_airport = 'ORD'] (

            filter [f.actual_departure >='2020-08-14'](

               filter [f.actual_departure <='2020-08-15' ] (

                  join [bl.flight_id = f.flight_id] (

                     access (flights f),

                     join(bl.booking_id=p.booking_id (

                     access (booking_leg bl),

                     access (passenger p)

                     ))))))))
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The logical plan shows which logical operations should be executed, but it does not 

provide details on how they will be executed. The query planner produces an execution 

plan for the query, shown in Figure 4-1.

To obtain the execution plan for a query, the EXPLAIN command is run. This 

command takes any grammatically correct SQL statement as a parameter and returns its 

execution plan.

We encourage you to run the code examples throughout this book and examine the 
execution plans. However, a word of caution: choosing the correct execution plan 
is a nondeterministic process. The plans that your local database produces might 
differ slightly from the plans shown in this book; even when the plans are identical, 
execution times may vary with differences in hardware and configuration.

Figure 4-1.  Execution plan
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Hopefully, looking at Figure 4-1, the value of the preceding chapters is evident—each 

line represents an operation previously covered, so it’s clear what’s going on under the 

hood. Note that, in addition to the names of the algorithms, each line of the execution 

plan includes several mysterious numbers in parentheses. This mystery can be easily 

resolved by recalling Chapter 3, which discussed how the costs of different algorithms 

are calculated.

Specifically, a plan contains estimations of costs, expected number of rows in the 

output, and expected average width of the output rows. All these values are calculated 

from the database statistics. The values of costs include the accumulated cost of all 

pervious operations. There are two cost estimations for each operation: the first shows 

the cost needed to produce the first row of output, while the second estimates the cost 

of the complete result. Later in this chapter, we will explain how the costs are estimated. 

Estimates for the number and width of output rows are needed to estimate the cost of an 

operation that consumes the output.

It’s important to emphasize that all these numbers are approximate. The actual 

values obtained during execution may differ. If you suspect that the optimizer chose a 

plan that is not optimal, you might need to look at these estimates. Usually, the error is 

small for stored tables, but it inevitably grows after each operation.

An execution plan is presented as a tree of physical operations. In this tree, nodes 

represent operations, and arrows point to operands. Looking at Figure 4-1, it might be 

not quite clear why it represents a tree. There are multiple tools, including pgAdmin, 

which can generate a graphical representation of an execution plan. Figure 4-2 illustrates 

possible output. In fact, this figure represents the execution plan for Listing 4-4, which 

we will discuss later in this chapter.
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For more complex queries, the graphical representation of the execution plan may 

be less helpful—see the graphical representation of the execution plan for Listing 4-1 in 

Figure 4-3.

In such cases, a more compact graphical representation could be more useful, like 

the one presented in Figure 4-4.

Figure 4-2.  Graphical representation of the simple execution plan (Listing 4-4)

Figure 4-3.  Graphical representation of the execution plan for Listing 4-1
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Now, let’s get back to the actual output of the EXPLAIN command, shown in 

Figure 4-1. It shows each node of the tree on a separate line starting with ->, with the 

depth of the node represented by the offset. Subtrees are placed after their parent node. 

Some operations are represented with two lines.

The execution of a plan starts from the leaves and ends at the root. This means that 

the operation that is executed first will be on the line that has the rightmost offset. Of 

course, a plan may contain several leaf nodes that are executed independently. As soon 

as an operation produces an output row, this row is pushed to the next operation. Thus, 

there is no need to store intermediate results between operations.

In Figure 4-1, execution starts from the last line, accessing the table flight using the 

index on the departure_airport column. Since several filters are applied to the table 

and only one of the filtering conditions is supported by the index, PostgreSQL performs 

an index bitmap scan (covered in Chapter 2). The engine accesses the index and 

compiles the list of blocks that could contain needed records. Then, it reads the actual 

blocks from the database using bitmap heap scan, and for each record extracted from 

the database, it rechecks that rows found via the index are current and applies filter 

operations for additional conditions for which we do not have indexes: arrival_airport 

and scheduled_departure.

Figure 4-4.  Alternative graphical representation of the same execution plan
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The result is joined with the table booking_leg. PostgreSQL uses a sequential read to 

access this table and a hash join algorithm on condition bl.flight_id = f.flight_id.

Then, the table passenger is accessed via a sequential scan (since it doesn’t have 

any indexes), and once again, the hash join algorithm is used on the p.booking_id = 

bl.booking_id condition.

The last operation to be executed is grouping and calculating the aggregate function 

sum(). After sorting, it appears that only one flight satisfied the search criteria. Thus, 

there is no need to utilize any algorithms for grouping, and the count of all passengers on 

that flight is performed.

The next section addresses what else can be gleaned from the execution plan and 

why it is important.

�Understanding Execution Plans
Often, when we explain how to read execution plans in the manner described in the 

preceding text, our audience feels overwhelmed by the size of the execution plan for 

a relatively simple query, especially given that a more complex query can produce 

an execution plan of 100+ lines. Even the plan presented in Figure 4-1 might require 

some time to read. Sometimes, even when each and every single line of a plan can be 

interpreted, the question remains: “I have a query, and it is slow, and you tell me to look 

at the execution plan, and it is 100+ lines long. What should I do? Where should I start?”

The good news is that most of the time, you do not need to read the whole plan to 

understand what exactly makes the execution slow. In this section, we will learn more 

about interpreting execution plans.

�What Is Going On During Optimization?
As mentioned in Chapter 2, the optimizer performs two kinds of transformations: it 

replaces logical operations with corresponding physical execution algorithms and 

(possibly) changes the logical expression structure by changing the order in which 

logical operations are executed.
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The first step is query rewriting. In this step, the PostgreSQL optimizer enhances the 

code by eliminating subqueries, substituting views with their textual presentation, and 

so on. It is essential to keep in mind that this step always happens. When the concept of 

a view is introduced, SQL textbooks often suggest that “views can be used like tables,” 

which is misleading. In most cases, views are substituted by their source code. However, 

“most of the time” does not mean “always.” Chapter 7 discusses views, how the optimizer 

processes them, and their potential performance pitfalls.

The next step after query rewrite is what we usually call optimization, which includes 

the following:

•	 Determining the possible orders of operations

•	 Determining the possible execution algorithms for each operation

•	 Comparing the costs of different plans

•	 Selecting the optimal execution plan

Many SQL developers presume that PostgreSQL executes queries accessing (and 

joining) tables in the same order they appear in the FROM clause.

However, the order of joins is not preserved most of the time—the database does not 

expect these instructions. In subsequent chapters, we will discuss in more detail what 

influences the order of operations. For now, let’s consider how to evaluate an execution 

plan.

�Why Are There So Many Execution Plans to Choose From?
We’ve noted several times that one SQL statement can be executed in many ways, using 

different execution plans. In fact, there could be hundreds, thousands, or even millions 

of possible ways to execute one statement! This chapter gives some sense of where these 

numbers are coming from. Plans may vary in

•	 Order of operations

•	 Algorithms used for joins and other operations (e.g., nested loops, 

hash join)

•	 Data retrieval methods (e.g., indexes usage, full scan)
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Formally speaking, the optimizer finds the best plan by computing the costs for 

all possible plans and then comparing the costs. But since we know that there are 

three basic algorithms to execute each join, even a simple SELECT on three tables can 

generate nine possible execution plans; given the 12 possible join orders, there are 108 

possible plans (3*3*12=108). If we then consider all the potential data retrieval methods 

for each table, there are several thousand plans to compare.

Fortunately, PostgreSQL does not check every possible plan.

The cost-based optimization algorithm relies on the optimality principle: a sub-plan 

of an optimal plan is optimal for the corresponding subquery. A plan can be considered 

a composition of multiple component pieces, or sub-plans. A sub-plan is a plan that 

includes any operations of the original plan as a root node and all its descendant nodes, 

that is, all operations that contribute to the input arguments for the operation chosen as 

a root of the sub-plan. The optimizer builds the optimal plan starting from the smallest 

sub-plans (i.e., data access to single tables) and gradually produces more complex 

sub-plans, including more operations with only a few checks of cost on each step. The 

algorithm is exhaustive in the sense that the optimal plan will be built, despite the fact 

that a significant portion of possible plans will not be tried.

For example, in the preceding example, once the optimizer selects the correct data 

retrieval algorithm for one of the three tables, it will not consider any plans that do not 

use this optimal algorithm.

Still, the number of produced sub-plans can be huge. Heuristics cut out parts of 

the plan space that are unlikely to contain optimal plans, reducing the number of plans 

examined by the optimization algorithm. While this feature helps the optimizer select an 

execution plan more quickly, it can also affect performance negatively: there is a risk that 

the best execution plan will be accidentally dropped before the cost comparison.

Although heuristics may cut out the optimal plan, the algorithm builds the best of 

the remaining plans.

Now, let’s take a closer look at how these costs are calculated.

�How Are Execution Costs Calculated?
In Chapter 3, we discussed ways to measure the performance of database algorithms. We 

talked about internal metrics and established that the costs of algorithms are measured 

in the number of I/O operations and CPU cycles. Now, we are going to apply this theory 

to practice.
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The cost of each execution plan depends on

•	 Cost formulas of algorithms used in the plan

•	 Statistical data on tables and indexes, including distribution of values

•	 System settings (parameters and preferences), such as join_

collapse_limit or cpu_index_tuple_cost

Chapter 3 covered the formulas to calculate cost for each algorithm. Each of these 

formulas depends on the size of the table(s) used, as well as on the expected size of the 

result set. And finally, users can alter the default cost for operations with system settings. 

The choice of an optimal plan can be implicitly controlled by changes in the optimizer 

parameters that are used during the cost estimation. Thus, all three pieces of information 

factor into the calculation of the cost of execution plans.

This is counterintuitive; often, SQL developers have the subconscious expectation 

that the “best possible plan” exists and, moreover, that it is the same for all “similar” 

queries. However, due to the factors listed in the preceding list, the optimizer may 

produce different execution plans for nearly identical SQL queries or even for the 

same query. How this can happen? The optimizer chooses the plan with the best cost 

estimation. However, there may be several plans with only slightly different costs. The 

cost estimation depends on the database statistics that are gathered from random 

samples. The statistics gathered yesterday may slightly differ from those gathered today. 

Due to these slight changes, a plan that was the best yesterday can become second 

best today. Of course, statistics may also change as a result of insertions, updates, and 

deletions.

Let’s look at some examples. Listings 4-3 and 4-4 present two queries, which appear 

almost identical. The only difference is in the filtering value. However, the execution 

plans presented in Figures 4-5 and 4-6 are markedly different.

Listing 4-3.  Simple SELECT with one condition

SELECT flight_id, scheduled_departure

   FROM flight f

   JOIN airport a

       ON departure_airport=airport_code

          AND iso_country='US'
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Listing 4-4.  The same SELECT as Listing 4-3, with a different search value

SELECT flight_id, scheduled_departure

   FROM flight f

   JOIN airport a

ON departure_airport=airport_code

AND iso_country='CZ'

What causes this difference? Figure 4-7 gives a clue: The first query selects a 

significant portion of all airports, and using an index won’t improve performance. The 

second query, by contrast, will select only one airport, and in this case index-based 

access will be more efficient.

Figure 4-5.  Execution plan for Listing 4-3

Figure 4-6.  Execution plan for Listing 4-4
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�How Can the Optimizer Be Led Astray?
But how can we be sure that the plan the optimizer has selected is indeed the best 

possible plan? Is it even possible to find the best execution plan? We spent quite a bit 

of time explaining that the optimizer does the best possible job if we leave it alone and 

don’t interfere. If that’s true, what is the rest of the book about? The reality is that no 

optimizer is perfect, even the PostgreSQL query planner.

First, while the optimization algorithm is mathematically correct—it finds the plan 

with the best cost estimation—those cost estimates are intrinsically imprecise. The 

simple formulas explained in Chapter 3 are valid only for a uniform distribution of 

data, but a uniform distribution seldom occurs in real databases. In reality, optimizers 

use more complex formulas, but these are also imperfect approximations of reality. As 

George Box said, “All models are wrong, but some are useful.”

Second, database systems, including PostgreSQL, maintain detailed statistics of 

stored data (usually in histograms). Histograms significantly improve estimates of 

selectivity. Unfortunately, histograms cannot be used for intermediate results. Errors 

in estimating intermediate results are the primary reason why the optimizer may fail to 

produce an optimal plan.

Figure 4-7.  A histogram of value distribution
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Third, an optimal pan may be cut out with heuristics, or a query might be 

too complex for an exact optimization algorithm. In the latter case, approximate 

optimization algorithms are used.

In all these cases, some human intervention is required, and that’s what this book is 

about! Now that we know what’s going on during optimization, we can fix it if something 

doesn’t work quite right.

In spite of these potential hiccups, optimizers work well in the majority of cases. 

However, humans observe the behavior of the system and therefore have more 

information available than the optimizer and can use this additional knowledge to help 

the optimizer do its job even better.

�Summary
This chapter covered execution plans: how they are generated and how to read and 

understand them. We also learned about cost-based optimization and factors that 

impact the cost of execution plans.

Although cost-based optimizers usually do a good job, sometimes they need 

help, and now we are well equipped to provide it. Subsequent chapters will go over 

multiple examples of queries that require some human intervention to achieve better 

performance.
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CHAPTER 5

Short Queries and Indexes
Chapter 4 took a deep dive into understanding execution plans. Now, we turn to what to 

do once the EXPLAIN command has been run and an execution plan is returned. Where 

do we start, if our goal is to improve the query execution plan?

The first step is to identify whether the query is a short query or a long query. This 

chapter focuses on optimizing short queries. You will learn how to identify short queries, 

what optimization technique to use with short queries, and why indexes are critically 

important for this query type. We also discuss different types of indexes available in 

PostgreSQL and when each index type can be used.

Before proceeding with this chapter, let’s create several additional indexes:

SET search_path TO postgres_air;

CREATE INDEX flight_arrival_airport ON flight  (arrival_airport);

CREATE INDEX booking_leg_flight_id ON booking_leg  (flight_id);

CREATE INDEX flight_actual_departure ON flight  (actual_departure);

CREATE INDEX boarding_pass_booking_leg_id ON postgres_air.boarding_

pass  (booking_leg_id);

�Which Queries Are Considered Short?
The term short query has come up multiple times, without a formal definition. What is 

a short query? First, it has nothing to do with the length of the SQL query. Take a look at 

the two queries presented in Listings 5-1 and 5-2, for example. The query in Listing 5-1 

contains only four lines of code, but it represents a long query. Listing 5-2 contains many 

more lines but is a short query.

https://doi.org/10.1007/978-1-4842-6885-8_5#DOI
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Listing 5-1.  Long query example

SELECT d.airport_code AS departure_airport,

       a.airport_code AS arrival_airport

FROM  airport a,

      airport d

Listing 5-2.  Short query example

SELECT f.flight_no,

       f.scheduled_departure,

           boarding_time,

           p.last_name,

           p.first_name,

           bp.update_ts as pass_issued,

           ff.level

  FROM flight f

    JOIN booking_leg bl ON bl.flight_id = f.flight_id

    JOIN passenger p ON p.booking_id=bl.booking_id

      JOIN account a on a.account_id =p.account_id

      JOIN boarding_pass bp on bp.passenger_id=p.passenger_id

      LEFT OUTER JOIN frequent_flyer ff on ff.frequent_flyer_id=a.frequent_

flyer_id

      WHERE f.departure_airport = 'JFK'

            AND f.arrival_airport = 'ORD'

            AND f.scheduled_departure BETWEEN

        '2020-08-05' AND '2020-08-07'

Second, it is not defined by the size of the result set. The query in Listing 5-3 yields 

only one line; however, it is a long query.

Listing 5-3.  Long query that produces one row

SELECT avg(flight_length),

avg (passengers)

FROM (SELECT flight_no,

scheduled_arrival -scheduled_departure AS flight_length,

count(passenger_id) passengers
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  FROM flight f

    JOIN booking_leg bl ON bl.flight_id = f.flight_id

    JOIN passenger p ON p.booking_id=bl.booking_id

      GROUP BY 1,2) a

So what is a short query?

A query is short when the number of rows needed to compute its output is small, 
no matter how large the involved tables are. Short queries may read every row 
from small tables but read only a small percentage of rows from large tables.

How small is a “small percentage”? Unsurprisingly, it depends on system parameters, 

application specifics, actual table sizes, and possibly other factors. Most of the time, 

however, it means less than 10%. Later in this chapter, a case study will show how to 

identify this borderline.

By contrast, the output of a long query depends on a significant fraction of rows in a 

large table or several large tables.

Our taxonomy of queries is similar to the commonly accepted distinction 

between OLTP and OLAP queries. All OLTP queries are short. However, many modern 

applications require queries that return hundreds of rows but still are short.

Why is Listing 5-1 a long query? Because all the rows from the airport table are 

required to obtain the result. Why is Listing 5-2 a short query? Because data from just 

a couple of flights is needed, out of about 200,000. Why isn’t Listing 5-3 short? Because 

data from every booking in the system is required to calculate the results.

When we optimize a short query, we know that in the end, we select a relatively 

small number of records. This means that the optimization goal is to reduce the size of 

the result set as early as possible. If the most restrictive selection criterion is applied in 

the first steps of query execution, further sorting, grouping, and even joins will be less 

expensive. Looking at the execution plan, there should be no table scans of large tables. 

For small tables, a full scan may still work, as shown in Figure 3-2 in Chapter 3.

�Choosing Selection Criteria
It might seem easy to make sure that the most restrictive selection criteria are applied 

first; however, this isn’t always straightforward. To acknowledge the obvious, this chapter 

is called “Short Queries and Indexes” for a reason: you can't select a subset of records 
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quickly from a table if there is no index supporting the corresponding search. That's why 

short queries require indexes for faster execution. If there is no index to support a highly 

restrictive query, in all likelihood, one needs to be created.

�Index Selectivity
Chapter 3 introduced the concept of query selectivity. The same concept can be applied 

to indexes: the smaller the number of records that correspond to one value of the 

index, the lower the index’s selectivity value. We do not want to create indexes with 

high selectivity; as we saw in Chapter 3, index-based data retrieval in this case will take 

more time than a sequential scan. Since the PostgreSQL optimizer predetermines the 

cost of each access method, this index would never be used, so performance wouldn’t 

be compromised. However, it is still undesirable to add a database object that requires 

storage space and extra time to update but doesn’t provide any benefit.

A database table might have multiple indexes on different columns, each with a 

different selectivity. The best performance possible for a short query occurs when the 

most restrictive indexes (i.e., indexes with the lowest selectivity) are used.

Let’s look at the query in Listing 5-4. Can you tell which filtering criterion is the most 

restrictive?

Listing 5-4.  Index selectivity

SELECT * FROM flight

WHERE departure_airport='LAX'

AND update_ts BETWEEN '2020-08-16' AND '2020-08-18'

AND status='Delayed'

AND scheduled_departure BETWEEN '2020-08-16' AND '2020-08-18'

Delayed status might be the most restrictive, because ideally, on any given day, there 

are many more on-time flights than delayed flights.

In our training database, we have a flight schedule for six months, so limiting it by 

two days might not be very restrictive. On the other hand, usually the flight schedule is 

posted well in advance, and if we are looking for flights where the timestamp of the last 

update is relatively close to the scheduled departure, it most likely indicates that these 

flights were delayed or canceled.
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Another factor that may be taken into consideration is the popularity of the airport 

in question. LAX is a popular airport, and for Listing 5-1, a restriction on update_ts will 

be more restrictive than on departure_airport. However, if we change the filtering on 

departure_airport to FUK, the airport criterion will be more restrictive than selection 

based on update_ts.

If all the search criteria are indexed, there is no cause for concern; the way multiple 

indexes can work together will be covered in a moment. But if the most restrictive 

criterion is not indexed, the execution plan may be suboptimal, and likely, an additional 

index is needed.

�Unique Indexes and Constraints
The better (lower) the selectivity of an index, the faster the search. Thus, the most 

efficient indexes are unique indexes.

An index is unique if for each indexed value there is exactly one matching row in 
the table.

There are several different ways to create a unique index. First, PostgreSQL 

automatically creates a unique index to support any primary key or unique constraint on 

a table.

What is the difference between a primary key and a unique constraint? A common 

misconception among SQL developers is that a primary key has to be an incrementing 

numeric value and that each table “has” to have a primary key. Although it often helps to 

have a numeric incremental primary key (called a surrogate key), a primary key does not 

have to be numeric, and moreover, it does not have to be a single-attribute constraint. 

It is possible to define a primary key as a combination of several attributes; it just has 

to satisfy two conditions: the combination must be UNIQUE and NOT NULL for all of the 

participating attributes. In contrast, unique constraints in PostgreSQL allow for NULL 

values.

A table can have a single primary key (though a primary key is not required) and 

multiple unique constraints. Any non-null unique constraint can be chosen to be 

a primary key for a table; thus, there is no programmatic way to determine the best 

candidate for a table’s primary key. For example, the table booking has a primary key on 

booking_id and a unique key on booking_ref—see Listing 5-5.
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Listing 5-5.  A primary key and a unique constraint

ALTER TABLE booking

    ADD CONSTRAINT booking_pkey PRIMARY KEY (booking_id);

ALTER TABLE booking

    ADD CONSTRAINT booking_booking_ref_key UNIQUE (booking_ref);

Since booking_ref is a non-null attribute, we could choose either booking_id or 

booking_ref to be the primary key.

As shown in the ER diagram in Chapter 1, the column frequent_flyer_id in the 

table account is nullable and also unique:

ALTER TABLE account

    ADD CONSTRAINT account_freq_flyer_unq_key UNIQUE (frequent_flyer_id);

It is also possible to create a unique index without formally defining a unique 

constraint. All you have to do is to add the keyword unique to the index creation 

statement:

CREATE UNIQUE INDEX account_freq_flyer ON

account (frequent_flyer_id);

If we create this index after data was already inserted into this table, CREATE UNIQUE 

INDEX will validate the uniqueness of values, and if any duplicates are found, the index 

won’t be created. For any subsequent inserts and updates, the uniqueness of new values 

will be validated as well.

What about foreign keys? Do they automatically create any indexes? A common 

misconception is the belief that the presence of a foreign key necessarily implies the 

presence of an index on the parent table. This is not true.

A foreign key is a referential integrity constraint; it guarantees that for each non-
null value in the child table (i.e., the table with the foreign key constraint), there is 
a matching unique value in the parent table (i.e., the table it is referencing).

For example, there is a foreign key constraint on the flight table that ensures that 

each arrival airport matches an existing airport code:
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ALTER TABLE flight

    ADD CONSTRAINT arrival_airport_fk FOREIGN KEY (departure_airport)

    REFERENCES airport (airport_code;

This constraint does not automatically create an index; if searches by arrival airport 

are slow, the index must be explicitly created:

CREATE INDEX flight_arrival_airport

    ON flight

    (arrival_airport);

Chapter 3 mentioned that unique indexes make nested loops efficient. If you refer to 

Figure 3-7, you will realize what happens when an index is present.

The nested loop join algorithm can also be combined with index-based data access 

if the table S has an index on attributes used in the join condition. For natural joins, the 

inner loop of the index-based nested loop algorithm shrinks to few rows of S for each row 

of R. The inner loop can even vanish completely if the index on S is unique, for example, 

the join attribute of S is its primary key.

Often, this is misunderstood to mean that nested loops are always efficient when 

joining on a primary/foreign key. However, as mentioned earlier, this is true only if the 

column in the child table—that is, the foreign key—is indexed.

Is it a best practice to always create an index on a column that has a foreign key 

constraint? Not always. An index should only be created if the number of distinct values 

is large enough. Remember, indexes with high selectivity are unlikely to be useful. For 

example, the flight table has a foreign key constraint on aircraft_code_id:

ALTER TABLE flight

    ADD CONSTRAINT aircraft_code_fk FOREIGN KEY (aircraft_code)

    REFERENCES aircraft (code);

This foreign key constraint is necessary because for each flight, there must be a valid 

aircraft assigned. In order to support the foreign key constraint, a primary key constraint 

was added to the aircraft table. That table, however, has only 12 rows. Therefore, it is 

not necessary to create an index on the aircraft_code column of the flight table. This 

column has only 12 distinct values, so an index on that column will not be used.

To illustrate this statement, let’s look at the query in Listing 5-6. This query selects all 

fights between the JFK and ORD airports, between August 14 and 16, 2020. For each flight, we 

select the flight number, scheduled departure, aircraft model, and number of passengers.
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Listing 5-6.  A join by a primary/foreign key without an index

SELECT f.flight_no,

       f.scheduled_departure,

       model,

       count(passenger_id) passengers

  FROM flight f

       JOIN booking_leg bl ON bl.flight_id = f.flight_id

       JOIN passenger p ON p.booking_id=bl.booking_id

         JOIN aircraft ac ON ac.code=f.aircraft_code

 WHERE f.departure_airport ='JFK'

   AND f.scheduled_departure BETWEEN

       '2020-08-14' AND '2020-08-16'

GROUP BY 1,2,3

The execution plan for this query is shown in Figure 5-1, and it is massive.

Figure 5-1.  A plan with a sequential scan of a small table
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The only part of this plan we are interested in now is this:

 Hash  (cost=1.12..1.12 rows=12 width=64)

       -> Seq Scan on aircraft ac (cost=0.00..1.12 rows=12

The PostgreSQL optimizer accesses table statistics and is able to detect that the size 

of the aircraft table is small and index access won’t be efficient.

�Indexes and Non-equal Conditions
Chapter 3 described the structure of B-tree indexes, how they are built, and how they are 

used for searches. What follows is a demonstration of their practical application.

The previous section relates to simple B-tree indexes. As noted in Chapter 3, they 

can support searches by equality, greater than, less than, and between conditions: all 

the searches that require comparison and ordering. The majority of searches in an OLTP 

system fall into this category, but there are also a nontrivial number of cases when search 

criteria are more complex.

�Indexes and Column Transformations
What is a column transformation? A column transformation occurs when the search criteria 

are on some modifications of the values in a column. For example, lower(last_name) 

(converting the last_name value to lowercase) and update_ts::date (casting timestamp 

with time zone to date) are column transformations.

How do column transformations affect index use? Quite simply, B-tree indexes 

on the attribute cannot be used. Recall from Chapter 3 how a B-tree is built and how a 

search on a B-tree is performed: in each node, the value of the attribute is compared 

to the value in the node. The transformed value is not recorded anywhere, so there is 

nothing to compare it to. Thus, if there is an index on last name

CREATE INDEX account_last_name

  ON account (last_name);

…the following search won’t be able to take advantage of the index:

SELECT * FROM account WHERE lower(last_name)='daniels';
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How do we solve this problem? A search like this might be needed because 

passengers may enter their last names with different cases. If you believe that covering 

the most common cases is sufficient, you could modify the search criterion like so:

SELECT * FROM account

WHERE last_name='daniels'

     OR last_name='Daniels'

     OR last_name ='DANIELS'

The execution plan for this query is shown in Figure 5-2.

A better solution would be to create an (additional) functional index:

CREATE INDEX account_last_name_lower

  ON account (lower(last_name));

When a functional index is built, PostgreSQL applies the function to the values of 

the column (or columns) and then places these values in the B-tree. Similar to a regular 

B-tree index, where the nodes contain the values of the column, in a functional index, 

a node contains the value of the function. In our case, the function is lower(). After the 

index is created, query #1 in Listing 5-7 won’t use a sequential scan but will be able to 

utilize the new index. The corresponding execution plan is shown in Figure 5-3.

Figure 5-2.  An execution plan with “like” operator rewrite
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Listing 5-7.  Different search conditions use different indexes

---#1

SELECT * FROM account WHERE lower(last_name)='daniels';

---#2

SELECT * FROM account WHERE last_name='Daniels';

---#3

SELECT * FROM account WHERE last_name='daniels';

---#4

SELECT * FROM account WHERE lower(last_name)='Daniels';

Note that an index on the last_name column is still necessary if we want a search 

on a case-specific value to be supported by an index (e.g., query #2). Also, it’s worth 

mentioning that if the table account contains one record with last_name =’Daniels’ and 

another record with last_name=’DANIELS’, query #1 will return both, query #2 will return 

only the first record, and queries #3 and #4 won’t return either of them.

Note  Sometimes, an additional index is not needed.

Should a functional index be created every time we need to search using a column 

transformation? Not necessarily. However, it is important to recognize a column 

transformation, which can be subtle.

For example, let’s look at the following SELECT statement:

SELECT * FROM flight

WHERE scheduled_departure ::date

    BETWEEN '2020-08-17' AND '2020-08-18'

Figure 5-3.  A plan that uses a functional index
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At first glance, it appears we are using the column scheduled_departure as a 

selection criterion, and since there is an index on this column, it should be used. 

However, the plan in Figure 5-4 diverts to a sequential scan.

Why doesn’t PostgreSQL use the index? Because when the timestamp is converted to 

a date, a column transformation has been performed.

So is an additional functional index on scheduled_departure::date needed? Not 

necessarily. What does this selection criterion mean? It means that we want to select 

flights that depart on these two specific dates, no matter the time of day. This means that 

the flight could depart any time between midnight of August 17, 2020, and midnight of 

August 20, 2020. In order to make the existing index work, the selection criteria can be 

modified to

SELECT * FROM flight

WHERE scheduled_departure

    BETWEEN '2020-08-17' AND '2020-08-19'

Figure 5-5 shows how the execution plan has changed.

Looking at the execution plan, you can see that the cost estimate for a plan with 

index-based access is more than twice less than a sequential scan (13857.42 vs. 30474). 

What is more important, the execution time supports this observation: 0.5 seconds for 

index-based access vs. 1.5 seconds for a sequential scan.

Figure 5-4.  A plan that does not use the index due to the column transformation

Figure 5-5.  An execution plan that uses the index
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Pay very close attention to this example. When you read about this example in a 

book, the preceding paragraph looks obvious. However, numerous SQL developers and 

report writers use similar search conditions over and over again. One frequent use case 

is changes made to a table today. Ninety-five percent of the time, this condition is written 

as update_ts::date=CURRENT_DATE, which successfully blocks the use of an index on the 

update_ts column. To take advantage of the index, this criterion should be written as

update_ts>= CURRENT_DATE

or, if it is possible for values of this timestamp to be in the future, the condition should be 

written as

WHERE update_ts>= CURRENT_DATE AND update_ts< CURRENT_DATE +1

Let’s examine another example where column transformation often remains 

unnoticed. Let’s say today is August 17, 2020. We are looking for flights that have 

departed or are scheduled to depart today. We know that for flights that have not yet 

departed, the actual_departure column may be null.

The coalesce() function in PostgreSQL allows us to use a different value when the 

first argument is null. Thus, coalesce(actual_departure, scheduled_departure) will 

return actual_departure if it is not null and scheduled_departure otherwise. Both 

the scheduled_departure and actual_departure columns are indexed, and you might 

expect these indexes to be used. For example, look at the execution plan for the following 

SQL statement presented in Figure 5-6:

SELECT * FROM flight

WHERE coalesce(actual_departure, scheduled_departure)

    BETWEEN '2020-08-17' AND '2020-08-18'

Why aren’t any indexes utilized? Because coalesce() is a function, which modifies 

column values. Should we create another functional index? We can, but it is not really 

necessary. Instead, we can rewrite this SQL statement as shown in Listing 5-8, which will 

result in the execution plan in Figure 5-7.

Figure 5-6.  A plan with a sequential scan, when indexes are present
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Listing 5-8.  Query that uses both indexes

SELECT * FROM flight

WHERE (actual_departure

    BETWEEN '2020-08-17' AND '2020-08-18')

      OR (actual_departure IS NULL

          AND scheduled_departure BETWEEN '2020-08-17' AND '2020-08-18')

�Indexes and the like Operator
Another group of search conditions that are not a straightforward comparison of column 

value constants are searches using the like operator. For example, the query

SELECT * FROM account

    WHERE lower(last_name) like 'johns%';

will yield all accounts for which the last name begins with “johns”. In the postgres_air 

schema, the list of returned last names is

"Johnson"

"Johns"

"johns"

"Johnston"

"JOHNSTON"

"JOHNS"

"JOHNSON"

"johnston"

"johnson"

Figure 5-7.  Execution plan for the query from Listing 5-8
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The only problem with this query is that it won’t utilize the functional index we 

created in the previous section, because B-tree indexes do not support searches with the 

“like” operator. Once again, if we check the execution plan for this query, we will see a 

sequential scan of the account table.

How can we solve this problem and avoid a scan?

One possible solution is to rewrite the query, replacing like with two conditions:

SELECT * FROM account

  WHERE (lower(last_name) >='johns' and lower(last_name) < 'johnt')

The execution plan for this query is presented in Figure 5-8, and we can see that this 

plan uses an existing index.

A better solution would be to create a pattern search index:

CREATE INDEX account_last_name_lower_pattern

  ON account (lower(last_name) text_pattern_ops);

Why is this index necessary? Because comparison of text values depends on the 

locale, a set of rules about character ordering, formatting, and similar things that vary 

by language and country. Although some may think what we have in US English is the 

universal order of things, it is not. The only locale that would allow us to use a B-tree 

index is a “C” locale, which is a standards-compliant default locale. Only strict ASCII 

characters are valid in this locale.

To see which locale was defined when the database was created, you need to run the 

command

SHOW LC_COLLATE;

And if you reside in the United States, there’s a good chance you will see

Figure 5-8.  The plan for a rewritten query that uses an index
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"en_US.UTF-8"

This newly created index will be utilized by queries that use the like operator. The 

new execution plan for our original query is presented in Figure 5-9, and we can see that 

it takes advantage of the new index.

�Using Multiple Indexes
In Figure 5-7, we see an execution plan that uses two indexes on the same table—flight. 

The discussion of index-based access in Chapter 3 was primarily concerned with the 

case of a single index. What happens when there is more than one available? How 

exactly does PostgreSQL use them efficiently?

The answer is in the word bitmap, as seen in the execution plan. Creating in-memory 

bitmaps allows the optimizer to use multiple indexes on one table to speed up data 

access. Let’s look at the query with three filtering criteria for one table, all of which are 

supported by indexes.

Listing 5-9.  A query with three filters on one table

SELECT scheduled_departure ,

       scheduled_arrival

FROM flight

WHERE departure_airport='ORD' AND arrival_airport='JFK'

AND scheduled_departure BETWEEN '2020-07-03' AND '2020-07-04';

The execution plan for this query is shown in Figure 5-10.

Figure 5-9.  An execution plan with a pattern index
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Postgres can use the search results from multiple indexes by creating a bitmap of 

blocks with matching records in main memory and then OR-ing or AND-ing them. 

After this process is completed, the only blocks left are the blocks that satisfy all search 

criteria, and PostgreSQL reads all the records in the remaining blocks to recheck the 

search conditions.

The blocks will be scanned in physical order, so the index-based ordering will be lost.

Note that in the execution plan shown in Figure 5-10, only two indexes of the three 

available are used. That’s because after a logical AND-ing of the two index search results 

is performed, only 64 rows of data are left, and in this case, it is faster to read them and 

filter the condition than to perform one more index search, which will retrieve over 

12,000 records.

Using a bitmap AND and OR of several index-based searches is a very efficient 

mechanism of applying multiple filters, but not the only one. In the next section, we will 

discuss another option—creating compound indexes.

�Compound Indexes
So far, the indexes shown have been on individual columns. This section discusses 

indexes built on multiple columns and their advantages.

Figure 5-10.  Execution plan with multiple index scans on one table
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�How Do Compound Indexes Work?
Let’s return to the query in Listing 5-9. The result of three search criteria applied to the 

table flight can be computed by using multiple indexes. Another option would be to 

create a compound index on all three columns:

CREATE INDEX flight_depart_arr_sched_dep ON

     flight(departure_airport,

         arrival_airport,

         scheduled_departure)

With this index, the execution plan would be as shown in Figure 5-11.

This new compound index will support searches by departure_airport, by 

departure_airport and arrival_airport, and by departure_airport, arrival_

airport, and scheduled_departure. It will not support, however, the searches by 

arrival_airport or scheduled_departure.

The query

SELECT departure_airport,

       scheduled_arrival,

       scheduled_departure

FROM flight

WHERE  arrival_airport='JFK'

AND scheduled_departure BETWEEN '2020-07-03' AND '2020-07-04'

…will produce the execution plan presented in Figure 5-12.

Figure 5-11.  A plan that uses a compound index
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On the other hand, the query

SELECT scheduled_departure ,

       scheduled_arrival

FROM flight

WHERE departure_airport='ORD' AND arrival_airport='JFK'

AND scheduled_arrival BETWEEN '2020-07-03' AND '2020-07-04';

…will use the compound index, although only for the first two columns, as presented 

in Figure 5-13.

In general, an index on (X,Y,Z) will be used for searches on X, XY, and XYZ and even 

(X,Z) but not on Y alone and not on YZ. Thus, when a compound index is created, it’s not 

enough to decide which columns to include; their order must also be considered.

Figure 5-12.  Compound index is not used

Figure 5-13.  A plan that uses the compound index for the first two columns
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Why create compound indexes? After all, the previous section demonstrated that 

using several indexes together will work just fine. There are two major reasons to create 

this type of index: lower selectivity and additional data storage.

�Lower Selectivity
Remember that the lower the selectivity is, the faster the search is, and when we are 

optimizing short queries, our goal is to avoid reading a large number of rows at any given 

point (even if we will be able to filter them out later). Sometimes, none of the individual 

column values are restrictive enough, and only a certain combination makes a query short.

In the example from the previous section, there are 12,922 flights with departure 

airport ORD and 10,530 flights that arrive at JFK. However, the number of flights that 

originate in ORD and land in JFK is only 184.

�Using Indexes for Data Retrieval
When all the columns from a SELECT statement are included in a compound index, 

they may be retrieved without accessing the table. This is called the index-only-scan data 

retrieval method.

All of the execution plans in the previous section still needed to read records from 

the table after they were located using the index scan, because we still needed the 

values from columns that were not included in the index.

Let’s build one more compound index and include one more column:

CREATE INDEX flight_depart_arr_sched_dep_sched_arr

    ON flight

    (departure_airport,

    arrival_airport,

    scheduled_departure,

    scheduled_arrival );

The execution plan of the query will instantaneously convert into an index-only scan 

as presented in Figure 5-14.
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Note that once again the search was on the first three columns of the index. If the 

search did not include the first column of the index, for example

SELECT departure_airport,

       scheduled_departure ,

       scheduled_arrival

FROM flight

WHERE arrival_airport='JFK'

AND scheduled_departure BETWEEN '2020-07-03' AND '2020-07-04'

…the execution plan will revert to using several indexes with AND and OR, as shown 

in Figure 5-15.

�Covering Indexes
Covering indexes were first introduced in PostgreSQL 11. These indexes can be viewed 

as a continuation of efforts to support the index-only-scan access method. A covering 

index is specifically designed to include the columns needed by a particular type of 

query that you run frequently.

Figure 5-14.  A plan with an index-only scan

Figure 5-15.  When a search does not include the first index column, a compound 
index is not used
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In the previous section, the column scheduled_arrival was added to the index 

solely to avoid an extra trip to the table. It was not intended to be used as search criteria. 

In this case, a covering index can be used instead:

CREATE INDEX flight_depart_arr_sched_dep_inc_sched_arr

    ON flight

    (departure_airport,

    arrival_airport,

    scheduled_departure)

    INCLUDE (scheduled_arrival);

The execution plan for the query

SELECT departure_airport,

       scheduled_departure ,

       scheduled_arrival

FROM flight

WHERE arrival_airport='JFK' AND departure_airport='ORD'

AND scheduled_departure BETWEEN '2020-07-03' AND '2020-07-04'

will look like the one shown in Figure 5-16.

In cases like this one, there is not much difference between including an extra 

column in the index vs. creating a covering index. However, if more (or wider) columns 

need to be stored together with the indexed values, a covering index will likely be more 

compact.

Figure 5-16.  A plan with an index-only scan of a covering index
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�Excessive Selection Criteria
Sometimes, when filtering logic is complex and involves attributes from multiple tables, 

it is necessary to provide additional, redundant filters to prompt the database engine to 

use specific indexes or reduce the size of join arguments. This practice is called using 

excessive selection criteria. The intent is to use this additional filter to preselect a small 

subset of records from a large table.

For some of these complex criteria, PostgreSQL is able to perform a query rewrite 

automatically.

For example, the filtering conditions in the query in Listing 5-10 combine values of 

attributes from the tables flight and passenger. In earlier versions of PostgreSQL, the 

engine could not start filtering prior to joining all the tables, because the AND is applied 

to the columns of different tables.

Listing 5-10.  Query with conditions on two tables

SELECT last_name,

       first_name,

       seat

FROM boarding_pass bp

JOIN booking_leg bl USING (booking_leg_id)

JOIN flight f USING (flight_id)

JOIN booking b USING(booking_id)

JOIN passenger p USING (passenger_id)

WHERE

(departure_airport='JFK'

  AND scheduled_departure BETWEEN

      '2020-07-10' AND '2020-07-11'

       AND last_name ='JOHNSON')

OR

(departure_airport='EDW'

 AND scheduled_departure BETWEEN '2020-07-13' AND '2020-07-14'

 AND last_name ='JOHNSTON')

However, now the optimizer can perform a complex query rewrite, as shown in 

Figure 5-17.
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Note the lines from 8 to 15. PostgreSQL rewrites the logical expression and selects all 

records from the table flight that may be needed for both conditions connected with OR.

In cases like this, the only thing to do is to let PostgreSQL do its job.

However, there are some queries that will run forever without human intervention. 

Let’s look at the query in Listing 5-11. This query looks for flights that were more than 

one hour delayed (of which there should not be many). For all of these delayed flights, 

the query selects boarding passes issued after the scheduled departure.

Listing 5-11.  Short query with hard-to-optimize filtering

SELECT bp.update_ts Boarding_pass_issued,

       scheduled_departure,

       actual_departure,

       status

FROM flight f

JOIN booking_leg bl USING (flight_id)

JOIN boarding_pass bp USING (booking_leg_id)

Figure 5-17.  Execution plan with conditions on two tables with query rewrite
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WHERE bp.update_ts > scheduled_departure + interval '30 minutes'

AND f.update_ts >=scheduled_departure -interval '1 hour'

This might seem like a contrived example, but it is modeled on production exception 

reports. Many companies have some sort of exception reporting in place to identify 

the abnormal system behavior. Crucially, by definition, the output of execution reports 

should be small. Exception reports, to be useful, should report on conditions that occur 

relatively rarely—otherwise, they would just be reports on business as usual.

The described situation certainly sounds abnormal, and there should not be many 

cases like this. However, the execution plan in Figure 5-18 has full scans of large tables 

and hash joins, even though all the appropriate indexes on all the tables involved exist.

So what went wrong?

Let’s go back to the definition of a short query. It seemed very clear in the beginning, 

but now it becomes a bit trickier. Recall that a query is short if it needs a small number of 

rows to compute results. Indeed, in this case, the number of rows we need is small, but 

there is no easy way to find them. So here is the caveat: it is not just that a short query 

requires a small number of rows, but also that the number of rows in the result of any 

intermediate operation should also be small. If a query with three joins is short and, after 

executing the first of the joins, the intermediate result is huge, it means that something is 

wrong with the execution plan.

Figure 5-18.  Suboptimal execution plan for a short query
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As previously discussed, the only way to read a small number of rows from a table is 

to use an index. However, we do not have any indexes that would support the filtering 

conditions in the query from Listing 5-11. Moreover, it is not possible to build such an 

index, because selection criteria from one table depend on values from another table. In 

this case, there is no way to make a selection before joining, which results in full scans 

and hash joins.

How can this query be improved? The answer to this question is not directly related 

to SQL. Chapter 1 stated that database optimization starts from gathering requirements, 

and this is a case where gathering precise requirements is the best path toward 

optimization.

Notice that, in the original query, the search space is all the flights since the dawn of 

time—or at least, for the entire time period captured by the database. However, this is 

an exception report, which most likely is reviewed on a regular cadence, and, likely, the 

business owner of this report is interested in recent cases since the last review. Earlier 

exceptions would have already appeared in previous reports and hopefully have been 

addressed. The next step would be to connect with the business owner of this report and 

ask whether a report including only the most recent exceptions suits their needs.

If the answer is yes, the excessive selection criterion we just got from business can be 

applied to the query. Also, we need one more index:

CREATE INDEX boarding_pass_update_ts ON postgres_air.boarding_

pass  (update_ts);

Listing 5-12 shows the modified query, retaining two days of exceptions.

Listing 5-12.  Query with added excessive selection criteria

SELECT bp.update_ts Boarding_pass_issued,

       scheduled_departure,

       actual_departure,

       status

FROM flight f

JOIN booking_leg bl USING (flight_id)

JOIN boarding_pass bp USING (booking_leg_id)

WHERE bp.update_ts  > scheduled_departure + interval '30 minutes'

AND f.update_ts >=scheduled_departure -interval '1 hour'

AND bp.update_ts >='2020-08-16' AND bp.update_ts< '2020-08-20'
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Now, the search by timestamps will be applied first, as seen in the execution plan in 

Figure 5-19.

The execution time for this query is less than 200 milliseconds, while the execution 

time for the original query was 2 minutes and 44 seconds.

�Partial Indexes
Partial indexes are among the best features of PostgreSQL. As implied by the name, a 

partial index is built on a subset of a table, defined by the WHERE clause of the CREATE 

INDEX operator.

For example, for flights scheduled in the future, the actual_departure column is 

null. To improve search by actual_departure, we can create an index for only flights 

with a non-null actual departure value:

CREATE INDEX flight_actual_departure_not_null

    ON flight(actual_departure)

    WHERE actual_departure IS NOT NULL

Figure 5-19.  Execution plan with excessive selection criteria

Chapter 5  Short Queries and Indexes



84

In this particular case, the difference in execution time won’t be dramatic, because 

the flight table is not very large and, in the current distribution, only half of the 

flights have a null actual departure. However, if the values in a column are distributed 

unevenly, using a partial index can provide a great advantage.

For example, the column status in the flight table has only three possible values: 

‘On schedule’, ‘Delayed’, and ‘Canceled’. These values are unevenly distributed; there 

are significantly more flights with status ‘On schedule’ than the other two. Creating an 

index on the column status would be impractical due to the very high selectivity of this 

column. However, it would be nice to be able to quickly filter out the canceled flights, 

especially because in contrast to real life, there are not that many canceled flights in the 

postgres_air schema.

We are going to create an index:

CREATE INDEX flight_canceled ON flight(flight_id)

WHERE status='Canceled';

This index will be used in all queries where we select canceled flights, regardless of 

any other filtering conditions, for example:

SELECT * FROM flight WHERE

    scheduled_departure between '2020-08-15' AND '2020-08-18'

    AND status='Canceled'

The execution plan for this query is shown in Figure 5-20.

Using the partial index decreases execution time from 0.72 seconds to 0.16 seconds.

Figure 5-20.  The usage of a partial index

Chapter 5  Short Queries and Indexes



85

�Indexes and Join Order
As mentioned earlier, in short queries, the optimization goal is to avoid large 

intermediate results. That means ensuring that the most restrictive selection criteria 

are applied first. After that, for each join operation, we should ensure that the result 

continues to be small.

The size of join results may be small either because of restrictions on the joined 

tables (small number of records in join arguments) or because of a semi-join (one 

argument significantly restricts the result size).

Most of the time, the query planner chooses a correct join order, unless the wrong 

order is forced.

Let’s start with creation of several more indexes:

CREATE INDEX account_login ON account(login);

CREATE INDEX account_login_lower_pattern ON account  (lower(login) text_

pattern_ops);

CREATE INDEX passenger_last_name ON passenger  (last_name);

CREATE INDEX boarding_pass_passenger_id ON boarding_pass  (passenger_id);

CREATE INDEX passenger_last_name_lower_pattern ON passenger  (lower(last_

name) text_pattern_ops);

CREATE INDEX passenger_booking_id ON passenger(booking_id);

CREATE INDEX booking_account_id ON booking(account_id);

Now, consider the example in Listing 5-13.

Listing 5-13.  Order of joins example

SELECT b.account_id,

a.login,

p.last_name,

p.first_name

FROM passenger p

JOIN booking b USING(booking_id)

JOIN account a ON a.account_id=b.account_id

WHERE lower(p.last_name)='smith'

AND lower(login) LIKE 'smith%'
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The execution plan for this query is shown in Figure 5-21. Note that although the first 

table listed is the table passenger and that the first selection criterion is applied to the 

same table, the execution starts with the table account.

The reason is that the table account contains significantly fewer records than the 

passenger table, and although the selectivity of both filters is approximately the same, 

the corresponding index on the account table will yield fewer records.

However, the execution plan changes significantly when the criteria look for 

passengers with an uncommon last name—that is, a last name with a very low 

selectivity. The execution plan in Figure 5-22 indicates that in this case, starting 

processing from the passenger table is more restrictive. In fact, accounts that satisfy the 

login selection criterion are selected independently from bookings, and then the results 

are joined using the hash join algorithm; this will work faster since both intermediate 

result sets are already in main memory.

Figure 5-21.  Order of joins: execution starts from the smaller table, when 
selectivity is similar
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The SELECT statement in Listing 5-14 is similar, but instead of joining with the 

passenger table, the join is to the frequent_flyer table, which is approximately half of 

the size of the account table. Of course, to be able to search this table, two more indexes 

are required:

CREATE INDEX frequent_fl_last_name_lower_pattern ON frequent_

flyer  (lower(last_name) text_pattern_ops);

CREATE INDEX frequent_fl_last_name_lower ON frequent_flyer  (lower(last_

name));

In this case, execution will start from the table frequent_flyer, as shown in 

Figure 5-23.

Listing 5-14.  Query selecting the number of bookings for each frequent flyer

SELECT a.account_id,

       a.login,

       f.last_name,

       f.first_name,

       count(*) AS num_bookings

FROM frequent_flyer f

Figure 5-22.  Different selectivity prompts a different join order
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JOIN account a USING(frequent_flyer_id)

JOIN booking b USING(account_id)

WHERE lower(f.last_name)='smith'

AND lower(login) LIKE 'smith%'

GROUP BY 1,2,3,4

�When Are Indexes Not Used
So far, this chapter has covered how indexes are used in queries. This section turns to 

situations where indexes are not used. Specifically, it discusses two situations: how to 

prevent PostgreSQL from using indexes in some circumstances and what to do when an 

index isn’t being used and we think it ought to be.

Figure 5-23.  The execution plan for the query in Listing 5-14
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�Avoiding Index Usage
Why would it be desirable to avoid using an index? Often, database developers believe 

that using indexes improves the performance of any query. We can each recall situations 

where we were asked “to build some indexes to make this query run faster.” However, an 

index is not always needed and in some cases may be counterproductive. Two examples 

from earlier in this chapter (Figures 5-1 and 5-6) showed execution plans with sequential 

reads that are nevertheless quite efficient.

The two main reasons we may want to avoid using indexes are as follows:

•	 A small table is completely read into main memory.

•	 We need a large proportion of the rows of a table to execute a query.

Is there a way to avoid using existing indexes? Most of the time, the optimizer is 

smart enough to figure out when it should or shouldn’t use indexes. But on the rare 

occasions when it fails, we can modify selection criteria. Recall from the beginning of 

this chapter that column transformations can block the usage of indexes. At that time, 

it was framed as a negative impact of column transformation, but it can also be used to 

improve performance when the goal is to block index usage.

If a column is of a numeric type, it can be modified by adding zero to its value. For 

example, the condition attr1+0=p_value will block the usage of an index on column 

attr1. For any data type, the coalesce() function will always block the usage of indexes, 

so, assuming attr2 is not nullable, the condition can be modified to something like 

coalesce(t1.attr2, '0')=coalesce(t2.attr2, '0').

�Why Does PostgreSQL Ignore My Index?
Occasionally, there are extraordinarily frustrating cases, when the appropriate index exists, 

but for some reason, PostgreSQL is not using it. This is the moment when a database 

developer with experience with other systems that allow optimizer hints might start really 

missing them. However, most of the time, there is no reason for frustration. Having one of 

the best optimizers, PostgreSQL does the right thing in most cases. So, most likely, there is 

a good reason, and it is possible to find by examining the execution plan.

Let’s consider an example. This example, as well as some examples in subsequent 

chapters, uses larger tables, which are not included in the postgres_air distribution due 

to their size. These tables are necessary to illustrate cases that occur in real life and that 
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you might come across. Here, the table boarding_pass_large is being used, which has 

the same structure as the boarding_pass table, but contains three times as many rows—

over 75,000,000 boarding passes. To create a larger table for experimentation, you can 

insert every row of the boarding_pass table three times.

In the postgres_air database, the current date is August 17, 2020. Let’s select a 

sample of 100 passengers who checked in during the last week:

SELECT * FROM boarding_pass_large

WHERE update_ts::date BETWEEN '2020-08-10' AND '2020-08-17'

LIMIT 100

Predictably, the execution plan presented in Figure 5-24 shows a sequential scan.

No problem, we’ve covered how to avoid this issue. Instead of converting the 

timestamp to date, we use an interval:

SELECT * FROM boarding_pass_large

WHERE update_ts BETWEEN '2020-08-10' AND '2020-08-18'

LIMIT 100

However, when we check the execution plan, we see that it still uses a sequential 

scan!

Why didn’t removing the column transformation cause PostgreSQL to use the 

index? The answer is in Figure 5-25. It is the result of the combination of relatively high 

selectivity of this index on a large table and the presence of the LIMIT operator. The 

query planner estimates that the specified selection condition will select over 700,000 

rows, which, recall, might require twice as many disk I/O operations. Since only 100 rows 

are required and since the order is not specified, it is faster to go ahead with a sequential 

scan of the table. There is a higher chance that the hundred records that satisfy this 

criterion will be found faster.

Figure 5-24.  Sequential scan due to column transformation
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The situation would be different if those 100 records needed to be selected in a 

particular order. Unless the sort order is on the indexed attribute, PostgreSQL will need 

to select all records before it can decide which ones are first.

Let’s change the SELECT statement to include ordering:

SELECT * FROM boarding_pass_large

WHERE update_ts::date BETWEEN '2020-08-10' AND '2020-08-17'

ORDER BY 1

LIMIT 100

Now the execution plan (shown in Figure 5-26) looks dramatically different.

Comparing the execution time for these two queries, the one with a sequential scan 

ran for 140 milliseconds, and the one with forced index access ran for 620 milliseconds, 

so the sequential scan was indeed more efficient in this case.

Figure 5-25.  Sequential scan due to high index selectivity

Figure 5-26.  Execution plan with sorting
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�Let PostgreSQL Do Its Job!
In this section, we will use several modifications of the queries from the previous 

sections to illustrate how PostgreSQL modifies execution plans based on data statistics.

We hope that by now, a convincing case has been made that the optimizer does its 

job right most of the time, and our goal in most cases is just to give it enough flexibility to 

make the right choice.

Let’s get back to the query on a large table from the previous section:

SELECT * FROM boarding_pass_large

WHERE update_ts BETWEEN '2020-08-10' AND '2020-08-18'

LIMIT 100

The execution plan for this query is shown in Figure 5-25, and the PostgreSQL 

optimizer chose a sequential scan, because the interval of seven days was too large to get 

any benefits from index access. Now, let’s reduce the time interval:

SELECT * FROM boarding_pass_large

WHERE update_ts BETWEEN '2020-08-15' AND '2020-08-18'

LIMIT 100

The execution plan for this query in Figure 5-27 shows that index-based access is 

used.

Continuing to check different intervals, we will see that eight days is the pivot point 

in this case. If the start of the interval is any date after August 10, the execution plan will 

show index usage.

Even more interestingly, if LIMIT 100 is removed from the query, the execution 

plan will show an index scan, but if we increase the interval by just one more day, the 

execution plan will divert to a sequential scan, even without LIMIT 100, as shown in the 

corresponding execution plans in Figures 5-28 and 5-29.

Figure 5-27.  A plan changes to index access when the time interval is smaller
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Let’s see another example—the query in Listing 5-13. We observed that depending 

on how selective the last name of the passenger is, the order of joins (and applying 

indexes) will change. In fact, experimenting with different last names, it is possible to 

identify the selectivity at which the execution plan flips (around 200 occurrences).

Finally, let’s look at one relatively simple SQL statement. Three SELECT statements 

in Listing 5-15 are identical except the filtering values for each search criterion. In 

the first query, departure airport has high selectivity, and passenger name has low 

selectivity. In the second query, both values are highly selective, and in the last query, 

departure airport has low selectivity. The plans, presented in Figures 5-30, 5-31, and 5-32, 

differ in join algorithms, the order of joins, and the indexes that are used.

Listing 5-15.  SELECT with three different sets of parameters

--#1

SELECT

p.last_name,

p.first_name

FROM passenger p

JOIN boarding_pass bp USING (passenger_id)

JOIN booking_Leg bl USING (booking_leg_id)

JOIN flight USING(flight_id)

WHERE departure_airport='LAX'

Figure 5-28.  Execution plan using an index scan

Figure 5-29.  Execution plan using a sequential scan
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AND lower(last_name)='clark'

--#2

SELECT

p.last_name,

p.first_name

FROM passenger p

JOIN boarding_pass bp USING (passenger_id)

JOIN booking_Leg bl USING (booking_leg_id)

JOIN flight USING(flight_id)

WHERE departure_airport='LAX'

AND lower(last_name)=' smith'

--#3

SELECT

p.last_name,

p.first_name

FROM passenger p

JOIN boarding_pass bp USING (passenger_id)

JOIN booking_Leg bl USING (booking_leg_id)

JOIN flight USING(flight_id)

WHERE departure_airport='FUK' AND lower(last_name)='smith'

Chapter 5  Short Queries and Indexes



95

Figure 5-30.  An execution plan for query #1
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Figure 5-31.  An execution plan for query #2
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�How to Build the Right Index(es)?
At the start of this chapter, a minimal set of indexes was defined in the postgres_air schema. 

Almost every time we wanted to improve query performance, we suggested building yet 

another index. All of these indexes indeed helped to improve execution time. What was 

never discussed was whether additional justification is needed to create a new index.

�To Build or Not to Build
Twenty years ago, we were more cautious when deciding whether to add yet another 

index. Two major reasons against creating too many indexes are that indexes take 

up extra space in the database and that insert and update operations become slow 

when there are too many indexes to update along with the record itself. The prevailing 

guidance used to be to drop all indexes on a table before a bulk load and then to create 

them again. Some textbooks on databases still offer the same recommendation—not to 

drop the indexes, but to be mindful regarding the number of indexes on a table.

Figure 5-32.  An execution plan for query #3
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Since then, times have changed. With current hard- and software, the situation is 

different. Disk storage is cheaper, disks are faster, and, in general, fast response is more 

valuable than saving disk space. Twenty years ago, having a table in your database with 

the cumulative size of its indexes exceeding the size of the table itself was a red flag. 

These days, it’s the norm for OLTP systems. But still, the question remains: when is 

enough enough?

�Which Indexes Are Needed?
It is challenging to provide any general recommendations regarding which indexes are 

necessary. In OLTP systems, response time is usually critical, and any short query should 

be index-supported.

We recommend creating partial and covering indexes whenever it makes sense. 

Partial indexes are usually smaller than regular indexes and are more likely to fit in main 

memory. Covering indexes save trips to the table, thus allowing the engine to perform 

most processing in main memory.

Extra time needed for inserts and updates is usually less critical than fast response. 

However, you should always watch this time and evaluate the inventory of indexes if 

slowness is detected. The unique/primary key indexes and foreign keys that reference 

other unique/primary key fields are usual culprits of slowness, as well as triggers on 

insert/update. In each case, you will need to evaluate the importance of data integrity vs. 

the speed of updates.

There are a number of queries available online that calculate the total size of indexes 

on each table, and most monitoring tools will alert you about excessive growth.

�Which Indexes Are Not Needed?
Even though we are usually not concerned with extra disk space needed for indexes, we 

do not want to create database objects that are useless. The PostgreSQL catalog view 

pg_stat_all_indexes shows the total number of index uses (scans, reads, and fetches) 

since the last statistics reset.

Note that some primary key indexes are never used for data retrieval; however, they 

are vital for data integrity and should not be removed.
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�Indexes and Short Query Scalability
In this section, we will discuss how to optimize short queries so that they will remain 

performant when data volumes increase.

In Chapter 1, we mentioned that optimization does not stop when a query goes 

to production. We should continue to monitor performance and proactively identify 

changes in performance dynamics.

With short queries, such performance monitoring is vital, since query behavior can 

change dramatically when data volumes grow, especially when the speed of growth is 

different for different tables.

When a query is index-supported, there is at least some assurance that it is scalable, 

because the number of accesses to index grows only logarithmically relative to table 

growth. But if the size of a table grows fast, the index might grow large enough not to 

fit in main memory, or it might be pushed out by indexes for competing queries. If this 

happens, execution time may increase sharply.

It is possible that in the beginning a query works fast without any indexes, and we 

might not know for sure which indexes will be needed in the future. It is also possible 

that a condition for a partial index was very restrictive and index access was very fast, 

but later, with more and more records satisfying the condition, the index became less 

efficient.

In short, although we strive to make sure short queries are scalable and will perform 

well even when data volumes grow, we can’t assume that anything is optimized 

“forever.” We should always keep an eye on data volume, value distributions, and other 

characteristics that can interfere with performance.
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�Summary
This chapter covered short queries and what techniques can be used to optimize them. 

The primary optimization goal for short queries is to apply the most restrictive search 

criteria first and to ensure that all intermediate results remain small. As such, the chapter 

discussed the role of indexes for short queries and showed how to determine what 

indexes are needed to create to support specific queries.

This chapter also showed various execution plans and how to read them to 

understand the order of joins and filtering, as well as discussing various types of indexes 

available in PostgreSQL and when they can be useful. More complex index types will be 

considered in depth in Chapter 14.

Chapter 5  Short Queries and Indexes



101
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021 
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_6

CHAPTER 6

Long Queries and Full 
Scans
Chapter 5 discussed short queries and explained how to identify short queries and 

what optimization strategies and techniques can be used with them. It also covered 

the importance of indexes for short queries and the most commonly used index types 

and their applications. Chapter 5 also gave the opportunity to practice execution plan 

reading skills and hopefully acquire some confidence in the PostgreSQL optimizer.

This chapter concerns long queries. Some queries just can’t run in a fraction of 

a second, no matter how well written. This does not mean they can’t be optimized. 

Many practitioners hold that since analytical reports do not have strict response time 

requirements, it is not important how fast or slow they run. In extreme cases, report 

developers make no effort to make sure that reports are complete in a reasonable time, 

giving the excuse that the query only runs once a day or once a week or once a month.

This is a dangerous practice. If report performance is neglected, performance can 

easily degrade from minutes to hours or more. We have observed reports that run for 

six days before completion! And when the situation becomes that severe, it is not easy 

to fix in a limited time frame. Often, when an analytical report is developed, source data 

volumes are really small, and everything performs well. It is the job of SQL developers 

to examine execution plans even if queries are running fine now and to be proactive to 

prevent future performance degradation.

�Which Queries Are Considered Long?
Chapter 5 introduced the formal definition of a short query. It is logical to assume that all 

queries that are not short are long. This is true, but a definition based on negation might 

not be intuitive to apply in practice.

https://doi.org/10.1007/978-1-4842-6885-8_6#DOI
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The two examples of long queries from Chapter 5 (Listings 5-1 and 5-3) are copied 

here in Listings 6-1 and 6-2, respectively. The first of the two queries is a long query with 

massive output; the query returns every possible combination of arrival and departure 

airports. The second one produces only one line of output—showing the average length 

of flights and number of passengers for all flights in the postgres_air schema—but is still 

classified as a long query.

Listing 6-1.  Long query with a large result set

SELECT d.airport_code AS departure_airport

       a.airport_code AS arrival_airport

FROM  airport a,

      airport d

WHERE a.airport_code <> d.airport_code

Listing 6-2.  Long query with a one-row result set

SELECT avg(flight_length),

avg (passengers)

FROM (SELECT flight_no,

scheduled_arrival -scheduled_departure AS flight_length,

count(passenger_id) passengers

  FROM flight f

    JOIN booking_leg bl ON bl.flight_id = f.flight_id

    JOIN passenger p ON p.booking_id=bl.booking_id

      GROUP BY 1,2) a

So what is a long query, anyway?

A query is considered long when query selectivity is high for at least one of the 
large tables; that is, almost all rows contribute to the output, even when the output 
size is small.
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What are the optimization goals for long queries? A common misconception 

explicitly refuted in this chapter is that if a query is long, there is no way to significantly 

improve its performance. However, each of us can share experiences when we were able 

to improve the performance of a long query by an order of several hundred times. Such 

improvements are made possible when two optimization strategies are applied:

	 1.	 Avoid multiple table scans.

	 2.	 Reduce the size of the result at the earliest possible stage.

The remainder of this chapter explains these techniques in detail and will describe 

several methods to achieve this goal.

�Long Queries and Full Scans
Chapter 5 stated that short queries require the presence of indexes on columns included 

in search criteria. For long queries, it is the converse: indexes are not needed, and if 

tables are indexed, we want to ensure that indexes are not used.

Why are full table scans desirable for long queries? As shown in Figure 3-1, when the 

number of rows needed is large enough, index access will require more I/O operations. 

What percentage or number of records is “large enough” varies and depends on many 

different factors. By now, it should not be a surprise that most of the time, PostgreSQL 

estimates this percentage correctly.

Chapter 5 said something very similar about short queries. But “what is large 

enough” is more difficult to estimate than “what is small enough.”

The estimate of how many records is too many evolves as better hardware, faster 

disks, and more powerful CPUs become available. For this reason, this book tries 

to avoid giving specific number thresholds that will necessarily change. To build 

representative cases for this chapter, several tables were built with hundreds of millions 

of rows of data. These are too large to be included with the postgres_air distribution. 

However, it would be unsurprising if some of the examples in this chapter wouldn’t be 

representative in a couple of years.
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�Long Queries and Hash Joins
In the majority of examples in this chapter, a hash join algorithm is used, and that’s 

exactly what we hope to see in the execution plan of a long query. Why is a hash join 

preferable in this case? In Chapter 3, we estimated the costs of both nested loop and 

hash join algorithms.

For nested loop, the cost of the join of tables R and S is

cost(nl,R,S)=size(R) * size(S)+size(R)*size(S)/size(JA)

For hash join, it is

cost(hash,R,S)=size(R)+size(S)+size(R)*size(S)/size(JA)

where JA represents the number of distinct values of the join attribute. As mentioned 

in Chapter 3, the third term, which represents the size of the result set, should be 

added to the cost of both algorithms, but for the nested loop algorithm, this value is 

significantly less than the cost of the join itself. For long queries, the size of R and S is 

large (because they are not significantly restricted), making the cost of nested loops 

significantly higher than the cost of a hash join.

If we have table R with 1,000,000 rows and table S with 2,000,000 rows and the 

condition JA has 100,000 distinct values, the cost of the nested loop algorithm will be 

2,000,020,000,000, and the cost of the hash join algorithm will be 23,000,000.

Hash joins work best when the first argument fits into main memory. The size of 

memory available can be tuned with server parameters.

In some cases, a merge join algorithm is used, for example, in Figure 6-10 later in 

this chapter. In Chapter 3, we mentioned that a merge join can be more efficient when at 

least one of the tables is presorted. In this case, since unique values are being selected, 

sorting is indeed performed.

Summarizing Chapter 5 and this chapter, most of the time, index access works well 

with the nested loop algorithm (and vice versa), and sequential scans work well with a 

hash join.

Since PostgreSQL does not have optimizer hints, is there any way to force a specific 

join algorithm? As already mentioned multiple times, the best thing we can do is not to 

restrict the optimizer in the manner we write SQL statements.
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�Long Queries and the Order of Joins
Join order for small queries was discussed in Chapter 5. For short queries, the desired 

join order is the one that would prompt the usage of indexes with lower selectivity first.

Since we do not expect indexes to be used in long queries, does the order of 

joins make a difference? Perhaps surprisingly, it does. Large tables can differ in size 

significantly. Also, in practice, when selecting “almost all records,” the word “almost” can 

mean as little as 30% and as much as 100%. Even when indexes are not used, the order of 

joins matters, because it is important to keep interim datasets as small as possible.

The most restrictive joins (i.e., joins that reduce the result set size the most) should 
be executed first.

The optimizer will most often choose the correct order; however, it is the 

responsibility of the developer to verify that the optimizer has chosen correctly.

�What Is a Semi-join?
Often, the most restrictive join in a query is a semi-join. Let’s pause to offer a formal 

definition.

A semi-join between two tables R and S returns rows from table R for which there 
is at least one row from table S with matching values in the joining columns.

To clarify, a semi-join is not an extra SQL operation; one wouldn’t write something 

like SELECT a.* FROM a SEMI JOIN b. A semi-join is a special kind of join that satisfies 

two specific conditions: First, only columns from the first table appear in the result set. 

Second, rows from the first table are not duplicated where there is more than one match 

in the second table. Most often, a semi-join doesn’t include a JOIN keyword at all. The 

first and most common way of defining a semi-join is presented in Listing 6-3. This 

query finds all flight information for flights with at least one booking.
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Listing 6-3.  Defining a semi-join using the EXISTS keyword

SELECT * FROM flight f WHERE EXISTS

  (SELECT flight_id FROM booking_leg WHERE flight_id=f.flight_id)

This query uses an implicit join with table booking_leg to filter records of table 

flight. In other words, instead of supplying values for filtering, we use column values 

from another table.

An equivalent query showing another way to specify a semi-join is presented in 

Listing 6-4.

Listing 6-4.  Defining a semi-join using the IN keyword

SELECT * FROM flight WHERE flight_id IN

  (SELECT flight_id FROM booking_leg)

How can these queries contain joins when neither uses the JOIN keyword? The 

answer is in the execution plan, which is identical for both queries, shown in Figure 6-1.

You can see a SEMI JOIN in this plan, even though the keyword JOIN was not used in 

the query itself.

Although these two ways of writing queries with semi-joins are semantically 

identical, in PostgreSQL, only the first one guarantees the presence of SEMI JOIN in 

the execution plan. The plans are identical for both queries in Listings 6-3 and 6-4, but 

in other cases, the optimizer may choose to rewrite it as a regular join. This decision is 

based both on the cardinality of the relationship between two tables and filter selectivity.

Figure 6-1.  Execution plan for a semi-join
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�Semi-joins and Join Order
Since a semi-join may significantly reduce the size of the result set and, by definition, 

will never increase its size, semi-joins are often the most restrictive join in the query, and 

as stated earlier, the most restrictive join should be executed first.

Semi-joins never increase the size of the result set; check whether it is beneficial 
to apply them first.

Of course, this is possible only when a semi-join condition applies to the columns of 

one of the tables. In cases when a semi-join condition references more than one table, 

those tables must be joined before the semi-join is applied.

Consider the example in Listing 6-5, which shows bookings departing from airports 

located in the United States.

Listing 6-5.  Order of joins when a semi-join is present

SELECT departure_airport,

       booking_id,

       is_returning

  FROM booking_leg bl

  JOIN flight f USING (flight_id)

  WHERE departure_airport

        IN (SELECT airport_code

                   FROM airport

                        WHERE iso_country='US')
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Figure 6-2 shows the execution plan for this query.

This execution plan does not show a semi-join operation, but rather a hash join, 

since there are no duplicates to remove. However, it’s still a logical semi-join and 

most restrictive, so it’s executed first. It’s also worth taking a brief diversion to note the 

sequential scan on the airport table. The sequential scan is used because there is no 

index on the iso_country field. Let’s create this index and see whether it will speed 

things up.

If this index exists

CREATE INDEX airport_iso_country

ON airport(iso_country);

…the query planner will use it, as shown in Figure 6-3. However, the execution time 

in this case will be the same or worse than the time with a sequential scan, because the 

index is not selective enough. We are going to drop this index for now.

Figure 6-2.  Execution plan for the query from Listing 6-5
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�More on Join Order
Let’s take a look at a more complex example in Listing 6-6, of a long query with more 

than one semi-join. This query, like the previous, finds bookings for flights departing 

from the United States, but is limited to bookings updated since July 1, 2020. Since we do 

not have an index on the update_ts column of the booking table, let’s create it now and 

see whether it will be used:

CREATE INDEX booking_update_ts ON booking  (update_ts);

Listing 6-6.  Two semi-joins in one long query

SELECT departure_airport, booking_id, is_returning

  FROM booking_leg bl

  JOIN flight f USING (flight_id)

  WHERE departure_airport IN

Figure 6-3.  Execution plan with an index scan
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            (SELECT airport_code

                    FROM airport WHERE iso_country='US')

        AND bl.booking_id IN

            (SELECT booking_id FROM booking

                    WHERE update_ts>'2020-07-01')

The execution plan in Figure 6-4 shows that a semi-join on airport.iso_country 

is executed first. Just as in the preceding code, although we use the keyword IN, the 

optimizer uses JOIN, not SEMI JOIN, because there is no need to eliminate duplicates.

Three things in this execution plan are worth noting. First, although index-based 

access is used to obtain some interim results and we can see that the nested loop join 

algorithm is used in this case, the final join is hash based, because a significant portion 

of both datasets is used. Second, the semi-join uses a table sequential scan. And even 

though this way we are reading all the rows from the airport table, the result set 

size is smaller than it would be if we would join flights with booking legs and filter by 

the airport location afterward. That’s the benefit of the optimizer choosing the most 

restrictive semi-join.

Lastly, although there is an index on the update_ts column of the booking table, this 

index is not used, because the condition update_ts>'2020-07-01'covers almost half the 

rows in this table.

Figure 6-4.  Execution plan with two semi-joins
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However, if we change the filtering criteria in this query (shown in Listing 6-6) 

and reduce the interval to update_ts>'2020-08-01', the execution plan will change 

drastically—see Figure 6-5. In this new execution plan, we can see that not only is 

the filter on update_ts more restrictive but also the optimizer judges that it may be 

beneficial to use the index access.

Is index access to the booking table indeed the best option in this case? We can 

compare by blocking index access applying a column transformation to the update_ts 

column, rewriting the filter the following way: coalesce(update_ts, '2020-08-03')> 

'2020-08-02'.

As seen in Figure 6-6, this forces a sequential scan. And, in fact, blocking the index 

and forcing the sequential scan performs better than index access on larger time 

intervals. As the time interval is reduced further, index access has the advantage. ‘2020-

08-01’ appears to be a tipping point; for all dates starting from ‘2020-08-02’, the index 

access will work better.

Figure 6-5.  Execution plan with two semi-joins with a different selectivity
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�What Is an Anti-join?
Just like it sounds, an ANTI JOIN is the opposite of a SEMI JOIN. Formally

An anti-join between two tables R and S returns rows from table R for which there 
are no rows from table S with a matching value in the joining column.

As in the case of a semi-join, there is no ANTI JOIN operator. Instead, a query with an 

anti-join can be written in two different ways, presented in Listings 6-7 and 6-8. These 

queries return flights that have no bookings.

Listing 6-7.  Defining an anti-join using the NOT EXISTS keyword

SELECT * FROM flight f WHERE NOT EXISTS

  (SELECT flight_id FROM booking_leg WHERE flight_id=f.flight_id)

Listing 6-8.  Defining an anti-join using NOT IN

SELECT * FROM flight WHERE flight_id NOT IN

  (SELECT flight_id FROM booking_leg)

Figure 6-6.  Forcing a full scan
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Just as with semi-joins, although both ways of writing a query with an anti-join 

are semantically equivalent, in PostgreSQL, only the NOT EXISTS version guarantees 

the anti-join in the execution plan. Figures 6-7 and 6-8 show the execution plan for 

Listings 6-7 and 6-8, respectively. In this particular case, both queries will be executed in 

approximately the same time, and the plan with an anti-join is only slightly faster. There 

are no generic guidelines for which syntax for an anti-join is better. Developers should 

try both ways to see which will perform better in their use case.

�Semi- and Anti-joins Using the JOIN Operator
At this point, the astute reader might wonder why we can’t use an explicit join and 

specify exactly what we need. Why use the EXISTS and IN operators? The answer is it’s 

possible and, in some cases, it might indeed be a better solution than using semi-joins. 

But it takes care to construct a logically equivalent query.

The queries in Listings 6-3 and 6-4 are semantically equivalent, but Listing 6-9 is 

not. Recall that Listings 6-3 and 6-4 return information for flights that have at least one 

booking.

Figure 6-7.  Execution plan with an anti-join

Figure 6-8.  Execution plan without an anti-join
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Listing 6-9.  Join returning duplicates

SELECT f.*

FROM flight f

JOIN booking_leg bl USING (flight_id)

By contrast, Listing 6-9 will return as many rows for each flight as the number of 

bookings with the corresponding flight_id. To return only one record per flight, like the 

original query, it would need to be rewritten as shown in Listing 6-10.

Listing 6-10.  Query with a join returning one row per flight

SELECT *

FROM flight f

JOIN (select distinct flight_id FROM booking_leg) bl USING (flight_id)

The execution plan for this query is presented in Figure 6-9, and it does not contain a 

semi-join.

It is not obvious from the execution plan whether this query will be faster or slower 

than the query with a semi-join. In practice, it runs more than twice as fast as the query 

from Listing 6-3.

If you only need the IDs of the flights that have a booking, it may be enough to run 

the query in Listing 6-11.

Figure 6-9.  Execution plan for the query in Listing 6-10
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Listing 6-11.  Query with a join returning only flight_id with one row per flight

SELECT flight_id

FROM flight f

JOIN (select distinct flight_id FROM booking_leg) bl USING (flight_id)

The execution plan for this query, shown in Figure 6-10, differs significantly from the 

one in Figure 6-9, and the execution is even faster.

What about anti-joins? An anti-join cannot create duplicates, which means that an 

OUTER JOIN with subsequent filtering of NULL values can be used. Thus, the query in 

Listing 6-7 is equivalent to the query in Listing 6-12.

Listing 6-12.  Outer join with filtering of NULL values

SELECT f.flight_id

FROM flight f

LEFT OUTER JOIN booking_leg bl USING (flight_id)

WHERE bl.flight_id IS NULL

The execution plan for this query includes an anti-join—see Figure 6-11.

Figure 6-10.  Execution plan with a merge join

Figure 6-11.  Execution plan for the query in Listing 6-12
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The optimizer recognizes this construct and rewrites it to an anti-join. This optimizer 

behavior is stable and can be relied upon.

�When Is It Necessary to Specify Join Order?
So far, the optimizer has chosen the best join order without any intervention from the 

SQL developer, but this isn’t always the case.

Long queries are more likely in OLAP systems. In other words, a long query is 

most likely an analytical report that most likely joins a number of tables. This number, 

as anyone who has worked with OLAP systems can attest, can be massive. When the 

number of tables involved in a query becomes too large, the optimizer no longer 

attempts to find the best possible join order. Although most system parameters are out of 

the scope of this book, there is one worth mentioning: join_collapse_limit.

This parameter caps the number of tables in a join that will be still processed by 

the cost-based optimizer. The default value of this parameter is 8. This means that if 

the number of tables in a join is eight or fewer, the optimizer will perform a selection of 

candidate plans, compare plans, and choose the best one. But if the number of tables 

is nine or more, it will simply execute the joins in the order the tables are listed in the 

SELECT statement.

Why not set this parameter to the highest possible value? There is no official upper 

limit to this parameter, so it can be the maximum integer, which is 2147483647. However, 

the higher you set this parameter, the more time will be spent to choose the best plan. 

The number of possible plans to consider for a query joining n is n! Thus, when the 

value is 8, a maximum of 40,000 plans can be compared. If this value is increased to 10, 

the number of plans to consider will increase to three million, and the number rises 

predictably from there—when this parameter is set to 20, the total number of plans is 

already too big to fit the integer. One of us, the authors, once observed a data scientist 

locally changing this parameter to 30, to deal with a query with 30 joins. The results were 

excruciating—not only did the execution stall but even the EXPLAIN command couldn’t 

return a result.

This is easy to experiment with; this parameter can be set locally on a session level, 

so run the command

SET join_collapse_limit = 10

and check the runtime of the EXPLAIN command.
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In addition, recall that table statistics are not available for intermediate results, 

which may cause the optimizer to choose a suboptimal join order. If the SQL developer 

knows a better order of joins, it is possible to force the desired join order by setting join_

collapse_limit to 1. In this case, the optimizer will generate a plan in which the joins 

will be executed in the order they appear in the SELECT statement.

Force a specific join order by setting the join_collapse_limit parameter to 1.

For example, if the command in Listing 6-13 is executed (i.e., an EXPLAIN on the 

query in Listing 6-6), the execution plan in Figure 6-12 shows that joins are executed 

exactly in the order they are listed, and the index on update_ts is not used (which in this 

case affects performance negatively).

Listing 6-13.  Disabling cost-based optimization

SET join_collapse_limit=1;

EXPLAIN

  SELECT departure_airport, booking_id, is_returning

  FROM booking_leg bl

  JOIN flight f USING (flight_id)

  WHERE departure_airport IN (SELECT airport_code

                  FROM airport WHERE iso_country='US')

      AND bl.booking_id IN (SELECT booking_id FROM booking

                         WHERE update_ts>'2020-08-01')
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Another way to force a specific join order is using common table expressions, which 

will be discussed in Chapter 7.

�Grouping: Filter First, Group Last
In Chapter 5, we mentioned that for short queries, grouping is not time-consuming. 

For long queries, the way we approach grouping may have a very significant impact on 

performance. Suboptimal decisions regarding the point at which grouping is performed 

often become a major source of overall query slowness.

Listing 6-14 shows a query that calculates the average price of a trip and the total 

number of passengers for each flight for all flights with any bookings.

Listing 6-14.  Average ticket price and total number of passengers per flight

SELECT bl.flight_id,

       departure_airport,

Figure 6-12.  Execution plan with disabled cost-based optimization
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      (avg(price))::numeric (7,2) AS avg_price,

       count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

GROUP BY 1,2

To calculate these numbers for just one flight, a common anti-pattern is the query in 

Listing 6-15.

Listing 6-15.  Average ticket price and total number of passengers on a specific 

flight

SELECT * FROM

      (SELECT bl.flight_id,

             departure_airport,

             (avg(price))::numeric (7,2) AS avg_price,

             count(DISTINCT passenger_id) AS num_passengers

       FROM booking b

       JOIN booking_leg bl USING (booking_id)

       JOIN flight f USING (flight_id)

       JOIN passenger p USING (booking_id)

       GROUP BY 1,2) a

WHERE flight_id=222183

In this query, we select the data for one flight from an inline SELECT. Earlier versions 

of PostgreSQL could not process such constructs efficiently. The database engine 

would first execute the inner SELECT with grouping and only then select the line that 

corresponds to the specific flight. To make sure the query is executed efficiently, one 

would need to write it as shown in Listing 6-16.

Listing 6-16.  Pushing a condition inside the GROUP BY

SELECT bl.flight_id,

       departure_airport,

      (avg(price))::numeric (7,2) AS avg_price,

       count(DISTINCT passenger_id) AS num_passengers
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FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

WHERE flight_id=222183

GROUP BY 1,2

But now, due to ongoing improvements to the optimizer, both queries will be 

executed using the execution plan in Figure 6-13. This plan uses index access, and the 

execution time for this query is about 2 seconds.

Figure 6-13.  Execution plan for one flight
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For all columns used in the GROUP BY clause, filtering should be pushed inside the 
grouping.

For the current version of PostgreSQL, the optimizer takes care of this rewrite, but it 

may still be required in older versions.

Let’s look at another example. Listing 6-17 calculates the same numbers (average 

price and number of customers) for all flights departing from ORD.

Listing 6-17.  Select for multiple flights

SELECT flight_id,

avg_price,

num_passengers

FROM (SELECT bl.flight_id,

       departure_airport,

      (avg(price))::numeric (7,2) AS avg_price,

       count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

GROUP BY 1,2 )a  WHERE departure_airport='ORD'

The execution plan for this query is presented in Figure 6-14. This query takes about 

1.5 minutes to execute. It is a large query, and most of the joins are executed using the 

hash join algorithm. The important part is that the condition on departure_airport is 

applied first, before the grouping.
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However, more complex filtering conditions can’t be pushed inside grouping. 

Listing 6-18 calculates the same statistics, but the list of flight_id is not passed 

directly but is selected from the booking_leg table.

Listing 6-18.  Condition can’t be pushed inside the grouping

SELECT a.flight_id,
a.avg_price,
a.num_passengers
FROM (SELECT bl.flight_id,
       departure_airport,
      (avg(price))::numeric (7,2) AS avg_price,
       count(DISTINCT passenger_id) AS num_passengers
FROM booking b
JOIN booking_leg bl USING (booking_id)

Figure 6-14.  Execution plan for Listing 6-17
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JOIN flight f USING (flight_id)
JOIN passenger p USING (booking_id)
GROUP BY 1,2  ) a
WHERE flight_id in
(SELECT flight_id FROM flight WHERE scheduled_departure BETWEEN '07-03-
2020' AND '07-05-2020')

The execution plan (Figure 6-15) shows that grouping is done first and filtering is 

applied to the result of grouping. This means that, first, the calculations are performed 

for all flights in the system and then the subset is selected. The total execution time for 

this query is 10 minutes.

Figure 6-15.  Execution plan
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The query in Listing 6-18 is an example of what we call pessimization—using 

practices that guarantee slowing down the execution of a query. It’s easy to see why 

this query is written the way it is. First, a database developer figures out how to perform 

certain calculations or how to select specific values, and then they apply a filter to the 

result. Thus, they limit the optimizer to a certain order of operations, which in this case is 

not optimal.

Instead, the filtering can be done in the inner WHERE clause. When this change is 

made, there’s no longer a need for an inline SELECT—see Listing 6-19.

Listing 6-19.  Condition is pushed inside grouping

SELECT bl.flight_id,

       departure_airport,

      (avg(price))::numeric (7,2) AS avg_price,

       count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

         WHERE scheduled_departure

         BETWEEN '07-03-2020' AND '07-05-2020'

GROUP BY 1,2

The execution time is about one minute, and the execution plan is presented in 

Figure 6-16. This can be expressed as the generalization of the technique explained in 

the previous example.

Filter rows are not needed for an aggregate prior to grouping.

Even the optimal execution of this query is not instantaneous, but it is the best we 

can achieve. Now is a good time to recall that optimization goals should be realistic. A 

long query on large data volumes can’t be executed in a fraction of seconds, even when 

executed optimally. The key is to use as few rows as necessary, but no fewer.
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�Grouping: Group First, Select Last
In some cases, the course of actions should be the opposite: GROUP BY should be 

executed as early as possible, followed by other operations. As you might have already 

guessed, this order of actions is desirable when grouping will reduce the size of the 

intermediate dataset.

The query in Listing 6-20 calculates the number of passengers departing from each 

city by month. In this case, it is not possible to reduce the number of rows needed, as all 

flights are used in the calculation.

Listing 6-20.  Calculating number of passengers per city per month

SELECT

city,

date_trunc('month', scheduled_departure) AS month,

count(*)  passengers

FROM airport  a

JOIN flight f ON airport_code = departure_airport

Figure 6-16.  Execution plan with filtering pushed inside grouping
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JOIN booking_leg l ON f.flight_id =l.flight_id

JOIN boarding_pass b ON b.booking_leg_id = l.booking_leg_id

GROUP BY 1,2

ORDER BY 3 DESC

The execution time for this query is over 7 minutes, and the execution plan is in 

Figure 6-17.

The execution of this query is significantly improved with a nontrivial rewrite, as 

shown in Listing 6-21.

Listing 6-21.  Query rewrite that forces grouping be done first

SELECT

city,

date_trunc('month', scheduled_departure),

sum(passengers)  passengers

FROM airport  a

Figure 6-17.  Execution plan with grouping done last
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JOIN flight f ON airport_code = departure_airport

JOIN (

      SELECT flight_id, count(*) passengers

      FROM booking_leg l

      JOIN boarding_pass b USING (booking_leg_id)

      GROUP BY flight_id

) cnt

USING (flight_id)

GROUP BY 1,2

ORDER BY 3 DESC

What is happening here? First, the number of departing passengers is summed 

for each flight in the inline view cnt. After, the result is joined with the flight table to 

retrieve airport code and then joined with the airport table to find the city where each 

airport is located. After this, the flight totals are summed by city. This way, the execution 

time is 2.5 minutes. The execution plan is shown in Figure 6-18.
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�Using SET operations
We rarely use set theoretical operations in SQL queries. For large queries, however, these 

operations may prompt the optimizer to choose more efficient algorithms.

Use set operations to (sometimes) prompt an alternative execution plan and 
improve readability.

Figure 6-18.  Execution plan with grouping forced to be first

Chapter 6  Long Queries and Full Scans



129

Often, we can

•	 Use EXCEPT instead of NOT EXISTS and NOT IN.

•	 Use INTERSECT instead of EXISTS and IN.

•	 Use UNION instead of complex selection criteria with OR.

Sometimes, there can be significant performance gains, and sometimes the 

execution time changes only slightly, but the code becomes cleaner and easier to 

maintain. Listing 6-22 shows a rewrite of the query in Listing 6-8, returning flights with 

no bookings.

Listing 6-22.  Using EXCEPT instead of NOT IN

SELECT flight_id FROM flight f

  EXCEPT

  SELECT flight_id FROM booking_leg

Execution time is 1 minute and 3 seconds, which is almost twice as fast as an anti-join.

The execution plan with the EXCEPT operation is presented in Figure 6-19.

Listing 6-23 shows a rewrite of the query in Listing 6-4 using set operations, showing 

all flights with a booking.

Figure 6-19.  Execution plan with EXCEPT
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Listing 6-23.  Using INTERSECT instead of IN

SELECT flight_id FROM flight f

  INTERSECT

  SELECT flight_id FROM booking_leg

The execution time of this query is 49 seconds. This is less than the version of the 

query using the IN keyword and approximately equal to the runtime of the query with an 

index-only scan (see Listing 6-10). The execution plan is shown in Figure 6-20.

We rarely need to rewrite complex selection criteria with OR into set theoretical UNION 

ALL, because most of the time the PostgreSQL optimizer does a decent job analyzing 

such criteria and making use of all suitable indexes. However sometimes rewriting this 

way makes code more maintainable, especially when the query contains a large number 

of different selection criteria connected with OR. Listing 6-24 is a query that calculates the 

number of passengers on delayed flights from FRA using two different sets of selection 

criteria. The first group is passengers on flights delayed by more than an hour, with 

changes to the boarding pass more than 30 minutes after the scheduled departure. The 

second is passengers on flights delayed by more than a half hour but less than an hour.

Listing 6-24.  Query with complex selection criteria with OR

SELECT

CASE

WHEN actual_departure>scheduled_departure + interval '1 hour' THEN 'Late 

group 1'

ELSE 'Late group 2'

      END AS grouping,

Figure 6-20.  Execution plan with INTERSECT
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flight_id,

count(*) AS num_passengers

 FROM boarding_pass bp

  JOIN booking_leg bl USING (booking_leg_id)

  JOIN booking b USING (booking_id)

  JOIN flight f USING (flight_id)

WHERE departure_airport='FRA'

   AND actual_departure>'2020-07-01' AND ( (

   actual_departure>scheduled_departure + interval '30 minute'

   AND actual_departure<=scheduled_departure + interval '1 hour'

)

OR

  (actual_departure>scheduled_departure + interval '1 hour'

   AND bp.update_ts >scheduled_departure + interval '30 minute')

)

 GROUP BY 1,2

The rewrite of this query using UNION ALL is shown in Listing 6-25. The execution 

time difference is not significant (about 3 seconds), but the code is more maintainable.

Listing 6-25.  Rewrite of a complex condition with OR using UNION ALL

SELECT

  'Late group 1' AS grouping,

  flight_id,

  count(*) AS num_passengers

  FROM boarding_pass bp

  JOIN booking_leg bl USING (booking_leg_id)

  JOIN booking b USING (booking_id)

  JOIN flight f USING (flight_id)

  WHERE departure_airport='FRA' AND

  actual_departure>scheduled_departure + interval '1 hour' AND

  bp.update_ts  > scheduled_departure + interval '30 minutes'

  AND actual_departure>'2020-07-01'

GROUP BY 1,2

UNION ALL

SELECT
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  'Late group 2' AS grouping,

  flight_id,

  count(*) AS num_passengers

  FROM boarding_pass bp

  JOIN booking_leg bl USING(booking_leg_id)

  JOIN booking b USING (booking_id)

  JOIN flight f USING (flight_id)

  WHERE departure_airport='FRA' AND

   actual_departure>scheduled_departure + interval '30 minute'

   AND actual_departure<=scheduled_departure + interval '1 hour'

   AND actual_departure>'2020-07-01'

   GROUP BY 1,2

It’s worth noting that with large queries you always need to take into consideration 

how much RAM you have available. For both hash joins and set theoretical operations, 

if the participating datasets can’t fit into main memory, the execution speed increases 

significantly.

�Avoiding Multiple Scans
Another source of slowness in long queries is the presence of multiple table scans. This 

common problem is the direct result of imperfect design. Designs can be fixed, at least 

theoretically. But since we often find ourselves in situations where we can’t control the 

design, we are going to suggest ways to write performant queries even on an imperfect 

schema.

The situation that we are modeling in our postgres_air schema is not uncommon 

in the real world. The system is already up and running, and all of a sudden, we need to 

store some additional information for objects that are already present in the database.

For the past 30 years, the easiest solution in such cases is to use an entity-attribute-

value (EAV) table, which can store arbitrary attributes—those needed now and any that 

will eventually be needed. In the postgres_air schema, this pattern is implemented in 

the table custom_field. For each passenger, a passport number, a passport expiration 

date, and the country that issued the passport are stored. The attributes are accordingly 

named 'passport_num', 'passport_exp_date', and 'passport_country'.
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This table is not included into the postgres_air distribution. To run the example 

locally, execute the following script from the postgres_air GitHub repository:

https://github.com/hettie-d/postgres_air/blob/main/tables/custom_field.sql

Now, imagine a request for a report that lists passenger names and their passport 

information. Listing 6-26 is a typical suggested solution: the table custom_field is 

scanned three times! In order to avoid failover to the disk, passengers are limited to the 

first five million, which allows us to show the true ratio of execution times. The execution 

plan in Figure 6-21 confirms three table scans, and the execution time for this query is 5 

minutes.

Listing 6-26.  Multiple scans of a large table

SELECT

first_name,

last_name,

pn.custom_field_value AS passport_num,

pe.custom_field_value AS passport_exp_date,

pc.custom_field_value AS passport_country

FROM passenger p

JOIN custom_field pn ON pn.passenger_id=p.passenger_id

AND p.passenger_id<5000000

JOIN custom_field pe ON pe.passenger_id=p.passenger_id

AND pe.custom_field_name='passport_exp_date'

JOIN custom_field pc ON pc.passenger_id=p.passenger_id

AND pc.custom_field_name='passport_country'

WHERE pn.custom_field_name='passport_num'
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Scanning this table three times is like sorting apples, oranges, and lemons from one 

black box into three buckets, doing so by first sorting out all the apples, returning all 

the oranges and lemons back into the box, then sorting the oranges, and then finally 

returning to the box for the lemons. A more effective way to do this job would be to 

place all three buckets before you and sort each fruit into the correct bucket when first 

removing it from the black box.

When retrieving multiple attributes from an entity-attribute-value table, join to 
the table only once and use case statements in the SELECT list to return the 
appropriate values in each column.

To replicate this effect on the custom_field table, the query can be rewritten as 

shown in Listing 6-27.

Listing 6-27.  One table scan to retrieve multiple attributes

SELECT

last_name,

first_name,

coalesce(max(CASE WHEN custom_field_name ='passport_num'

Figure 6-21.  Execution plan with multiple scans
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 THEN custom_field_value ELSE NULL END),'') AS passport_num,

 coalesce(max(CASE WHEN custom_field_name='passport_exp_date'

 THEN custom_field_value ELSE NULL END),'') AS passport_exp_date,

 coalesce(max(CASE WHEN custom_field_name ='passport_country'

 THEN custom_field_value ELSE NULL END),'') AS passport_country

FROM passenger p JOIN custom_field cf

USING (passenger_id)

WHERE cf.passenger_id<5000000

AND p.passenger_id<5000000

GROUP by 1,2

The execution plan for Listing 6-27 is shown in Figure 6-22.

This looks much better—only one table scan—except that when you try to execute it, 

it will run significantly longer. A closer look shows why: there may be many passengers 

with the same first and last names, so not only does it take longer but the result is also 

incorrect. Let’s modify the query one more time—see Listing 6-28.

Figure 6-22.  One table scan
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Listing 6-28.  Correction for the query in Listing 6-27

SELECT

last_name,

first_name,

p.passenger_id,

coalesce(max(CASE WHEN custom_field_name ='passport_num'

 THEN custom_field_value ELSE NULL END),'') AS passport_num,

 coalesce(max(CASE WHEN custom_field_name='passport_exp_date'

 THEN custom_field_value ELSE NULL END),'') AS passport_exp_date,

 coalesce(max(CASE WHEN custom_field_name ='passport_country'

 THEN custom_field_value ELSE NULL END),'') AS passport_country

FROM passenger p JOIN custom_field cf

USING (passenger_id)

WHERE cf.passenger_id<5000000

AND p.passenger_id<5000000

GROUP by 3,1,2

The execution plan in Figure 6-23 looks much better—the grouping column is now 

passenger_id.

Figure 6-23.  Execution plan for Listing 6-28
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There’s one more optimization to make here; attributes from an EAV table are often 

joined to other tables, and we can reduce the size of the intermediate result set by 

“collapsing” and filtering this table to the needed values before executing other joins. 

This is a more specific case of the generalized technique of grouping before joining 

earlier.

Pull values from an EAV table into a subquery before joining to other tables.

Doing this for the passport example, we can modify the query one more time, as 

shown in Listing 6-29.

Listing 6-29.  Moving grouping to the subquery

SELECT

last_name,

first_name,

passport_num,

passport_exp_date,

passport_country

FROM

passenger p

JOIN

(SELECT cf.passenger_id,

coalesce(max(CASE WHEN custom_field_name ='passport_num'

 THEN custom_field_value ELSE NULL END),'') AS passport_num,

 coalesce(max(CASE WHEN custom_field_name='passport_exp_date'

 THEN custom_field_value ELSE NULL END),'') AS passport_exp_date,

 coalesce(max(CASE WHEN custom_field_name ='passport_country'

 THEN custom_field_value ELSE NULL END),'') AS passport_country

FROM custom_field cf

WHERE cf.passenger_id<5000000

GROUP BY 1) info

USING (passenger_id)

 WHERE p.passenger_id<5000000

The execution plan is presented in Figure 6-24.
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�Conclusion
This chapter formally defined long queries and explored optimization techniques for 

them.

The first important principle of this chapter is that indexes do not necessarily 

make queries run faster and can, in fact, make a long query run slower. A common 

misconception is that if no indexes can be built, there is nothing you can do to optimize 

a full table scan. Hopefully, this chapter has definitively demonstrated that there are 

multiple possibilities to optimize a full table scan.

As with short queries, long queries are optimized by reducing the size of 

intermediate results and doing the necessary work on as few rows as possible. In the 

case of short queries, this is accomplished by applying indexes on the most restrictive 

criteria. In the case of long queries, this is accomplished by being mindful of join order, 

applying semi- and anti-joins, and filtering before grouping, grouping before joining, 

and applying set operations.

Figure 6-24.  Execution plan with grouping moved to the subquery
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CHAPTER 7

Long Queries: Additional 
Techniques
Chapter 6 discussed multiple ways of improving the performance of long queries. Thus 

far, all covered techniques relate to rewriting queries without creating any additional 

database objects. This chapter addresses additional ways of improving long query 

performance, including different ways to materialize intermediate results. Temporary 

tables, CTEs (common table expressions), views, and materialized views are discussed—

when each tool can be useful for improving performance and how they can be abused 

and lead to performance degradation. Finally, the chapter covers partitioning and 

parallel execution.

�Structuring Queries
Those of you familiar with object-oriented programming (OOP) will be familiar with the 

concepts of decomposition (factoring) and encapsulation. OOP best practices dictate 

that code should be decomposed (or factored) into many smaller classes and objects 

responsible for a well-defined subset of system behavior, as well as encapsulated, 

restricting direct access to components and thus obscuring their implementation. These 

two principles make application code more readable and more manageable and make it 

easier to make changes.

Coming from this paradigm, when one is confronted with a single SELECT statement 

of 500+ lines, it’s understandably tempting to apply these same principles, factoring the 

code into smaller pieces and encapsulating some of the logic.

However, SQL's declarative nature dictates a very different style of factoring SQL 

queries from what would be used with application code. In SQL, as in any language, 

code should be kept easy to understand and modify, but not at the expense of 

performance.

https://doi.org/10.1007/978-1-4842-6885-8_7#DOI
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We can approach factoring and encapsulation in a variety of ways in SQL, each with 

their own advantages and pitfalls. Some are used (with varying effectiveness) to improve 

performance and store intermediate results. Others are used to make code reusable. 

Others impact the way data is stored. This chapter covers several approaches, and 

others, such as functions, will be covered in depth in subsequent chapters.

In any case, any decomposition or encapsulation should correspond to a logical 

entity—for example, a report or a daily refresh.

�Temporary Tables and CTEs
In Chapter 6, we mentioned that sometimes the attempt of SQL developers to speed up a 

query execution may result in slowing it down. This often happens when they decide to 

use temporary tables.

�Temporary Tables
To create a temporary table, one executes a regular create table statement, adding the 

keyword temporary, or just temp:

CREATE TEMP TABLE interim_results

Temporary tables are visible to the current session only and are dropped when the 

session disconnects if not dropped explicitly before that. Otherwise, they are as good as 

regular tables, they can be used in the queries with no limitations, and they can even be 

indexed. Temporary tables are often used to store intermediate results of the queries, so 

the CREATE statement often looks like

CREATE TEMP TABLE interim_results AS

SELECT ...

All this looks very convenient, so what’s wrong with this approach?

It all works great if you use a temporary table to store results of your query for some 

analysis and then discard it when done. But often, when a SQL developer starts to use 

temporary tables to store the results of each step, the code starts to look like this:

CREATE TEMP TABLE T1 AS SELECT <...> ;
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CREATE TEMP TABLE T2 AS SELECT <...>

FROM T1

     INNER JOIN <...>

<...>

The chain of temporary tables can become quite long. Does it cause any problems? 

Yes, and there are many of them, including the following:

•	 Indexes – After selected data is stored in a temporary table, we can’t 

use indexes that were created on the source table(s). We either need 

to continue without indexes or build new ones on temporary tables, 

which takes time.

•	 Statistics – Since we created a new table, the optimizer can’t utilize 

statistical data on value distribution from the source table(s), so we 

need either to go without statistics or run the ANALYZE command on a 

temporary table.

•	 Tempdb space – Temporary tables are stored in tempdb, a tablespace, 

which is also used for joins, sorting, grouping, and so on, when 

intermediate results can’t fit into available main memory. As unlikely 

as it may sound, we’ve observed situations where large queries were 

competing for space with temporary tables, resulting in queries being 

canceled.

•	 Excessive I/O – Temporary tables are still tables, which means they 

may be written to disk, and it takes extra time to write to and read 

from disk.

The most important negative implication of excessive use of temporary tables is that 

this practice blocks the optimizer from doing rewrites.

By saving the results of each join into a temporary table, you prevent the optimizer 

from choosing the optimal join order; you “lock” in the order in which you created the 

temporary tables.

When we looked at the execution plan of the query in Listing 6-15, we observed that 

PostgreSQL was able to push the filtering condition inside grouping. What would happen 

if a temp table was created for intermediate results?
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Listing 7-1.  Inefficient usage of temp tables

CREATE TEMP TABLE flights_totals AS

SELECT bl.flight_id,

       departure_airport,

      (avg(price))::numeric (7,2) AS avg_price,

       count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

GROUP BY 1,2;

SELECT flight_id,

avg_price,

num_passengers

FROM flights_totals

WHERE departure_airport='ORD'

Creating the temporary table took 15 minutes and produced over 500,000 rows, out 

of which we needed just 10,000. At the same time, the query in Listing 6-15 took a little 

bit over a minute to execute.

�Common Table Expressions (CTEs)
If temporary tables can be so bad, could I use a CTE (a common table expression) 

instead? First, what are CTEs?

Common table expressions, or CTEs, can be thought of as defining temporary 
tables that exist just for one query. Each auxiliary statement in a WITH clause can 
be a SELECT, INSERT, UPDATE, or DELETE; and the WITH clause itself is attached 
to a primary statement that can also be a SELECT, INSERT, UPDATE, or DELETE.

Let’s give a CTE a try. In Listing 7-2, the query from Listing 7-1 is modified to use a 

CTE instead of a temporary table.
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Listing 7-2.  Example of a query with a CTE

WITH flights_totals AS(SELECT bl.flight_id,

       departure_airport,

      (avg(price))::numeric (7,2) AS avg_price,

       count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

GROUP BY 1,2)

SELECT flight_id,

avg_price,

num_passengers

FROM flights_totals

WHERE departure_airport=’ORD’

What you will see in the execution plan depends on whether you are running a 

PostgreSQL version below 12 or 12 and above. For all versions below 12, a CTE was 

processed exactly like a temporary table. The results were materialized in main memory 

with possible disk failover. That means that there was no advantage to using a CTE 

instead of a temporary table.

To be fair, a CTE’s intended purpose was different. The idea behind the usage of a 

CTE was that if you need to use some possibly complex sub-select more than once, you 

can define it as a CTE and reference it in a query multiple times. In this case, PostgreSQL 

will compute results just once and reuse it as many times as needed.

Because of this intended usage, the optimizer planned the CTE execution separately 

from the rest of the query and did not push any join conditions inside the CTE, providing 

a so-called optimization fence. This is especially important if WITH is used in INSERT/

DELETE/UPDATE statements where there may be side effects or in recursive CTE calls. In 

addition, having the optimization fence means that the tables involved in the CTE are 

not counted against join_collapse_limit. Thus, we can effectively use PostgreSQL 

optimizer capabilities with queries that join a large number of tables.

For the query in Listing 7-2, in PostgreSQL versions before 12, the CTE flight_

totals would be calculated for all flights, and only after that a subset of flights would be 

selected.
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PostgreSQL 12 brought a drastic change to CTE optimization. For SELECT 

statements with no recursion, if a CTE is used in a query only once, it will be inlined into 

the outer query (removing the optimization fence). If it is called more than once, the old 

behavior will be preserved.

What is more important, the behavior described earlier is a default, but it can be 

overwritten by using the keywords MATERIALIZED and NOT MATERIALIZED. (See Listing 

7-3.) The first one forces the old behavior, and the second one forces inlining, regardless 

of all other considerations.

Listing 7-3.  Usage of the MATERIALIZED keyword

WITH flights_totals AS MATERIALIZED ( SELECT bl.flight_id,

       departure_airport,

      (avg(price))::numeric (7,2) AS avg_price,

       count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

GROUP BY 1,2)

SELECT flight_id,

avg_price,

num_passengers

FROM flights_totals

WHERE departure_airport='ORD'

Figure 7-1 presents the execution plan for Listing 7-2, the way it works in PostgreSQL 

12. If the keyword MATERIALIZE is added, as shown in Listing 7-3, the old behavior will 

be forced, as shown in Figure 7-2.
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Figure 7-1.  Execution plan for a CTE with inlining
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Prior to these recent changes, we would discourage SQL developers from using 

multiple embedded CTEs, when a SQL statement would look like this:

WITH x AS (SELECT ...)

  WITH y AS (SELECT ... FROM t1 JOIN x...)

  WITH z AS (SELECT...)

SELECT ...

      FROM (SELECT ...

           (SELECT ... FROM c

                      JOIN y...) b   )a

      JOIN z

...

Figure 7-2.  Forced materialization of a CTE
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However, with the changes introduced in PostgreSQL 12, such queries are much 

more manageable. We would still encourage SQL developers to be mindful not to force 

a suboptimal execution plan, but using a chain of CTEs is much better than using a 

sequence of temporary tables; in the latter case, the optimizer is helpless.

In conclusion of this section, we want to mention that the situations where storing 

intermediate results is beneficial exist. However, almost always there are better ways 

than using temporary tables. We will discuss other options later in this chapter.

�Views: To Use or Not to Use
Views are the most controversial database object. They seem to be easy to understand, 

and the advantages of creating a view seem so obvious. Why might they cause problems?

Although we are sure that most readers have had a chance to create at least a couple 

of views for some project, let’s give a formal definition. The simplest definition is

A view is a database object that stores a query that defines a virtual table.

A view is a virtual table in the sense that syntactically, views may be used in a 

SELECT statement in the same way as a table. However, they differ significantly from 

tables in that no data is stored; only the query that defines the view is stored in the 

database.

Let’s take another look at the query in Listing 6-14. This query calculates the totals 

for all flights in the postgres_air schema, but we want to use this query logic to select 

the totals for specific flights and/or departure airports. Listing 7-4 creates a view that 

encapsulates this logic.

Listing 7-4.  Create a view

CREATE VIEW flight_stats AS

SELECT bl.flight_id,

       departure_airport,

      (avg(price))::numeric (7,2) AS avg_price,

       count(DISTINCT passenger_id) AS num_passengers

 FROM booking b

      JOIN booking_leg bl USING (booking_id)
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      JOIN flight f USING (flight_id)

      JOIN passenger p USING (booking_id)

GROUP BY 1,2

Now it is easy to select flight statistics for any particular flight:

SELECT * FROM flight_stats

   WHERE flight_id=222183

This query plan looks identical to the plan in Figure 6-13. The reason is that in the 

first step of query processing, the query parser transforms views into inline subqueries. 

In this case, this works to our advantage, since the filtering condition is pushed inside 

the grouping. But if a nonconstant search criterion is used, the results might be 

disappointing. In Listing 7-5, flight statistics from the view flight_stats are limited by 

the flight’s departure date.

Listing 7-5.  Query using the view

SELECT * FROM flight_stats fs

JOIN (SELECT flight_id FROM flight f

      WHERE actual_departure between '2020-08-01' and '2020-08-16') fl

      ON fl.flight_id=fs.flight_id

The execution plan for this query is shown in Figure 7-3.
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Looking at this execution plan, we observe that first, the statistics for all flights are 

calculated, and only after that are the results joined with selected flights. The execution 

time of this query is 10 minutes.

Without using the view, we follow the pattern explained in Chapter 6, filtering the 

flights before grouping, as shown in Listing 7-6.

Listing 7-6.  Rewriting the query without the view

SELECT bl.flight_id,

       departure_airport,

      (avg(price))::numeric (7,2) AS avg_price,

       count(DISTINCT passenger_id) AS num_passengers

 FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

Figure 7-3.  Execution plan in which the condition can’t be pushed
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WHERE actual_departure between '2020-08-01' AND '2020-08-16'

GROUP BY 1,2

The execution plan for this query is shown in Figure 7-4 and shows that the 

restrictions on the flight table are applied first. The execution time for this query is 3 

minutes.

It is misleading when database textbooks, including those teaching PostgreSQL 

basics, state that views can be used “like tables.” In practice, views that were originally 

created solely to encapsulate a stand-alone query are often used in other queries, joined 

to other tables and views, including joining multiple times to tables already included in 

the view, without knowing what’s going on behind the scenes.

Figure 7-4.  Execution plan for Listing 7-6
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On the one hand, people usually create a view precisely for the purpose of 

encapsulation, so that others can use it without needing to figure out selection logic. On 

the other hand, this opacity is the cause of poor query performance. This effect becomes 

especially pronounced when some columns in a view are the results of transformation. 

Consider the view flight_departure in Listing 7-7.

Listing 7-7.  View with column transformation

CREATE VIEW flight_departure as

SELECT bl.flight_id,

       departure_airport,

       coalesce(actual_departure, scheduled_departure)::date

       AS  departure_date,

       count(DISTINCT passenger_id) AS num_passengers

 FROM booking b

 JOIN booking_leg bl USING (booking_id)

 JOIN flight f USING (flight_id)

 JOIN passenger p USING (booking_id)

GROUP BY 1,2,3

Executing the query

SELECT flight_id,

       num_passengers

 FROM flight_departure

WHERE flight =22183

…the filter on the flight will be pushed inside the view, and the query will be 

executed in under 1 second. A user who isn’t aware that flight_departure is a view might 

think that all columns have comparable performance and might be surprised to see the 

result when running the following query:

SELECT flight_id,

       num_passengers

 FROM flight_departure

 WHERE departure_date= '2020-08-01'
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This query takes almost two minutes to execute. The difference is due to the fact 

that the departure_date column is a transformation, and as discussed in Chapter 5, no 

indexes can be utilized. The execution plan for this query is shown in Figure 7-5.

An even worse case of performance degradation is shown in Listing 7-8. 

Unfortunately, this is a real-life case. When a person using a view does not know what 

query was used to create it, they might use it to select data that is much easier to obtain 

from the underlying tables.

Listing 7-8.  Selection of only one column from the view

SELECT flight_id

       FROM flight_departure

       WHERE departure_airport='ORD'

Figure 7-5.  Execution plan when indexes can’t be utilized
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This query doesn’t concern itself with the number of passengers on a flight; it 

merely selects flights departing from ORD for which any tickets were sold. And yet, the 

execution plan for Listing 7-8 is quite complex—see Figure 7-6.

This query runs for 1 minute and 42 seconds. However, a query that selects the same 

information without using the view

SELECT flight_id FROM flight where departure_airport='ORD'

AND flight_id IN (SELECT flight_id FROM booking_leg)

…will use available indexes and will run for just 3 seconds.

Figure 7-6.  Execution plan for the query in Listing 7-8
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�Why Use Views?
Now that we've seen so many examples of the negative effects of using views, is there 

anything to say in their defense? Are there any situations in which views can improve 

query performance?

Internally in PostgreSQL, any creation of a view includes creation of rules, implicitly, 

in most cases. The select rules may restrict access to underlying tables. Rules, triggers, 

and automatic updates make views in PostgreSQL extremely sophisticated and provide 

functionality very similar to tables.

However, they do not provide any performance benefit. The best, and perhaps only 

justified, use of views is as a security layer or to define a reporting entity, to ensure that 

all joins and business logic are defined correctly.

�Materialized Views
Most modern database systems allow users to create materialized views, but their 

implementations and precise behavior vary.

Let’s begin with a definition.

A materialized view is a database object that combines both a query definition and 
a table to store the results of the query at the time it is run.

A materialized view is different from a view, because query results are stored, not just 

the view definition. This means that a materialized view reflects the data at the time it 

was last refreshed, not current data. It is different from a table, because you can’t modify 

data in a materialized view directly, but you can only refresh it using a predefined query.

�Creating and Using Materialized Views
Let’s walk through an example to help illustrate the definition of a materialized view. 

Listing 7-9 creates a materialized view.
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Listing 7-9.  Create a materialized view

CREATE MATERIALIZED VIEW flight_departure_mv AS

SELECT bl.flight_id,

       departure_airport,

       coalesce(actual_departure,

                scheduled_departure)::date departure_date,

       count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

GROUP BY 1,2,3

What happens when this command is run? First, in this particular case, it will take a 

very long time to execute. But when it finishes, there will be a new object in the database, 

which stores the results of this execution of the query in the database. In addition, the 

query itself will be stored along with the data. In contrast to views, when materialized views 

are referenced in queries, they behave exactly like tables. The optimizer won’t substitute 

them with their defining queries, and they will be accessed as tables. Indexes can also be 

created on materialized views, although they cannot have primary and foreign keys:

CREATE UNIQUE INDEX flight_departure_flight_id

ON flight_departure_mv(flight_id);

--

CREATE INDEX flight_departure_dep_date

ON flight_departure_mv(departure_date);

--

CREATE INDEX flight_departure_dep_airport

ON flight_departure_mv(departure_airport);

Executing this query

SELECT flight_id,

       num_passengers

 FROM flight_departure_mv

 WHERE departure_date_= '2020-08-01’

…will take only 400 ms, and the execution plan will show an index scan.
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�Refreshing Materialized Views
A REFRESH command populates the materialized view with the results of the base query 

at the time the refresh is executed. The syntax for the REFRESH command follows:

REFRESH MATERIALIZED VIEW flight_departure_mv

Materialized views in PostgreSQL are less mature than in some other DBMS, like 

Oracle. Materialized views cannot be updated incrementally, and the refresh schedule 

can’t be specified in the materialized view definition. Each time the REFRESH command 

is executed, the underlying table is truncated, and the results of the SELECT statement 

are inserted. If an error occurs during refresh, the refresh process is rolled back, and the 

materialized view remains unchanged.

During refresh, the materialized view is locked, and its contents are unavailable 

to other processes. To make the prior version of a materialized view available during 

refresh, the CONCURRENTLY keyword is added:

REFRESH MATRIALIZED VIEW CONCURRENTLY flight_departure_mv

A materialized view can only be refreshed concurrently if it has a unique index. The 

concurrent refresh will take longer than regular refresh, but access to the materialized 

view won’t be blocked.

�Create a Materialized View or Not?
It is difficult to provide specific, universal conditions in which creating a materialized 

view is beneficial, but there follow some guidelines for decision-making. Since 

materialized view refreshes take time and selecting from a materialized view is going to 

be much faster than from a view, consider the following:

•	 How often does the data in the base tables change?

•	 How critical is it to have the most recent data?

•	 How often do we need to select this data (or rather how many reads 

per one refresh are expected)?

•	 How many different queries will use this data?
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What should the thresholds for “often” and “many” be? It’s subjective, but let’s look 

at some examples to illustrate. Listing 7-10 defines a materialized view very similar to the 

view in Listing 7-9, except that it selects flights that departed yesterday.

Listing 7-10.  Materialized view for yesterdays’ flights

CREATE MATERIALIZED VIEW flight_departure_prev_day AS

SELECT bl.flight_id,

       departure_airport,

       coalesce(actual_departure,

                scheduled_departure)::date departure_date,

       count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

WHERE (actual_departure BETWEEN CURRENT_DATE -1 AND CURRENT_DATE)

       OR (actual_departure IS NULL AND scheduled_departure

           BETWEEN CURRENT_DATE -1 AND CURRENT_DATE)

GROUP BY 1,2,3

Information about flights that departed yesterday is not going to change, so it is safe 

to assume that the view will not need to be refreshed until the next day. On the other 

hand, this materialized view can be used in several different queries that will all perform 

faster if query results are materialized.

Let’s consider another potential candidate for materializing—Listing 6-29. Suppose a 

materialized view with the subquery is created, as in Listing 7-11.

Listing 7-11.  Create a materialized view from the subquery

CREATE MATERIALIZED VIEW passenger_passport AS

SELECT cf.passenger_id,

coalesce(max(CASE WHEN custom_field_name ='passport_num'

 THEN custom_field_value ELSE NULL END),'') AS passport_num,

 coalesce(max(CASE WHEN custom_field_name='passport_exp_date'

 THEN custom_field_value ELSE NULL END),'') AS passport_exp_date,
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 coalesce(max(CASE WHEN custom_field_name ='passport_country'

 THEN custom_field_value ELSE NULL END),'') AS passport_country

FROM custom_field cf

group by 1

This materialized view is going to be very helpful. First, it has been shown already 

that this query takes a long time to execute, so time will be saved by pre-calculating the 

results. Second, passport information does not change (this information is associated 

with booking, and the same person will be assigned a different passenger_id in a 

different booking). It looks like a great candidate for a materialized view, if not for a few 

potential issues.

First, passengers are not required to submit their passport information during 

booking. This means that although once it is entered, this information will remain the 

same, for any particular flight, passport information may continue to be entered until 

the gate is closed. Hence, this materialized view will need to be constantly refreshed, and 

each refresh takes about 10 minutes.

Second, this materialized view will keep growing. Unlike the previous example, when 

each day’s refresh will cover data solely from the previous day, data about passengers’ 

passports will grow, and it will take longer and longer to refresh a materialized view. 

Such situations are frequently overlooked in the early stage of a project, when there is 

little data in any table and materialized views refresh quickly. Since PostgreSQL does not 

allow an incremental materialized view refresh, a possible solution could be to create 

another table, with the same structure as the materialized view in Listing 7-11, and 

periodically upend new rows when new passport information becomes available.

However, if the latter solution is adopted, it’s unclear why the custom_field table 

is needed in the first place, if data is needed in the format specified by the passenger_

passport materialized view. This will be a topic in the next chapter, which discusses the 

impact of design on performance.

�Do Materialized Views Need to Be Optimized?
Although the query of a materialized view is executed less frequently than the 

materialized view itself is used, we still need to pay attention to its execution time. Even 

when a materialized view is a short query (e.g., when it contains data for the previous 

day, as in Listing 7-9), it may end up doing full scans of large tables, if proper indexes are 

not in place or an execution plan is suboptimal.
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As mentioned earlier, we don’t accept the excuse that something doesn’t need to be 

optimized because it runs infrequently, whether once a month, once a week, or once a 

day. No one is happy with reports that run for six hours, no matter how infrequently. In 

addition, these periodic reports are often all scheduled at the same time—usually 9 AM 

on a Monday—starting the week with more stress than anyone needs. The techniques 

discussed in Chapters 5 and 6 can and should be applied to materialized views.

�Dependencies
When views and materialized views are created, a side effect is the creation of 

dependencies. Both views and materialized views have queries associated with them, and 

when any database object involved in those queries is altered, the dependent views and 

materialized views need to be recreated.

Actually, PostgreSQL doesn’t even permit an alter or drop on a table or materialized 

views if they have dependent views and materialized views. Making a change requires 

adding the CASCADE keyword to the ALTER or DROP command.

Note E ven if the column that is being dropped or altered does not participate in 
any dependent object, the dependent objects still must be dropped and recreated. 
Even adding a new column to the table will have a similar effect.

If views and materialized views are built on top of other views, adding one column 

to one base table may result in recreating several dozen dependent database objects. 

Creating a view does not take substantial time, but rebuilding multiple dependent 

materialized views does, and all this time the materialized views will be unavailable, 

even if they allow concurrent refreshes.

Subsequent chapters discuss functions and stored procedures, which can eliminate 

such dependencies.
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�Partitioning
So far, this chapter has discussed different ways of splitting queries into smaller parts.

Partition is a different sort of division—dividing the data. A partitioned table consists 

of several partitions, each of which is defined as a table. Each table row is stored in one of 

the partitions according to rules specified when the partitioned table is created.

Partition support is relatively new in PostgreSQL, and beginning with PG 10, 

improvements are made in every release, making partitioned tables easier to use.

The most common case is range partitioning, meaning that each partition contains 

rows that have values of an attribute in the range assigned to the partition. Ranges 

assigned to different partitions cannot intersect, and a row that does not fit into any 

partition cannot be inserted.

As an example, let’s create a partitioned version of the boarding_pass table. The 

sequence of commands is shown in Listing 7-12.

Listing 7-12.  Create a partitioned table

---create table

---

CREATE TABLE boarding_pass_part (

boarding_pass_id SERIAL,

passenger_id BIGINT NOT NULL,

booking_leg_id BIGINT NOT NULL,

seat TEXT,

boarding_time TIMESTAMPTZ,

precheck BOOLEAN NOT NULL,

update_ts TIMESTAMPTZ

)

PARTITION BY RANGE (boarding_time);

--create partitions

--

CREATE TABLE boarding_pass_may

PARTITION OF boarding_pass_part

FOR VALUES

FROM ('2020-05-01'::timestamptz)

TO ('2020-06-01'::timestamptz) ;
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--

CREATE TABLE boarding_pass_june

PARTITION OF boarding_pass_part

FOR VALUES

FROM ('2020-06-01'::timestamptz)

TO ('2020-07-01'::timestamptz);

--

CREATE TABLE boarding_pass_july

PARTITION OF boarding_pass_part

FOR VALUES

FROM ('2020-07-01'::timestamptz)

TO ('2020-08-01'::timestamptz);

--

CREATE TABLE boarding_pass_aug

PARTITION OF boarding_pass_part

FOR VALUES

FROM ('2020-08-01'::timestamptz)

TO ('2020-09-01'::timestamptz);

--

INSERT INTO boarding_pass_part SELECT * from boarding_pass;

Why create a partitioned table?

Partitions can be added to a partitioned table or dropped. The DROP command 

is executed significantly faster than bulk DELETE and does not require subsequent 

vacuuming. A typical use case is a table partitioned on date ranges (e.g., partition per 

month), a new partition is added, and the oldest one is dropped at the end of every 

month.

Partitioning may be used to distribute large amounts of data across several database 

servers: a partition can be a foreign table.

From a performance perspective, partitioning may reduce the time needed for full 

table scans: if a query contains conditions on the partitioning key, the scan is limited to 

these partitions only. This makes partitioning especially useful for long queries where 

table scans are the best option.
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How should a partitioning key for a table be selected? Based on the preceding 

observation, the partitioning key should be chosen so that it is used by the search 

conditions in either a large enough number of queries or in the most critical queries.

Let’s look at an example from Chapter 6, Listing 6-21. If this query is limited to 

boarding time between July 15 and July 31

SELECT

city,

date_trunc('month', scheduled_departure),

sum(passengers)  passengers

FROM airport  a

JOIN flight f ON airport_code = departure_airport

JOIN (

SELECT flight_id, count(*) passengers

FROM   booking_leg l

JOIN boarding_pass b USING (booking_leg_id)

     WHERE boarding_time > '07-15-20'

     and boarding_time <'07-31-20'

GROUP BY flight_id

) cnt

USING (flight_id)

GROUP BY 1,2

ORDER BY 3 DESC

…this will be still a long query, which will perform a full table scan of the boarding_

pass table. The execution plan is identical to the one in Figure 6-18.

However, executing the similar query using the partitioned table boarding_pass_

part (see Listing 7-13), this query will take advantage of partitions.

Listing 7-13.  Querying a partitioned table

SELECT

city,

date_trunc('month', scheduled_departure),

sum(passengers)  passengers

FROM airport  a

JOIN flight f ON airport_code = departure_airport
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JOIN (

SELECT flight_id, count(*) passengers

FROM   booking_leg l

JOIN boarding_pass_part b USING (booking_leg_id)

     WHERE boarding_time > '07-15-20'

     and boarding_time <'07-31-20'

GROUP BY flight_id

) cnt

USING (flight_id)

GROUP BY 1,2

ORDER BY 3 DESC

The execution plan in Figure 7-7 proves that instead of scanning the whole table, 

the optimizer chooses to scan only one partition, since the query is filtered on boarding 

time. And while query runtime on a non-partitioned table is approximately the same 

regardless of filtering by boarding time, for a partitioned table, the execution time is 

more than twice as fast, because all the rows are located in one partition.
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Partitions may have their own indexes that obviously are smaller than an index on 

the whole partitioned table. This option might be beneficial for short queries. However, 

this might significantly improve performance only if almost all queries extract data from 

the same partition. The cost of search in a B-tree is proportional to its depth. An index 

on a partition, most likely, will eliminate only one level of the B-tree, while the choice 

Figure 7-7.  Execution plan with a partitioned table
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of needed partition also requires some amount of resources. These resources are likely 

comparable with the amount needed for an extra index level. Of course, a query may 

refer to a partition instead of the whole partitioned table, hiding the cost of choosing the 

partition to the application issuing the query.

Therefore, the benefits of partitioning for short queries should not be overestimated.

�Parallelism
The Introduction of this book stated that it wouldn’t cover parallel execution for two 

reasons: First, parallel execution is relatively new to PostgreSQL, having been introduced 

in PostgreSQL 10. Second, none of us, the authors, have industrial experience with 

parallelism in PostgreSQL and can’t add much to extant documentation. Every new 

version of PostgreSQL brings more improvements to parallel execution.

However, parallelism is often presented as the silver bullet to solve all performance 

problems, and we feel compelled to warn you about not setting expectations too high 

regarding parallelism—this is true in any RDBMS, not just PostgreSQL.

Parallel execution can be viewed as yet another way to split up the query: the amount 

of work needed to execute a query is divided between processing units (processors or 

cores).

Any parallel algorithm has a certain part that must be executed on a single unit. Also, 

additional overheads appear as a cost of synchronizations between parallel processes. 

For these reasons, parallel processing is mostly beneficial when bulk amounts of data are 

processed. Specifically, parallel execution is beneficial for massive scans and hash joins. 

Both scans and hash joins are typical for long queries, for which the speed-up is usually 

most significant.

In contrast, the speed-up for short queries is usually negligible. However, parallel 

execution of different queries may improve throughput, but this is not related to parallel 

execution of a single query.

Sometimes an optimizer may replace index-based access (that would be used within 

sequential execution) with a parallel table scan. This may be caused by imprecise cost 

estimation. In such cases, parallel execution may be slower than sequential execution.

All execution plans in this book were created with parallelism turned off.
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In addition, whatever scalability benefits are provided by parallel execution cannot 

fix poor design or compensate for inefficient code for a simple mathematical reason: 

scalability benefits from parallelism are at best linear, while the cost of nested loops is 

quadratic.

�Summary
This chapter covered different ways to break queries into smaller functional parts and 

the advantages and disadvantages of each approach. It covered the potential pitfalls of 

one often-used optimization tool—temporary tables—and showed how common table 

expressions can be used as an alternative that doesn’t stymie the query optimizer. It also 

discussed views and materialized views and their impact on performance. Finally, it 

briefly addressed partitioning and parallel execution.
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CHAPTER 8

Optimizing Data 
Modification
Up to this point, the focus has been on optimizing queries, which means that only 

data retrieval has been covered. We haven’t touched on anything related to data 

manipulation, that is, updating, removing, or adding records in the database. That’s the 

subject of this chapter, which discusses how data manipulation affects performance and 

what can be improved.

�What Is DML?
Any database system has two languages: DDL (data definition language), used to 

create tables and other database objects, and DML (data manipulation language), 

which is used to query and modify data in the database. In PostgreSQL, both DDL and 

DML are parts of SQL, but some commands are related to DDL (ALTER TABLE, CREATE 

MATERIALIZED VIEW, DROP INDEX, etc.), while others are related to DML (INSERT, UPDATE, 

DELETE). It is also common to refer to these commands as DDL and DML, respectively, 

so a reference to “running DDL” means executing data definition commands, and 

“running DML” means executing INSERT, UPDATE, or DELETE.

�Two Ways to Optimize Data Modification
The execution of any DML statement consists of two parts: selecting the records to be 

modified and the data modification itself. In the case of INSERT, the first part may be 

omitted when constants are being inserted. However, if an INSERT-SELECT construct is 

used, the records that are needed for the insert must be found first.
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For this reason, optimizing a DML statement consists of two parts: optimizing 

selection and optimizing data modification.

If the search part is the problem, then it is the SELECT part that should be optimized. 

This is well covered in prior chapters. This chapter concerns itself with the second part—

optimizing writing data.

In the overwhelming majority of cases, even OLTP systems execute significantly 

fewer DML statements than SELECT statements. This is the primary reason that people 

seldom talk about optimizing DML. However, long-running DML may cause problems 

not only because the updated data won’t be available in the system in a timely manner 

but also because it can create blocking locks, which slow down the execution of other 

statements.

�How Does DML Work?
To discuss the optimizations applicable to data modification SQL commands, a bit more 

theory is required.

�Low-Level Input/Output
At the end of the day, any SQL operation, no matter how complex, comes down to a 

couple low-level operations: reading and writing individual database blocks. The reason 

is simple: data contained in the database can only be processed when blocks are fetched 

in main memory, and all modifications are first done in main memory and then written 

to the disk.

A fundamental difference between reads and writes is that reads from disk must 

be completed before the data can be processed; thus, a SELECT statement cannot be 

completed before all needed blocks are fetched into memory. In contrast, the changes 

inside a block are completed before the write starts; thus, a SQL operation can be 

completed without any delays. There is no need to wait until the modified data are 

actually written to the disk. This is somewhat counterintuitive: usually one would expect 

that an update requires more resources than a read.

Of course, writes do require much more resources than reads: the database must 

modify indexes and register updates in the WAL (write-ahead log). Still, this happens 

in the main memory as far as single DML statements are concerned. WAL records are 

forced to disk only on commits.

Chapter 8  Optimizing Data Modification



169

This sounds great: any INSERT, UPDATE, or DELETE appears to run much faster than a 

SELECT. If so, why are optimizations still needed?

There are two major reasons: First, writes are still needed and hence consume some 

amount of hardware resources, mostly I/O bandwidth. The cost of writes is amortized 

and is not necessarily visible on any single operation, but it still slows down processing 

and can even affect the performance of SELECT statements. An additional workload is 

produced by background (e.g., modified blocks being written to disk) and maintenance 

procedures. Typically, maintenance performs data restructuring, for example, the 

VACUUM operation in PostgreSQL. Some restructuring tasks block access to the modified 

object for the entire duration of restructuring.

Second, modifications may interfere with other modifications and even with 

retrieval. As long as data is not modified, the order of processing is immaterial. Data 

can be accessed from different SELECT statements simultaneously. In contrast, 

modifications cannot be simultaneous, and the order of operations is crucial. In order 

to ensure correctness, some operations must be delayed or even declined. Correctness 

is the responsibility of the concurrency control (a.k.a. transaction processing) 

subsystem. Transaction processing is not the focus of this book; however, discussion of 

modifications cannot avoid some considerations related to the transactional behavior of 

the DBMS.

�The Impact of Concurrency Control
To ensure the correct order of operations, transaction dispatchers usually rely on locking. 

If a transaction requires a lock and another transaction already has a conflicting lock, the 

execution is delayed until the conflicting lock is released. This is called lock waiting. Lock 

waiting is the primary cause of delays in modification operations.

Another function of concurrency control is to ensure that updates are not lost. 

Any updates performed by a committed transaction must be reliably stored on a hard 

drive before commit. The mechanism for this the write-ahead log (WAL). All data 

modifications are registered in WAL records on the hard drive before a transaction 

can commit. The WAL is written sequentially, and on slow rotating drives, sequential 

reads and writes are two orders of magnitude faster than random reads and writes. This 

difference is negligible on SSDs. Although there is no need to wait until all changes are 

written from the cache to the database, commits still must wait until the WAL is flushed. 

As result, committing too frequently can significantly slow down processing. An extreme 
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case is running each DML statement in a separate transaction. This actually happens if 

an application does not use transaction control statements and therefore the database 

wraps each statement into a separate transaction. On the other hand, transactions that 

are too long may cause slowness due to locking.

The preceding considerations apply to any high-performance database. Let’s look at 

techniques specific to PostgreSQL.

One of the distinguishing features of PostgreSQL is that it never performs updates 

in place. Instead, a new version of an item (e.g., a table row) is inserted and stored in 

a free space in the same or a newly allocated block, while the previous version is not 

overwritten immediately.

Figure 8-1 shows the structure of a block from Figure 3-1 after a deletion (or update) 

of the second row. The space previously occupied by this row cannot be used for another 

row; and, in fact, the data is still accessible.

Figure 8-1.  Block layout after deletion of a row
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This feature may have both positive and negative impacts on performance.

The obsolete versions are not kept forever. A VACUUM operation removes them and 

consolidates the free space in a block when old versions are no longer needed for 

currently running transactions.

PostgreSQL uses the snapshot isolation (SI) concurrency control protocol to prevent 

undesirable interference between transactions. Note that database textbooks usually 

explain locking as it is used in a two-phase locking concurrency control protocol and 

it significantly differs from the way locks are used in PostgreSQL. Any intuition gained 

from textbooks or experiences with other systems might be misleading.

Under SI, a transaction always reads the latest committed version of a row. If 

another transaction has updated this row but did not commit before the start of the read 

operation, the read operation will return an obsolete version. This is an advantage as the 

older version is available and locking is not needed to read it. That is, the multi-version 

concurrency control improves throughput as there is no need to delay read operations.

According to SI, concurrent writes of the same data are not allowed: if two 

concurrent (i.e., running at the same time) transactions attempt to modify the same 

data, one of the two transactions must be aborted. In general, there are two strategies 

to enforce this rule. One is called first update wins, and the other is called first commit 

wins. It is easier to enforce the first strategy: we know that an update was executed right 

away, and the second transaction can be aborted without any wait. However, PostgreSQL 

utilizes the second strategy.

To enforce this rule, PostgreSQL uses write locks for any modification operation. 

Before a transaction can make any data changes, it has to acquire a lock for updates. If a 

lock cannot be obtained because some other transaction is modifying the same data, the 

operation is delayed until the termination of the transaction that holds the conflicting 

lock. If the lock is released because the holding transaction is aborted, the lock is 

granted to the waiting transaction, and a data modification operation can be completed. 

Otherwise, if the transaction commits successfully, the subsequent behavior depends on 

the transaction isolation level. For READ COMMITTED, which is the default in PostgreSQL, 

the waiting transaction will read the modified data, acquire a write lock, and complete 

the modification. This behavior is possible because on this isolation level, a read 

operation can read a version committed before the start of the SELECT statement, rather 

than the start of the transaction. If the isolation level is REPEATABLE READ, the waiting 

transaction will be aborted. This implementation results in waits but avoids unneeded 

aborts.
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We do not discuss the SERIALIZABLE level because it is used vanishingly rarely.

Now, let’s take a look at some important special cases.

�Data Modification and Indexes
In Chapter 5, when we talked about creating new indexes, we mentioned that adding 

indexes to a table can potentially slow DML operations. How much slower depends 

on storage and system characteristics (e.g., disk speed, processors, and memory), but 

according to multiple PostgreSQL experts’ observations, adding an extra index results in 

only a 1% increase in INSERT/UPDATE time.

You can perform some experiments using the postgres_air schema. For example, 

start with a table that has many indexes, such as the flight table.

First, create a copy of the table flight with no indexes:

CREATE TABLE flight_no_index AS

SELECT * FROM flight LIMIT 0;

Then, insert rows from the table flight into the table flight_no_index:

INSERT INTO flight_no_index

SELECT * FROM flight LIMIT 100

After that, truncate the new table, and start building the same indexes built in 

Chapter 5 for the table flight on table flight_no_index. Repeat the insert. There is no 

difference in execution time for a small number of rows (around a couple hundred rows), 

but some slowness is observed when inserting 100,000 rows. For typical operations 

performed in the OLTP environment, however, there will be no material difference.

Naturally, creating indexes takes time, and it is worth mentioning that the CREATE 

INDEX operation in PostgreSQL puts an exclusive lock on the table, which can affect other 

operations. CREATE INDEX CONCURRENTLY takes longer to complete but leaves the table 

accessible to other processes.

As we mentioned earlier, PostgreSQL inserts new versions of updated rows. This 

has certain negative impacts on performance: in general, new versions are inserted into 

different locations, and therefore all indexes on the table must be modified. To reduce 

this negative effect, PostgreSQL uses a technique that sometimes is referred to as HOT 

(heap-only tuples); an attempt is made to insert the new version into the same block. 

If the block has sufficient free space and the update does not involve modifying any 

indexed columns, then there is no need to modify any indexes.
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�Mass Updates and Frequent Updates
As mentioned earlier, PostgreSQL never destroys data immediately. The DELETE 

statement marks deleted rows as removed, while UPDATE inserts a new version of a row 

and marks the previous version as outdated. As soon as these rows are not needed for 

active transactions, they become dead. The presence of dead rows effectively reduces the 

number of active rows in a block and thus slows down subsequent heap scans.

The space occupied by dead rows (i.e., deleted tuples) remains unused until it is 

reclaimed by a VACUUM operation. Most of the time, even with a relatively high rate of 

updates, routine vacuuming initiated by the auto-vacuum daemon addresses the dead 

tuples promptly, so that they do not cause any significant delays.

However, if a mass UPDATE/DELETE is performed, that is, any operation that affects 

a large fraction of the table, SELECT from that table may become significantly slower, 

because the visibility map would force recheck to go to the heap blocks. Also, as 

mentioned earlier, the number of active tuples on a page starts to decrease. This will 

result in more blocks needing to be read into memory for each select operation. This 

ultimately can cause the database to perform its own internal swapping operations.

In this case, aggressive tuning of the auto-vacuum setting or manually running 

VACUUM ANALYZE operations is required.

VACUUM can cause a substantial increase in I/O activity that might cause poor 

performance for other active sessions. Vacuum can be tuned to spread its impact over 

time, which will reduce the amount of drastic I/O spikes. However, as a result, the VACUUM 

operation will take longer to complete.

Now, let’s consider a different case: a table experiences frequent updates (although 

each of these updates affects a single row or a very small number of rows).

Although the internal structure of a block provides for addressing every single 

row, indexes in PostgreSQL contain references to blocks containing indexed rows, 

rather than to rows themselves. As discussed earlier, any update of a row creates a 

new copy. However, if the new version is stored in the same block and the value of the 

indexed column is not changed, then there is no need to update this index, and indeed 

PostgreSQL will not touch it.

In order to benefit from the feature outlined, we need to ensure that blocks contain a 

sufficient amount of free space.
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The percentage of free space in table blocks can be set using the fillfactor storage 

parameter in the WITH clause of the CREATE TABLE statement. By default, the value of this 

parameter is 100, which tells PostgreSQL to fit as many rows as possible and minimize 

the size of free space in every block. Thus, usually free space can appear only after 

updates or deletions followed by vacuuming.

To reduce the performance overhead on index updates, we can specify smaller 

values of fillfactor. PostgreSQL allows values as low as 10, leaving 90% of block space 

for updated versions of rows. Of course, small values of the fillfactor parameter result 

in an increased number of blocks needed to store table data and hence increase the 

number of reads needed for a heap scan of the table. This significantly slows down long 

queries but might be less significant for short queries, especially when only one row is 

actually selected from a block.

�Referential Integrity and Triggers
The presence of multiple foreign keys in a table can potentially slow DML. This is not to 

suggest that referential integrity checks are bad. On the contrary, the ability to maintain 

referential integrity is one of the most powerful features of relational systems. The 

reason they might slow data manipulation operations is that for each INSERT/UPDATE 

operation on a table with integrity constraints, the database engine has to check whether 

the new values of the constrained columns are present in the respective parent tables, 

thus executing additional implicit SELECT statements. These checks may take virtually 

no time, for example, if the parent table is a small lookup containing just a handful of 

rows. However, if the parent table size is comparable with the size of the child table, the 

overhead may be more noticeable. As in most other cases, the actual delay time depends 

on system parameters and hardware characteristics.

The execution times with and without constraints can be compared by creating a 

copy of the flight table:

CREATE TABLE flight_no_constr AS

SELECT * FROM flight LIMIT 0;
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Then, once again, start adding the same constraints as the flight table has to the 

flight_no_constr table, and once again, try to perform inserts. You may notice that 

adding an integrity check on the aircraft_code attribute does not impact the time 

to insert, but adding constraints on departure_airport and arrival_airport would 

noticeably slow down inserts.

Note that operations on the parent table are also affected: when a record in the 

parent table is updated or deleted, the database engine has to check that there are no 

records in each of the child tables that references the updated or deleted value.

Triggers might potentially slow down data modification operations as well, for the 

same reason as referential integrity constraints: each trigger invocation may result in 

executing multiple additional SQL commands. The extent to which each trigger slows 

down execution depends on its complexity.

It’s worth noting that referential integrity constraints in PostgreSQL are implemented 

using system triggers, so all observations regarding integrity constraints are applicable 

for triggers. The fact that the presence of triggers might impact performance does not 

mean that triggers should not be used. On the contrary, if there are some actions or 

checks that should be performed for any DML operation on the table, it is beneficial to 

implement them using database triggers instead of programming these checks in the 

application. The latter approach will be less efficient and would not cover the cases 

when the data in the table is modified directly in the database instead of accessing it 

through the application.

�Summary
In this chapter, we briefly discussed the implication of data manipulation operations 

on system performance. Typically, DML commands are executed at least an order of 

magnitude less frequently than SELECT statements. However, if data modification 

inefficiencies are not addressed in a timely manner, they may result in blocking locks 

and thus affect the performance in all parts of the application.

Chapter 8  Optimizing Data Modification



177
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021 
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_9

CHAPTER 9

Design Matters
In the Introduction, we noted that optimization begins during requirements gathering 

and design. To be precise, it starts from system design, including the database design, 

but it is impossible to come up with the right design unless we invest time in gathering 

information about the objects that should be present in the database. In this chapter, we 

will discuss a variety of design options and will show how design decisions can impact 

performance.

�Design Matters
Chapter 1 explained two different solutions for storing information about phone 

numbers, shown in Figures 1-1 and 1-2. Let’s return to this example.

Listing 9-1 shows the table definitions used in the postgres_air schema. The 

account table contains information about user accounts, and the phone table contains 

information about all phones that are associated with accounts. This relationship is 

supported by a foreign key constraint.

Listing 9-2 shows an alternative design, where all phones are stored together with 

account information.

Listing 9-1.  Two-table design

/* account table */

CREATE TABLE account

(   account_id integer,

    login text,

    first_name text,

    last_name text,

    frequent_flyer_id integer,

    update_ts timestamp with time zone,
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    CONSTRAINT account_pkey PRIMARY KEY (account_id),

    CONSTRAINT frequent_flyer_id_fk FOREIGN KEY

                                     (frequent_flyer_id)

        REFERENCES frequent_flyer (frequent_flyer_id)

);

/*phone table */

CREATE TABLE phone

(   phone_id integer,

    account_id integer,

    phone text,

    phone_type text,

    primary_phone boolean,

    update_ts timestamp with time zone,

    CONSTRAINT phone_pkey PRIMARY KEY (phone_id),

    CONSTRAINT phone_account_id_fk FOREIGN KEY (account_id)

        REFERENCES account (account_id)

);

Listing 9-2.  One-table design

/* account table */

CREATE TABLE account

(   account_id integer,

    login text,

    first_name text,

    last_name text,

    frequent_flyer_id integer,

    home_phone text,

    work_phone text,

    cell_phone text,

    primary_phone text,

    update_ts timestamp with time zone,
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    CONSTRAINT account_pkey PRIMARY KEY (account_id),

    CONSTRAINT frequent_flyer_id_fk FOREIGN KEY

                                     (frequent_flyer_id)

        REFERENCES frequent_flyer (frequent_flyer_id)

);

There are multiple reasons the two-table design was chosen for the postgres_air 

schema; as discussed in Chapter 1, many people do not have landlines at home or a 

dedicated work phone. Many people have more than one cell phone or a virtual number, 

like Google Voice. All these scenarios can be supported with the two-table solution and 

can’t fit into the one-table solution, unless we start to add columns to accommodate 

each of these cases. Indicating a primary phone in the one-table solution would 

require repeating one of the numbers in the primary_phone column, creating room for 

inconsistency. From a performance perspective, the two-table solution is also more 

beneficial.

In the two-table solution, searching for an account by phone number is a 

straightforward SELECT statement:

SELECT DISTINCT account_id

FROM phone WHERE phone=’8471234567’

This query will be executed using an index-only scan.

In the one-table design, a similar query would look like this:

SELECT account_id

FROM account WHERE home_phone=’8471234567’

OR work_phone=’8471234567’

OR cell_phone=’8471234567’

To avoid a full scan, three different indexes must be built.

Does this mean that the one-table design is worse than the two-table design? It 

depends on how the data is accessed. If the schema is supporting a system used by 

travel agents, the most likely use case is needing to pull a customer account based on the 

phone number. When an agent asks a customer for their phone number, the customer is 

unlikely to specify the type of phone number.
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On the other hand, consider a report on customer accounts that have been updated 

in the last 24 hours. This report should include home phone, work phone, and cell phone 

in separate columns regardless of if any are empty and should include accounts that 

have had any modification in the last 24 hours—including updates to phone numbers. 

In this case, the one-table solution, shown in Listing 9-3, is much simpler and more 

efficient.

Listing 9-3.  Usage of one-table design

SELECT * FROM account

WHERE update_ts BETWEEN now()- interval '1 day' AND now();

Producing the same result in the two-table design is more involved—see Listing 9-4.

Listing 9-4.  Same query with a two-table design

SELECT a.account_id,

       login,

       first_name,

       last_name,

       frequent_flyer_id,

       home_phone

       work_phone,

       cell_phone,

       primary_phone

  FROM account a

  JOIN (

  SELECT

        account_id,

        max(phone) FILTER (WHERE phone_type='home')

        AS home_phone,

        max(phone) FILTER (WHERE phone_type='work')

        AS work_phone,

        max(phone) FILTER (WHERE phone_type='mobile')

        AS cell_phone,

        max(phone) FILTER (WHERE primary_phone IS true)

        AS primary_phone
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FROM phone

WHERE account_id IN (SELECT account_id FROM phone WHERE

   update_ts BETWEEN now()- interval '1 day' AND now()

UNION

   SELECT account_id FROM account WHERE

      update_ts BETWEEN now()- interval '1 day' AND now())

   GROUP BY 1)  p

USING (account_id)

These two examples are illustrative for another reason—the query for which the two-

table solution is preferred is more likely to occur in an OLTP system, and the query that 

is better served by the one-table solution is more likely in an OLAP system. ETL tools can 

be used to transform data from OLTP systems to a format that is better suited to business 

intelligence needs.

A similar situation was shown in Chapter 6, where a nonoptimal database design 

prompted a nonoptimal query (see Listing 6-26). Even the optimized version of the 

query remained relatively slow. These examples illustrate impact of database design on 

performance and that sometimes the negative consequences of poor design can’t be 

remedied by improving the query or building additional indexes.

Subsequent sections of this chapter address the most common design choices that 

may negatively affect performance.

�Why Use a Relational Model?
While all the previous examples are relational, as PostgreSQL is built on a relational 

model, we’re aware that many people think of relational databases as outdated or out of 

fashion. Public talks with titles like “What comes after relational databases?” are given at 

a regular cadence.

This section isn’t a defense of relational databases. Relational databases don’t 

need defending, and, so far, no would-be successor has had gained even close to a 

comparable level of adoption. Rather, the goal is to explain the limitations of other 

models.
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�Types of Databases
So what alternatives exist to relational models? There are a wide variety of database 

systems and data stores currently in use, using a wide variety of data models and storage 

techniques. These include traditional relational systems with row-based or column-

based storage, scalable distributed systems, stream processing systems, and much more.

We’ve seen more than one non-relational database system work its way through 

the Gartner hype cycle, from the peak of overinflated expectations to the trough of 

disillusionment. It is worth noting, however, that the core of the relational model is a 

query language based on Boolean logic, rather than any specific way of storing data. 

This is likely the reason many systems created as alternatives to the traditional RDBMS 

ended up with variations of SQL as a high-level query language and hence the associated 

Boolean logic.

While relational databases do not appear close to being dethroned, there are 

technologies developed and validated within new systems that have proven useful and 

been widely adopted. Three popular approaches are entity-attribute-value, key-value, 

and hierarchical systems, the last often called document stores.

�Entity-Attribute-Value Model
In the entity-attribute-value (EAV) model, values are scalar (often text, to accommodate 

multiple data types). To review from Chapter 6, this model features a table with three 

columns, the first for an identifier for an entity, the second an identifier for an attribute 

of that entity, and the third the value of that attribute for the entity. This is done in 

the name of “flexibility,” which in reality means imprecise or unknown requirements. 

Unsurprisingly, this flexibility comes at the expense of performance. Chapter 6 

introduced the custom_field table, noted that this design was not optimal, and showed 

how it could negatively affect performance. Even after applying optimization techniques 

to avoid multiple table scans, execution was relatively slow.

In addition to performance impacts, this design curtails data quality management. 

In the case introduced in Chapter 6, three custom fields contain data of three different 

types: passport_num is a number, passport_exp_date is a date, and passport_country 

is a text field, which should contain a valid country name. However, in the custom_field 

table, they all are stored in the text field custom_field_value, which does not allow 

strong type checks or referential integrity constraints.
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�Key-Value Model
The key-value model type stores complex objects within a single field, so the structure 

is not exposed to the database. Individual attributes of the object then are much more 

complex to extract, effectively kneecapping the database engine in doing tasks beyond 

returning a single object via a primary key. In the most extreme case, a design may 

package all fields other than the primary key into a single JSON object.

Since PostgreSQL introduced JSON support in version 9.2, this approach has 

become very popular with database and application developers. JSONB was introduced 

in version 9.4, and more enhancements have followed in every subsequent version. 

With this support, table columns defined as JSON are commonplace. For example, the 

passenger table from the postgres_air schema could be defined as shown in Listing 9-5.

Listing 9-5.  Table with JSON

CREATE TABLE passenger_json (

(passenger_id INT,

passenger_info JSON);

An example of the passenger_info JSON is shown in Listing 9-6.

Listing 9-6.  Example of a JSON value

{"booking_ref" : "8HNB12",

"passenger_no": "1",

"first_name" : "MARIAM",

"last_name" : "WARREN",

"update_ts" : "2020-04-17T19:45:55.022782-05:00",

}

Yes, the suggested design looks universal and does not require any DDL changes no 

matter how many new data elements are added in the future. However, the same issues 

affect this design as the EAV model. This approach makes it impossible to perform type 

checks on scalar values, and referential integrity constraints can’t be defined.

Tools and approaches for working with JSON fields are discussed later in this 

chapter.
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�Hierarchical Model
Hierarchical structures are easy to understand and use. In fact, hierarchical structures 

were first implemented in databases in the 1960s due to their ease of use, as well as 

their relatively small memory requirements. Of course, at that time, neither XML nor 

JSON was available. These structures work great as long as everything fits into a single 

hierarchy. However, using hierarchies becomes both complex and inefficient as soon as 

data fits into more than one hierarchy.

Let’s illustrate with examples from the postgres_air schema, shown in Figure 9-1. For 

an airport, the list of departing flights is one hierarchy, and the list of arriving flights 

is another. Boarding passes may fit into the same hierarchy as departing flights. At 

the same time, they can be a part of a completely different hierarchy that starts from 

bookings. Note that passengers and booking legs can’t fit into the same hierarchy 

without duplication.

The early hierarchical databases (IMS/360) provided several hierarchical views of 

data to the client application but supported more complex data structures internally.

Figure 9-1.  Examples of hierarchies in the postgres_air schema
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�Combining the Best of Different Worlds
PostgreSQL is not just a relational system. It is object-relational, meaning that column 

data types are not necessarily scalar. In fact, columns can store structured types 

including arrays, composite types, or objects represented as JSON or XML documents.

Using these features responsibly provides all the potential benefits of several 

alternative approaches in combination with more traditional relational features.

“Responsibly” is the operative word here. For example, PostgreSQL allows a 

multiple-hierarchy approach mentioned in the previous section. We can build 

hierarchical representations for the client application on top of internal relational 

structure in the database. Such an approach combines the best of both worlds: data is 

extracted efficiently via the power of relational query, and the application can consume 

complex objects in a friendly data exchange format. More details on this approach are 

provided in Chapter 13.

Although we are not covering distributed systems in this book, it’s worth mentioning 

that PostgreSQL has a massive set of extensions (additional libraries not included into 

basic distribution) that support distributed querying including DBMSs other than 

PostgreSQL. These extensions are called foreign data wrappers (FDWs), and they provide 

almost transparent ways of accessing data that can reside in more than 60 types of 

DBMSs, both relational and non-relational.

�Flexibility vs. Efficiency and Correctness
A frequent argument for a flexible design is that “the data structure/schema definition 

may change.” Then, the argument goes adding a column is a DDL (data definition) 

change and adding a row (in the key-value model) is just adding a row.

True, real-life systems evolve, and to adequately reflect these changes, existing 

data structures must be modified. This may entail adding or removing some attributes 

or changing data types or changing the cardinality of relationships. However, the 

inevitability of making changes does not necessitate the use of alternative models, such 

as document stores or key-value systems. The cost of making changes to the database 

schema must always be weighed against the potential performance and data integrity 

pitfalls of these flexible solutions.
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The previous section talked about the difficulty of creating any integrity constraints 

in a non-relational design. For some reason, there is a widespread belief that NoSQL 

databases are “faster” than relational databases. This statement may be true in a very 

limited number of scenarios, but in most of cases, the situation is the opposite. There 

may be performance gains from horizontal distribution, but they are counterbalanced by 

the cost of needing to take additional steps to verify data integrity. Additional potential 

performance problems emerge because of the difficulties of creating indexes in EAV and 

key-value models.

For example, in the case of the custom_field table, passport_exp_date should be a 

date, and it is often compared with other dates, for example, with the date of the flight to 

make sure that the passport doesn’t expire prior to the date of departure. However, this 

date is stored in a text field, which means that it must be converted to a date to perform 

a type-specific compare. Moreover, this conversion can only be applied to rows that 

contain date-type values.

PostgreSQL has partial indexes, so it’s possible to create an index on only those rows 

that contain a passport expiration date. However, they cannot be indexed as a date that 

could be efficiently used as search criteria, because indexes cannot be built with mutable 

functions like so:

CREATE INDEX custom_field_exp_date_to_date

ON custom_field(to_date(custom_field_value, 'MM-DD-YYYY'))

WHERE custom_field_name='passport_exp_date'

This is because all date/time conversion functions are mutable, because they 

depend on the current session settings. In order to be able to use a conversion function 

in an index, one would need to write a custom conversion function. Chapter 10 covers 

creating user-defined functions. This function will have to include exception handling, 

which means that a value erroneously added in the wrong format won’t be indexed. In 

addition, the search itself will be significantly slower than having a date field in the first 

place.

What about the case of packaging all the attributes in a JSON column? Similar 

problems with indexing occur. It is possible to create an index on JSON; for example, for 

the table passenger_json in Listing 9-5, it is possible to create an index on booking_ref 

as shown in Listing 9-7.
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Listing 9-7.  Indexing a JSON column

CREATE INDEX passenger_j_booking_ref ON passenger_json ((passenger_info ->> 

'booking_ref'));

It will work slower than an index on the original passenger table, but it will work 

better than a sequential scan. However, for any value that is intended to be numeric or 

contain a date, the same conversion as the previous example will follow.

This is not to say there is no justification for any of these non-relational solutions.

For example, a table describing some regulations in the EU had about 500 columns 

and a single row added every time the regulations change, approximately one row 

every five years. Replacement of this table with a variation of key-value (augmented 

with a couple of additional columns characterizing the value) made both database and 

application developers happy. There was no issue of efficiency because of the size of the 

data.

When considering JSON columns, our recommendation is to use them only in cases 

when the data only needs to be used as one whole object, such as when storing external 

documents, credit reports, and so on. Even in these cases, if some attributes that will 

be used in search criteria can be isolated, it is advisable to parse them into separate 

columns in addition to storing them as components of a larger object.

�Must We Normalize?
There is hardly a term in relational theory more misused than “normalization.” It 

is commonplace for any number of DBAs, database developers, system architects, 

and others to declare that a system should be “normalized,” but few could provide a 

description of the outcome they are seeking, let alone a definition for normalization.

This isn’t just snobbery; it’s not necessary for everyone working in the field of 

data management to memorize the definitions of every normal form. Relational 

normalization algorithms aren’t often used in practice. In this sense, normalization is 

“dead” theory, the way that Latin is a dead language. However, scholars still find use in 

studying Latin, and just the same, some knowledge of normalization is essential for good 

database design.
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Informally, a database schema is normalized if all column values depend only on the 

table primary key, and data is decomposed into multiple tables to avoid repetition.

One of the ways to create a normalized schema is to start by building the ER model: if 

entities are properly defined, the database schema produced from the ER model will be 

normalized. We can say that ER design implicitly includes discovery of dependencies. If 

it is not normalized, typically this indicates that some entities are missing.

Is it really important to normalize a database schema? Does it help performance? As 

is often the case, it depends.

The primary purpose of normalization is not to improve performance. Normalization 

creates a clean logical structure and helps ensure data integrity, especially when it is 

supported by referential integrity constraints. Normalization is needed for the same 

reasons that the relational model is needed: not necessarily to store the data, but to 

ensure data integrity and to be able to use relational querying language. The mapping 

between logical and storage structures is not necessarily one-to-one. Ideally, a clean 

logical structure should be provided for the application based on a storage structure 

optimized for performance.

On the other hand, there are many real-world entities, which are denormalized 

and where normalization does not provide any benefits. The best-known example is 

the postal address. The US postal address consists of the following components: street 

address, city, zip code, and state.

It is not normalized, as everybody who ever sent packages at the automated USPS 

kiosks knows. The automated check won’t allow you to enter a zip code that does not 

match the previously entered address. However, we doubt that anyone would decide to 

normalize addresses when they are stored in a database table.

An often-heard argument in support of denormalized data structure is that “joins 

take time” and that denormalization is needed if we need queries to execute faster. For 

the short queries, as we discussed in Chapter 5, when they are constructed properly, the 

extra time for joins is negligible and should not be traded for data accuracy.

However, there are multiple cases when performance can indeed be improved 

through normalization, for example, when we need to select distinct values of some 

attribute with high selectivity or, in general, any subset of columns that are repetitive in 

a non-normalized table. In the postgres_air schema, the status of flights in the flight 

table is specified explicitly, which means that to find the list of possible flight statuses, 

one can execute the following query:

SELECT DISTINCT status FROM flight
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�Use and Misuse of Surrogate Keys
Surrogate keys are unique values generated by the system in order to identify objects 

stored in the database. In PostgreSQL, surrogate values may be obtained as values 

selected from a sequence. When a row is inserted, a column specified with pseudo-type 

serial receives the next value from a sequence associated with the table automatically.

Surrogate keys are widely used. Some companies have internal standards that 

require use of surrogate keys for any table. However, surrogates have both advantages 

and disadvantages.

The advantage of surrogates is that the values assigned to different objects are 

guaranteed to be unique. However, the value of a surrogate is not related to other attributes of 

the object and is useless when a stored object needs to be matched to a real-world object.

Uniqueness of surrogates may hide certain errors. A real-world object may be 

represented in the database multiple times with different surrogates. For example, if a 

single purchase is registered in a system twice, a customer’s card will be charged twice 

for a single product, and the issue is difficult to resolve without manual intervention. 

That being said, although our recommendation is to use some real-world unique 

attribute for a primary key, it is not always possible. In a database that stores all 

purchases in the supermarket, there is no way to distinguish between two bottles of 

coke, subsequently scanned by the same customer at the self-checkout. These two cases 

must be distinguishable in the source system: the purchase of two Coke bottles in one 

transaction, as opposed to a duplication of the same transaction to purchase a single 

Coke. Similarly, hospital systems may have multiple medical record numbers (MRNs) 

associated with one patient; it’s critical to have a surrogate key in this case so all the 

patient’s clinical data is stored together.

Sometimes, the presence of a surrogate key in the table is wrongly associated with 

normalization. Some companies’ internal standards require a surrogate key for each 

table. This is commonly explained as a way to make the database schema normalized. 

And, indeed, if there is a unique identifier assigned to each row, everything will be 

normalized. But since the unique identifiers would bear no relation to real-world 

objects, we may end up with one real-world object mapped to multiple occurrences in 

the database. For example, we’ve seen a system in which each time a customer would 

enter their address, the system would assign a unique identifier for the city, if this city 

was not in the database yet. This way, the system ended up with six different versions 

of “Chicago.” Needless to say, this has nothing to do with normalization and may 

jeopardize both data accuracy and performance.
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The use of surrogates may result in extra joins. The flight table refers to the airport 

table using three-character codes that are widely used in the real world. Airport codes 

can be extracted from the flight table in this design:

Select departure_airport, arrival_airport, scheduled_departure from flight 

...

However, if a surrogate key was used for the airport table, returning airport codes 

would necessitate two trips to the airport table:

SELECT d.airport_code,

       a.airport_code,

       f.scheduled_departure

FROM flight f

JOIN airport d ON d.airport_id = f.departure_airport_id

JOIN airport a ON a.airport_id = f.arrival_airport_id

Let’s take a closer look at the use of surrogate keys in the postgres_air schema.

The definition of the airport table in the postgres_air schema is shown in Listing 9-8. 

The primary key of that table is airport_code. This column contains three-character 

codes that are used to identify airports in all flight booking systems worldwide, and these 

codes never change. Hence, they are reliable as unique identifiers, and surrogate keys 

are not needed.

Listing 9-8.  Airport table

CREATE TABLE airport

(  airport_code char(3)NOT NULL,

    airport_name text NOT NULL,

    city text COLLATE NOT NULL,

    airport_tz text NOT NULL,

    continent text,

    iso_country text,

    iso_region text,

    intnl boolean NOT NULL,

    update_ts timestamptz,

    CONSTRAINT airport_pkey PRIMARY KEY (airport_code)

);
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Similarly, aircrafts are identified with three-character codes, and we use these codes 

as a primary key for the aircraft table—see Listing 9-9.

Listing 9-9.  The aircraft table

CREATE TABLE aircraft

(   model text,

    range numeric NOT NULL,

    class integer NOT NULL,

    velocity numeric NOT NULL,

    code text NOT NULL,

    CONSTRAINT aircraft_pkey PRIMARY KEY (code)

)

For the booking table (see Listing 9-10), the surrogate primary key booking_id is used, 

even though bookings have a six-character booking reference that uniquely identifies the 

booking and is never changed. The booking reference is also a surrogate, although it is not 

derived from a database sequence. We could use the booking reference as a primary key. 

Thus, the column booking_id is redundant, though it provides some future-proofing if 

there is an anticipated need for bookings to come from more than one booking application. 

This also makes the table definition similar to definitions found in many industrial systems.

Listing 9-10.  The booking table

CREATE TABLE booking

(  booking_id bigint NOT NULL,

    booking_ref text NOT NULL,

    booking_name text,

    account_id integer,

    email text NOT NULL,

    phone text NOT NULL,

    update_ts timestamptz,

    price numeric(7,2),

    CONSTRAINT booking_pkey PRIMARY KEY (booking_id),

    CONSTRAINT booking_booking_ref_key UNIQUE (booking_ref),

    CONSTRAINT booking_account_id_fk FOREIGN KEY (account_id)

       REFERENCES account (account_id)

);
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The booking_leg table (Listing 9-11) links bookings to flights. Therefore, a natural 

key for this table would consist of flight_id and booking_id, that is, of two foreign 

keys referencing tables flight and booking. This pair of columns would be an excellent 

primary key. The decision to create an additional surrogate key booking_leg_id was 

driven by the idea to avoid references to the compound key from the dependent table 

(the booking_leg table is referenced form the boarding_pass table, which is the largest 

table in the database).

Listing 9-11.  The booking_leg table

CREATE TABLE booking_leg

(   booking_leg_id SERIAL,

    booking_id integer NOT NULL,

    booking_ref text NOT NULL,

    flight_id integer NOT NULL,

    leg_num integer,

    is_returning boolean,

    update_ts timestamp with time zone,

    CONSTRAINT booking_leg_pkey PRIMARY KEY (booking_leg_id),

    CONSTRAINT booking_id_fk FOREIGN KEY (booking_id)

        REFERENCES booking (booking_id),

    CONSTRAINT flight_id_fk FOREIGN KEY (flight_id)

        REFERENCES flight (flight_id)

)

A surrogate key is needed for the passenger table (see Listing 9-12) because 

the same person may be a passenger on multiple bookings and a passenger is not 

necessarily registered as a client in the booking system (a flight may be booked by 

someone else on behalf of the passenger).

Listing 9-12.  Passenger table

CREATE TABLE passenger

(  passenger_id serial,

    booking_id integer NOT NULL,

    booking_ref text,

    passenger_no integer,
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    first_name text NOT NULL,

    last_name text NOT NULL,

    account_id integer,

    update_ts timestamptz,

    CONSTRAINT passenger_pkey PRIMARY KEY (passenger_id),

    CONSTRAINT pass_account_id_fk FOREIGN KEY (account_id)

        REFERENCES account (account_id),

    CONSTRAINT pass_booking_id_fk FOREIGN KEY (booking_id)

        REFERENCES booking (booking_id,

    CONSTRAINT pass_frequent_flyer_id_fk FOREIGN KEY (account_id)

        REFERENCES account (account_id)

);

There is no obvious way to identify accounts; therefore, a surrogate key must be used 

for the account table, shown in Listing 9-13.

Listing 9-13.  Account table

CREATE TABLE account

(   account_id SERIAL,

    login text NOT NULL,

    first_name textNOT NULL,

    last_name text NOT NULL,

    frequent_flyer_id integer,

    update_ts timestamp with time zone,

    CONSTRAINT account_pkey PRIMARY KEY (account_id),

    CONSTRAINT frequent_flyer_id_fk FOREIGN KEY

 (frequent_flyer_id)

        REFERENCES frequent_flyer

 (frequent_flyer_id)

);

Loyalty program customers might be identified by card number. However, a separate 

surrogate key frequent_flyer_id enables the option to issue a replacement for a lost or 

stolen card without losing all benefits of a loyal customer.
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In contrast, the surrogate flight_id in the flight table is needed. The natural 

identification of a flight consists of flight_num and scheduled_departure. The flight 

number is the same on different days, while departure time may vary on different days 

and can be changed slightly (e.g., 5–10 minutes later) when the flight is already partially 

booked. The flight_id represents a particular occurrence of the flight with a specific 

flight number as shown in Listing 9-14.

Listing 9-14.  Flight table

CREATE TABLE flight

(   flight_id serial,

    flight_no text NOT NULL,

    scheduled_departure timestamptz NOT NULL,

    scheduled_arrival timestamptz NOT NULL,

    departure_airport character(3) NOT NULL,

    arrival_airport character(3) NOT NULL,

    status text NOT NULL,

    aircraft_code character(3) NOT NULL,

    actual_departure timestamptz,

    actual_arrival timestamptz,

    update_ts timestamptz,

    CONSTRAINT flight_pkey PRIMARY KEY (flight_id),

    CONSTRAINT aircraft_code_fk FOREIGN KEY (aircraft_code)

        REFERENCES aircraft (code),

    CONSTRAINT arrival_airport_fk FOREIGN KEY (departure_airport)

        REFERENCES airport (airport_code),

    CONSTRAINT departure_airport_fk FOREIGN KEY (departure_airport)

        REFERENCES airport (airport_code)

);

The table boarding_pass (Listing 9-15) has a surrogate key, but it is not referenced 

from any other table and is therefore useless. The natural key of this table consists of two 

columns: flight_id and passenger_id.
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Listing 9-15.  Boarding pass

CREATE TABLE boarding_pass

(   pass_id integer NOT NULL,

    passenger_id bigint,

    booking_leg_id bigint,

    seat text,

    boarding_time timestamptz,

    precheck boolean,

    update_ts timestamptz,

    CONSTRAINT boarding_pass_pkey PRIMARY KEY (pass_id),

    CONSTRAINT booking_leg_id_fk FOREIGN KEY (booking_leg_id)

        REFERENCES booking_leg (booking_leg_id),

    CONSTRAINT passenger_id_fk FOREIGN KEY (passenger_id)

        REFERENCES passenger (passenger_id)

);

�Summary
This chapter discussed the impact of design decisions on performance. Discussion 

covered both choices within a relational model relating to normalization and surrogate 

keys, as well as popular non-relational models. The limitations of these models were 

explored, along with examples of alternative approaches.
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CHAPTER 10

Application Development 
and Performance
Midway through this book, having covered multiple techniques along the way, it’s time 

to step back and address the additional performance aspects that were foreshadowed 

in Chapter 1. That chapter stated that the approach of this book is broader than just 

optimizing individual queries.

Database queries are parts of applications, and this chapter concerns optimizing 

processes rather than individual queries. Although such optimization is not typically 

considered "database optimization" in its traditional meaning, not addressing process 

deficiencies could easily cancel out any performance gains gleaned from individual 

queries. And since both application and database developers tend to ignore this area of 

potential improvement, we are going to claim it.

�Response Time Matters
Chapter 1, called “Why Optimize?”, enumerated reasons for poor performance, as well 

as covering why query optimization is necessary. What wasn’t covered was why an 

application needs to be performant.

Hopefully, having gotten through a good half of this book, you have not yet forgotten 

why you started reading it in the first place. Perhaps you faced a situation where the 

need to improve overall system performance or performance of a specific part of the 

system became inescapably urgent. However, surprising as it may sound, it is still not 

uncommon to hear an opinion that slow response time is not such a big deal.

We reject this categorically: it is a big deal, and you do not need to go any further 

than your marketing department for confirmation. With today’s consumer expectations, 

the saying time is money could not be more apt.

https://doi.org/10.1007/978-1-4842-6885-8_10#DOI
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Multiple marketing research studies1 have demonstrated that fast response time on a 

website or from a mobile app is critical to attract and maintain incoming traffic. In most 

cases, acceptable response time is below 1.5 seconds. If response time increases to over 

3 seconds, 50% of visitors abandon a site, and more than three quarters of them never 

come back.

Specific examples include the numbers reported by Google that demonstrate that 

slowing search by 0.4 seconds results in a loss of eight million searches per day. Another 

example is Amazon finding that slowing page load time by one second results in $1.6 

billion lost sales in a year. In cases like these, what problem must be addressed to 

improve the situation?

�World Wide Wait
If you’ve ever talked to an application developer who works on a database application or 

if you are one of these developers yourself, the following stance may sound familiar: the 

application works perfectly fine until it hits the database!

That statement, which we interpret as “an application often has performance issues 

when it interacts with a database,” is often instead interpreted as “databases are slow,” 

which is quite frustrating to hear. A DBMS is, after all, a specialized software designed to 

provide faster data access, not to slow things down.

In fact, if you ask a DBA overseeing database health on the same project, you would 

get a reply that the database is performing perfectly. If that’s the case, why do users 

experience the World Wide Wait situation illustrated in Figure 10-1?

1�www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales/; 
https://builtvisible.com/improving-site-speed-talk-about-the-business-benefit/
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Often, although each database query executed by an application returns results in 

less than 0.1 seconds, the application page response time may amount to ten seconds or 

more. Thus, the problem is not in the execution speed of each individual query but in the 

patterns of interaction between the application and the database.

�Performance Metrics
When Chapter 1 discussed optimization goals, it mentioned that many performance 

metrics, such as customer satisfaction, are “external” to the database and can’t be used 

by the optimizer. In fact, these metrics are external not only to the database but to the 

application in general.

The time needed to perform a given business function is really hard to measure and, 

as a consequence, hard to improve. An application developer can force a user to click 

ten buttons instead of one, and sometimes this may help to reduce the response time for 

each of the ten buttons. This might improve some benchmark results but would hardly 

improve user experience and satisfaction.

However, the previous section clearly demonstrates that those are precisely the 

metrics the end user is interested in. They do not care about any individual query; they 

care about overall experience, meaning they want an application to respond fast and 

they do not want to stare at “wait” icons.

Figure 10-1.  World Wide Wait

Chapter 10  Application Development and Performance



200

�Impedance Mismatch
So what are the reasons for poor overall performance?

In very general terms, the reason is incompatibility of database models and 

programming language models that can be expressed via the impedance mismatch 

metaphor. In electrical engineering, the impedance is a generalization of the resistance 

to alternating current presented by a circuit when voltage is applied. The impedance 

phase angle for any component is the phase shift between the voltage across that 

component and current through that component; if this angle is close to 90 degrees, the 

delivered power is close to 0 even if both voltage and current are high.

Similarly, the power of the expressiveness and efficiency of database query 

languages does not match the strengths of imperative programming languages—even 

though both can have great strength, they might deliver less power than expected.

Both imperative programming languages and declarative query languages work 

extremely well to accomplish the tasks they were designed for. The problems start when 

we try to make them to work together. Thus, the reason for poor performance is an 

incompatibility of database models and programming language models.

Applications and databases are designed to operate with

•	 Objects of different sizes (granularity)—single objects vs. bulk  

(sets of) objects

•	 Access pattern (navigation vs. search by attribute values)

•	 Different means of identification—address vs. set of attribute values

In the remaining sections of this chapter, we discuss the consequences of this 

incompatibility in more detail.

�The Road Paved with Good Intentions
The preceding sections might sound like blaming application developers for all 

performance problems and for their unwillingness to “think like a database.” But 

blaming anybody is not a productive way to solve problems, including poor application 

performance. A more productive approach would be to try to understand how good 

intentions can lead to such excruciating results.

Let’s start from examining application development patterns that application 

developers are advised to follow.
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�Application Development Patterns
The most common modern software engineering architecture pattern is a layered 

architecture. Typically, there are four layers:

•	 End user interface

•	 Business logic

•	 Persistence

•	 Database

Each layer may only communicate with adjacent layers, and encapsulation and 

independence are encouraged both within each level and certainly across levels. Thus, 

the business object of a “customer” is totally ignorant of the database table “Customer” 

and, in fact, could be connected to any arbitrary database so long as the persistence layer 

defined a mapping between the data in the database and the objects in the business 

layer.

There are a few important reasons for this, chief among them being facilitating 

fast development, maintainability, and ease of modification of the application, as well 

as making components reusable. It seems facially obvious that a change in the end 

user interfaces shouldn’t de facto cause a change in the database schema. This strict 

separation also facilitates rapid work in parallel: developers can work on different 

parts of the application, and rest assured that the other parts of the application outside 

their narrow domains do not depend on the internal structure or implementation 

of the objects the developer is touching. And it of course seems useful that multiple 

applications can be built on the same foundation of business logic—that the internal 

logic of the application does not have to be duplicated for each new built environment.

So far, so good—so what is the problem? Unfortunately, there are many pitfalls, 

and the methodology doesn’t quite deliver the promised benefit—at least, as it is 

implemented in the wild.

Consider the idea of centralizing business logic. First, the benefits of having all the 

logic in one place—the business layer—are somewhat reduced when that “one place” 

is several hundred thousand lines of code. In practice, such a large business layer will 

result in duplication—or, worse, attempted duplication. When the business logic layer 

is bloated, it’s hard to find a function that does exactly what one wants—as a result, we, 

the authors, have often observed the same real-world business logic implemented in 

different ways in different methods, with different results.
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Second, this business logic may be available to additional end user interfaces, but 

it is not available to other business uses that interact directly with the database—most 

crucially, reporting. Thus, report writers end up duplicating application logic code, 

perhaps in a data warehouse or, worse yet, in individual reports, with no guarantee of 

equivalence with application logic.

Additionally, with this approach, communication with the persistence layer is 

limited to individual objects or even single scalar values effectively disabling the power 

of the database engine. The end user interface might know all the different data elements 

that it needs, but because it doesn’t communicate directly with the persistence layer, 

requests for data are mediated by the business logic layer.

A typical implementation of the persistence layer has data access classes that 

correspond one-to-one with business object classes. It is straightforward to write basic 

database DDL functions (INSERT, UPDATE, DELETE), but what happens when operations 

must be performed on a set of objects of this class? There are two paths: The developer 

could create another set of methods that would repeat the same functions for the objects 

in a set. However, this would violate the principle of code reuse. Alternately, and more 

commonly, the developer simply iterates through the collection, calling the functions 

defined to handle an individual object.

Imagine an application interface that listed all passengers who departed from 

O’Hare airport. A database developer would assume that to list all passengers who 

departed from O’Hare airport, they need to join the table flight with the table 

boarding_pass. All the information is returned in one go. For an application developer, 

the task might be trickier. They might have a method GetFlightByDepartureAirport() 

that takes airport code as a parameter and returns a collection of flights. Then, they can 

iterate through the flights, returning all boarding passes for the flight. In effect, they are 

implementing a nested loop join algorithm inside the application.

To avoid this, they might use a few different solutions. They could add a departure 

airport attribute to the boarding pass object. However, this would open the door to data 

integrity problems: what if the flight departure time is updated in the flight record but 

not all boarding passes? Alternately, a method could be defined to retrieve boarding 

passes given a flight departure airport, but this would violate the precept of objects being 

ignorant of one another. In a pure layered approach, the boarding pass object is ignorant 

of the flight object, and the flight object is ignorant of the boarding pass. A method that 

pulls data for both wouldn’t belong in either object.
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�“Shopping List Problem”
Stephane Faroult2 illustrates the situation described earlier as the “shopping list 

problem.”

Suppose you have a shopping list for the grocery store. In real life, you would get into 

a car, drive to the grocery store, pick up all the items on your list, get them into the car 

trunk, drive home, bring them inside, and put them into your fridge. Now imagine that 

instead, you would drive to the store, come in, pick just the first item from your shopping 

list, drive back home, put this item in the fridge, and head to the store again! And you 

would continue repeating the same sequence of actions for each item on your list.

Does this sound ridiculous? Yes, but that’s exactly what many applications do when 

it comes to their interaction with databases.

Now imagine that in order to improve the speed of shopping, experts would suggest 

that we should increase the width of the isles in the store or build better highways or 

equip the car with a more powerful engine.

Some of these suggestions could, indeed, improve the situation. But even if you 

could cut down the shopping time by 30%, that improvement can’t be compared with 

the gains achieved with one simple process improvement: picking up all groceries 

during one single trip.

How can the shopping list problem be translated to application behavior? Most 

performance problems are caused by too many queries that are too small. And just as better 

highways can't improve the shopping experience if we continue to take an extra trip for each 

item on our list, the following popular suggestions do not help application performance:

•	 More powerful computers do not help much, as both the application 

and the database are in a wait state for 99% of time.

•	 Higher network bandwidth does not help either. High-bandwidth 

networks are efficient for transfer of bulk amounts of data but cannot 

significantly improve the time needed for roundtrips. Time depends 

on the number of hops and the number of messages but does not 

depend significantly on message size. Furthermore, the size of the 

packet header does not depend on the message size; hence, the 

fraction of bandwidth used for payload becomes small for very short 

messages.

2�Stephane Faroult and Peter Robson, The Art of SQL
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•	 Distributed servers might improve throughput but not response time 

as an application sends requests for data sequentially.

The anti-pattern of “too many too small queries” has been observed for several 

decades. Approximately 20 years ago, one of us, the authors, had to analyze an application 

that needed 5–7 minutes to generate an HTML form containing about 100 fields. The 

application code was perfectly structured into small well-commented methods with nice 

formatting. However, the database trace showed that to produce this form, the application 

issued about 16,000 queries—more than the characters on the form being generated. 

Further analysis showed that a few thousand of the queries were coming from the method 

GetObjectIdByName. Each of these calls was followed by a query from the method 

GetNameByObjectId that was invoked from another part of the application, probably 

written by another developer. The values of name were unique; therefore, the second call 

always returned the parameter of the first. A single query extracting all data needed to 

build the form returned the output in less than 200 milliseconds.

In spite of these known deficiencies, many companies persist in implementing these 

same remedies over and over again, each time with the same result. Even if initially they 

are able to achieve some improvement, it does not last long. For a number of years, we 

observed the optimization efforts in one company.

Since the PostgreSQL optimizer is always trying to take advantage of available RAM, 

this company was increasing their hardware resources, making sure that the whole (or 

almost the whole) database could fit into main memory. We observed their migration 

from machines with 512 GB of RAM to 1 GB, 2 GB, and then 4 GB main memory, when 

the only limiting factor would be the availability of the respective configuration. Each 

time, after a short period of relative satisfaction, the problem would reemerge: the 

database would grow bigger and stop fitting into main memory.

Another remedy that is often implemented is to use a key-value store instead of a 

fully-fledged database. The argument is something like “nothing except access by a 

primary key is used in the application, so a query engine is not needed.” Indeed, such 

an approach may improve response time for any single data access. However, this 

cannot improve the time needed to complete a business function. In one of the extreme 

cases observed by us, the authors, a record retrieval using a primary key value would 

take about 10 milliseconds on average. At the same time, the number of database calls 

performed in one application controller action would total to almost one thousand, with 

predictable overall performance impacts.
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�Interfaces
Yet another reason for suboptimal interactions between an application and a database 

is at the level of interfaces. Typically, applications use a generalized interface such as 

ODBC or JDBC. These interfaces provide an oversimplified view of a database as a 

set of flat tables. Actually, both the application and the database can operate in terms 

of complex structured objects; however, there is no way to transfer such high-level 

structures through the interface. Thus, an application cannot benefit from the high-level 

model even if it is maintained in the database.

To transfer a complex database object, an application is forced to use separate 

queries for each part of a database object or, alternately, to use a custom parsing method 

for deserializing the flat representation as returned over the interface into the complex 

objects themselves.

The imperfections of dominant development practices are well known to 

professionals. Why are these practices so common?

The reasons are not technical. Application developers almost always work under 

time pressure. A new product or a new feature has a release deadline, which is often “as 

soon as possible.” The financial gain of early delivery is significantly higher than that with 

later delivery and better quality.

�Welcome to the World of ORM
The desire to isolate the database language (i.e., SQL) from application developers and 

thus simplify their task (and also reduce the need for the database skills) leads to the 

introduction of software that converts database functions into object methods.

An object-relational mapper (ORM) stands for a program that maps a database 
object to the in-memory application object.

Some ORM developers have claimed that the impedance mismatch problem is 

solved. Objects are mapped one-to-one to database tables, and the underlying structure 

of the database, as well as the generated SQL used to interact with it, is of no concern 

to the application developer. Unfortunately, the cost of this solution is unacceptable 

performance degradation.
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How does ORM work? The process is shown in Figure 10-2.

	 1.	 The application disassembles an object into undividable (scalar) 

parts.

	 2.	 The parts are sent to/from the database separately.

	 3.	 In the database, the complex data structure is present, but all 

queries run separately.

Theoretically, an ORM does not prevent the application from running arbitrary 

database queries; an ORM usually provides certain means for that. However, in practice, 

generated queries are almost always used due to time pressures and the simplicity with 

which they are created in the application.

Because the actual database code is obscured from the developer, database 

operations on sets of objects end up happening very similarly to the non-ORM solution: 

an ORM method returns the list of object IDs from the database, and then each object 

is extracted from the database with a separate query (also generated in the ORM). Thus, 

to process N objects, an ORM issues N+1 database queries, effectively implementing the 

shopping list pattern described in the previous section.

Such mapping solves the problem of abstraction from details of data storage but does 

not provide effective means of manipulation with datasets.

In addition, the ORM might hide important implementation details. Take one 

example, observed in a production system: an IsActive flag on a Customer object to 

denote whether the customer had recent activity. A developer might think that this 

was just an attribute stored in the customer table of the database, but in actuality, it 

depended on a complex set of criteria based on customer behavior, and this query 

was run every time the attribute was invoked. Even worse, this attribute was used and 

Figure 10-2.  How ORM works
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frequently checked in the code for control flow and visual components that displayed 

differently based on the customer’s status. Thus, to render one page, this complex query 

was run multiple times.

�In Search of a Better Solution
To summarize the preceding, in the application layer, classes and methods for tables and 

sets should be integrated with the database to work effectively (methods should be executed 

by the DB engine). However, most architectures do not allow this kind of integration, which 

leads to reimplementation of database operations at the application layer.

This particular case of impedance mismatch is called ORIM—object-relational 

impedance mismatch.

Consequently, conventional ways of architecting communication between 

applications and databases are the most significant source of application slowness. 

There is no ill will here: application and database developers are doing the best they can 

with the tools they have.

To address this problem, we need to find a way to transfer collections of complex 

objects. Note that in fact, we are looking for a solution for two closely related problems. 

The first problem is inability to transfer “all the data at once,” that is, to think and 

operate in sets. The second problem is inability to transfer complex objects without 

disassembling them before the data transfer to and from the application.

In order to illustrate the desired outcome, let’s look at an example of how a web 

application may interact with the postgres_air database. When a user logs into the 

online booking system, the first thing they will see is most likely their existing bookings. 

When they select a specific booking, they will see a screen that looks something like the 

screenshot in Figure 10-3.
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The information that is displayed on your screen is selected from several different 

tables: booking, booking_leg, flight, passenger, and airport. After the check-in, you 

will also see the boarding passes.

A web application developed using a traditional approach would access the  

database 17 times to display these results: first, to select a booking_id list for the current 

user, then select booking details from the booking table, then select details for each 

booking leg (four in total), then select flight details for each flight (four more), and then 

select airport details (another four) and then passenger details (another three). However, 

an application developer knows exactly what object they should build in order to display 

booking results. On the database side, a database developer similarly knows how to 

select all pieces of information that are needed to build such object. If we would draft the 

structure of the object in question, we would come up with something similar to what is 

shown in Figure 10-4.

Figure 10-3.  Your reservation screen
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If we could package data on the database side in such or similar object and send 

it to the application with one command, the number of database calls would decrease 

dramatically. And fortunately, PostgreSQL is capable of building such objects. The 

following PostgreSQL features make it possible:

•	 PostgreSQL is an object-relational database.

•	 PostgreSQL allows the creation of custom types.

•	 PostgreSQL functions can return sets, including sets of records.

Subsequent chapters will discuss functions that return sets of records and support of 

JSON/JSONB data types and custom data types and will show examples of how to create 

these functions and use them in applications.

Figure 10-4.  Mapping complex objects
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�Summary
This chapter discussed additional performance aspects that typically are not 

considered related to database optimization. Although, technically speaking, it is not 

about optimizing queries, it presents an approach to optimizing overall application 

performance. As we’ve often stated, SQL queries are not executed in a vacuum; they 

are parts of an application, and the “in between” area of communication between the 

application and database was and still is often omitted from consideration by both 

database and application developers.

For that reason, we’ve taken the liberty of claiming ownership of this uncharted 

territory and suggesting a path for improvement. Notably, this chapter does not provide 

any practical solutions or any examples of “how to do it right.” In subsequent chapters, 

we will discuss several techniques that provide developers with a powerful mechanism 

to overcome the limitations of traditional ORMs.
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CHAPTER 11

Functions
This chapter focuses on the most underused and misused of PostgreSQL objects—

functions. Since all modern programming languages include user-defined functions, 

people often assume that database functions are cut from the same cloth and if you 

know how to write functions and when to write functions in an application programming 

language, you can apply this knowledge to PostgreSQL. This could not be further from 

truth.

This chapter discusses how PostgreSQL functions are different from functions in 

other programming languages, when functions should be created and when they should 

not, how the usage of functions can improve performance, and how it can lead to a 

major performance degradation.

Before proceeding, let’s address the widespread belief that usage of functions 

decreases portability. This is true as it goes, but consider the following:

•	 Both SQL statements and ORMs are not 100% portable; some 

hopefully minor work will be required.

•	 Swapping databases for an existing production system is always 

a major project and is never done on the fly. Some changes to 

the application itself are unavoidable. Converting functions adds 

relatively small overhead to the project.

�Function Creation
PostgreSQL has both built-in (internal) functions and user-defined functions. In this 

respect, it is not different from other programming languages.
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�Internal Functions
Internal functions are written in the C language and are integrated with the PostgreSQL 

server. For each data type supported by PostgreSQL, there are a number of functions 

that perform different operations with variables or column values of that type. Similar 

to imperative languages, there are functions for mathematical operations, functions to 

operate on strings, functions to operate on date/time, and many others. Moreover, the 

list of available functions and supported types expands with each new release.

Some examples of built-in functions are shown in Listing 11-1.

Listing 11-1.  Examples of built-in functions

sin(x);

substr(first_name,1,1);

now();

�User-Defined Functions
User-defined functions are functions that you, the user, create. PostgreSQL supports 

three kinds of user-defined functions:

•	 Query language functions, that is, functions written in SQL

•	 C functions (written in C or C-like languages, like C++)

•	 Procedural language functions, written in one of the supported 

procedural languages (referred to as PL)

A CREATE FUNCTION command is presented in Listing 11-2.

Listing 11-2.  CREATE FUNCTION command

CREATE FUNCTION function_name (par_name1 par_type1, ...)

RETURNS return_type

AS

<function body>

LANGUAGE function plpgsql;

From the PostgreSQL perspective, the database engine captures only the function 

signature—the name of the function, the list of parameters (which may be empty), 

and the type of return value (which may be void)—and some specifications, such as 

Chapter 11  Functions



213

the language in which it is written. The function body is packaged into a string literal, 

which is passed to a special handler that knows the details of the language. The handler 

could either do all the work of parsing, syntax analysis, execution, and so on itself, or 

it could serve as the “glue” between PostgreSQL and an existing implementation of a 

programming language. The standard PostgreSQL distribution supports four procedural 

languages: PL/pgSQL, PL/Tcl, PL/Perl, and PL/Python. In this book, we will discuss only 

functions written in PL/pgSQL.

�Introducing Procedural Language
Since we’re covering functions, it seems like a good idea to formally introduce the 

language (or languages) in which these functions can be written.

So far in this book, the only language that has been used is SQL, and the only 

operator you could see in code snippets, other than various CREATE operators, was 

SELECT. Now, it is time to introduce procedural languages. In this book, we discuss only 

the PostgreSQL native procedural language PL/pgSQL.

A function written in PL/pgSQL can include any SQL operators (possibly with some 

modifications) and control structures (IF THEN ELSE, CASE, LOOP) and calls to other 

functions.

Listing 11-3 presents an example of a function written in PL/pgSQL that converts 

a text string to numeric, if possible, and returns null if the string does not represent a 

number.

Listing 11-3.  Function converting text to numeric

CREATE OR REPLACE FUNCTION text_to_numeric(input_text text)

  RETURNS integer AS

$BODY$

BEGIN

     RETURN replace(input_text, ',', '')::numeric;

EXCEPTION WHEN OTHERS THEN

  RETURN null::numeric;

END;

$BODY$

  LANGUAGE plpgsql;
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Using the information in Listing 11-2, we can identify the parts common to all 

user-defined functions. The function name is text_to_numeric, and it has only one 

parameter, input_text, of type text.

The RETURNS clause defines the type of value the function returns (numeric), and the 

LANGUAGE clause specifies the language in which the function is written, plpgsql.

Now, let’s take a closer look at the function body.

�Dollar Quoting
In the previous section, we stated that a function body is represented as a string literal; 

however, instead of quotes, it starts and ends with $BODY$. This notation in PostgreSQL 

is called dollar quoting, and it is especially useful when you create a function. Indeed, 

if you have a relatively large text of a function, chances are you will need to use single 

quotes or backslashes, and then you will need to double them at each occurrence. With 

dollar quoting, you can use two dollar signs, possibly with some tag between them to 

define a string literal.

Tagging makes this way of defining string constants especially convenient, because 

you can nest strings with different tags. For example, the beginning of a function body 

can look like Listing 11-4.

Listing 11-4.  The usage of nested dollar quoting

$function$

DECLARE

V_error_message text:='Error:';

V_record_id integer;

BEGIN

...

v_error_message:=v_error_message||$em$Record can't be updated, 

#$em$||quote_literal(v_record_id);

...

END;

$function$

Chapter 11  Functions



215

Here, we use dollar quoting with the tag function for a function body. Note that 

there are no rules limiting which tag you can use for a function body, including the 

empty tag; the only requirement is that the string literal is finished with the same tag as 

the tag that started it. The examples here will use different tags as a reminder that tags 

are not predefined.

The function body starts with a DECLARE clause, which is optional in case no variables 

are needed. BEGIN (without a semicolon) denotes the start of the statements section, and 

the END keyword should be the last statement of the function body.

Please note this section is not a comprehensive guide to function creation. Please 
refer to PostgreSQL documentation for more details.

More details are discussed as they are introduced in future examples.

�Function Parameters and Function Output: Void Functions
Most often, a function will have one or multiple parameters, but it might have none. For 

example, the internal function now(), which returns the current timestamp, does not 

have any parameters. We can assign default values to any function parameter, to be used 

if no specific value is explicitly passed.

In addition, there are multiple ways to define function parameters. In the example in 

Listing 11-3, parameters are named, but they can also be positioned ($1, $2, etc.). Some 

parameters may be defined as OUT or INOUT, instead of specifying a return type. Again, 

this chapter doesn’t intend to cover every possible specification, because function 

performance does not depend on all these specification variations.

The last thing to mention in this section is that it is possible for a function to return 

no value; in this case, a function is specified as RETURNS VOID. These exist because 

previously, PostgreSQL did not have support for stored procedures, so the only way to 

package multiple statements together was inside a function.
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�Function Overloading
Similar to other programming languages, functions in PostgreSQL can be polymorphic, 

that is, multiple functions can use the same name with a different signature. This feature 

is called function overloading. As mentioned earlier, a function is defined by its name 

and its input parameter set; the return type may be different for different sets of input 

parameters, but for obvious reasons, two functions cannot share both the same name 

and same set of input parameters.

Let’s take a look at the examples in Listing 11-5. In case #1, a function that calculates 

the number of passengers on a specific flight is created. In case #2, a function with the 

same name, which calculates the number of passengers departing on a specific date 

from a specific airport, is created.

However, if you try to run snippet #4 to create a function that calculates the number 

of passengers on a specific flight number on a specific date, you will get an error:

ERROR: cannot change name of input parameter "p_airport_code".

You can create a function with the same name and with a different set of parameters 

and a different return type; thereby, you can create another function with the same 

name, as shown in case #4. However, if you try to create a function with the same name 

and with a different return type but same parameters (case #5), you will also get an error 

message:

ERROR: cannot change return type of existing function

Listing 11-5.  Function overloading

#1

CREATE OR REPLACE FUNCTION num_passengers(p_flight_id int) RETURNS integer;

#2

CREATE OR REPLACE FUNCTION num_passengers(p_airport_code text, p_departure 

date) RETURNS integer;

#3

CREATE OR REPLACE FUNCTION num_passengers(p_flight_no text, p_departure 

date) RETURNS integer;
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#4

CREATE OR REPLACE FUNCTION num_passengers(p_flight_no text) RETURNS 

numeric;

#5

CREATE OR REPLACE FUNCTION num_passengers(p_flight_id int) RETURNS numeric;

Note that the source code of these functions differs significantly. Listing 11-6 shows 

the source code of the num_passengers(integer) function, and Listing 11-7 shows the 

code of the num_passengers(text,date) function.

Listing 11-6.  Source code of num_passengers(int)

CREATE OR REPLACE FUNCTION num_passengers(p_flight_id int) RETURNS integer

AS

$$BEGIN

RETURN (

      SELECT count(*) FROM booking_leg bl

             JOIN booking b USING (booking_id)

             JOIN passenger p

             USING (booking_id)

WHERE flight_id=p_flight_id);

END;

$$ LANGUAGE plpgsql;

Listing 11-7.  Source code of num_passengers(text, date)

CREATE OR REPLACE FUNCTION num_passengers(p_airport_code text, p_departure 

date) RETURNS integer

AS

$$BEGIN

RETURN (

      SELECT count(*) FROM booking_leg bl

             JOIN booking b USING (booking_id)

             JOIN passenger p USING (booking_id)

             JOIN flight f USING (flight_id)
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WHERE departure_airport=p_airport_code

AND scheduled_departure BETWEEN p_departure AND p_departure +1)

;

END;

$$ LANGUAGE plpgsql;

�Function Execution
To execute a function, we use the SELECT operator. Listing 11-8 demonstrates two 

possible ways to execute the function num_passengers with the flight_id parameter set 

to 13.

Listing 11-8.  Function execution

SELECT num_passengers(13);

SELECT * FROM num_passengers(13);

For functions that return scalar values, either syntax will produce identical results. 

Complex types are covered later in this chapter.

It is also worth noting that user-defined scalar functions can be used in SELECT statements, 

just like internal functions. Recall the function text_to_numeric in Listing 11-3. You 

might wonder why somebody would need to create a user-defined conversion function 

when PostgreSQL already has three different ways to convert a string to an integer. For 

the record, these three ways are

•	 CAST (text_value AS numeric)

•	 text_value::numeric (this is alternative syntax for CAST)

•	 to_number(text_value, '999999999999')—using an internal 

function

Why is a custom conversion function needed? For any of the methods listed in 

the preceding list, if the input text string contains symbols other than numerals, the 

attempted conversion results in an error.
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To make sure that the conversion function does not fail, we include the exception 

processing section in the function body. The section starts with the EXCEPTION keyword; 

the WHEN keyword may identify specific exception types. In this chapter, we will use 

it only in the form WHEN OTHERS, which means all exception types not included in 

previous WHEN conditions. If, as in Listing 11-3, WHEN OTHERS is used by itself, it means all 

exceptions should be processed in the same way.

In Listing 11-3, this means that any conversion error (or, actually, any error) should 

not fail the function, but instead return NULL. Why is it so critical for a function not to fail 

when a “bad” parameter is passed? Because this function is being used in a SELECT list.

In Chapter 7, we created the materialized view passenger_passport (see Listing 7-11). 

Different columns of this materialized view should contain different data types, but since 

in the source data, all these fields are text fields, there is not much we can do. Now, if you 

want to select the passport_num as a numeric type, your SELECT might look like this:

SELECT passenger_id,

       passport_num::numeric AS passport_number

FROM passenger_passport

If, in even one instance, the passport_num column contains a non-numeric value 

(e.g., a blank or an empty string), then the whole SELECT statement will fail. Instead, we 

can use the custom function text_to_integer:

SELECT passenger_id,

       text_to_numeric(passport_num) AS passport_number

FROM passenger_passport

Let’s create one more user-defined function, text_to_date, which will transform a 

string that contains a date to type date—see Listing 11-9.

Listing 11-9.  Function converting text to date

CREATE OR REPLACE FUNCTION text_to_date(input_text text)

  RETURNS date AS

$BODY$

BEGIN
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     RETURN input_text::date;

EXCEPTION WHEN OTHERS THEN

  RETURN null::date;

END;

$BODY$

  LANGUAGE plpgsql;

Now, we can use both functions in Listing 11-10.

Listing 11-10.  Using functions in a SELECT list

SELECT passenger_id,

       text_to_integer(passport_num) AS passport_num,

       text_to_date(passport_exp_date) AS passport_exp_date

FROM passenger_passport

Although this example seems like a perfect use case for functions in PostgreSQL, in 

reality it represents a far from ideal solution when it comes to performance, and we will 

find out why very soon!

�Function Execution Internals
This section explains some specifics of function execution that are unique to 

PostgreSQL. If you have previous experience with a DBMS like Oracle or MS SQL 

Server, you might assume a thing or two about function execution that are not true in 

PostgreSQL.

The first surprise might come when you execute a CREATE FUNCTION statement and 

receive a completion message that looks something like this:

CREATE FUNCTION

Query returned successfully in 127 msec.

Reading this, you might assume your function does not contain any errors. To 

illustrate what may go wrong afterward, let’s compile the code in Listing 11-11. If you 

copy and execute this statement, you will receive a successful creation message.
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Listing 11-11.  Create a function that will complete with no errors

CREATE OR REPLACE FUNCTION num_passengers(p_airport_code text, p_departure 

date) RETURNS integer

As $$

BEGIN

RETURN (

      SELECT count(*) FROM booking_leg bl

             JOIN booking b USING (booking_id)

             JOIN passenger p  USING (booking_id)

             JOIN flight f USING (flight_id)

WHERE airport_code=p_airport_code

AND scheduled_departure BETWEEN p_date AND p_date +1);

END;

$$ LANGUAGE plpgsql;

However, when you try to execute this function

SELECT num_passengers('ORD', '2020-07-05')

…you will receive an error message:

ERROR: column "airport_code" does not exist

What went wrong? The function uses airport_code instead of departure_airport. 

This is an easy mistake to make, but you might not expect that PostgreSQL would never 

inform you that you made this mistake in the first place, when you created the function.

Now, if you correct this mistake and run a new CREATE FUNCTION statement (see 

Listing 11-12), you will receive yet another error:

ERROR: column "p_date" does not exist

Listing 11-12.  Create a function: one error corrected, one more still there

CREATE OR REPLACE FUNCTION num_passengers(p_airport_code text, p_departure 

date) RETURNS integer

As $$

BEGIN

RETURN (
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      SELECT count(*) FROM booking_leg bl

             JOIN booking b USING (booking_id)

             JOIN passenger p  USING (booking_id)

             JOIN flight f USING (flight_id)

WHERE departure_airport =p_airport_code

AND scheduled_departure BETWEEN p_date AND p_date +1);

END;

$$ LANGUAGE plpgsql;

And PostgreSQL is right, since the name of the parameter is p_departure_date, not 

p_date. Still, why wasn’t this error reported earlier?

During function creation, PostgreSQL performs only an initial parsing pass, during 

which only trivial syntax errors will be detected. Anything deeper will not be detected 

until execution. If you are fresh from Oracle and assume that when you create a function, 

it is compiled by the database engine and stored compiled, this is bad news. Not only are 

functions stored in the form of source code but moreover, in contrast to other DBMSs, 

functions are interpreted, not compiled.

The PL/pgSQL interpreter parses the function's source text and produces an 

(internal) instruction tree the first time the function is called within each session. Even 

then, individual SQL expressions and commands used in the function are not translated 

immediately. Only when the execution path reaches a specific command is it analyzed 

and a prepared statement is created. It will be reused if the same function is executed 

again in the same session. One of the implications of this is that if your function contains 

some conditional code (i.e., IF THEN ELSE or CASE statements), you may not even 

discover the syntax errors in your code, if this portion was not reached during execution. 

We’ve seen these kinds of unpleasant discoveries made long after the function went into 

production. To summarize, when you create a PL/pgSQL function

	 1.	 No execution plan is saved.

	 2.	 No checks for existence of tables, columns, or other functions are 

performed.

	 3.	 You do not know whether your function works or not, until you 

execute it (often more than one time, if there are multiple code 

paths).

Chapter 11  Functions



223

Another important thing to know about PostgreSQL functions, which can be 

concluded from the preceding explanation, is that functions are “atomic” in several 

different ways. First (to the dismay of Oracle users), you can’t initiate transactions inside 

PostgreSQL functions, so in the case of DML statements, it’s always “all or nothing.” 

Second, the PostgreSQL optimizer knows nothing about function execution when it 

optimizes an execution plan, which includes invocations of user-defined functions. For 

example, if you execute

EXPLAIN SELECT num_passengers(13)

…the execution plan will look something like this:

"Result (cost=0.00..0.26 rows=1 width=4)"

If you need to find out what execution plans are used to execute the SELECT 

statements inside the function, you will need to supply some actual values in place of 

parameters and run the EXPLAIN command for each of them.

One of the keywords in the CREATE FUNCTION operator (remember, we didn’t list all 

of them!) is COST. It allows a developer to explicitly set the cost of function execution to 

be used by the optimizer. The default value is 100, and we do not recommend changing 

it, unless you have a really compelling reason to do so.

�Functions and Performance
With that brief introduction out of the way, it’s time to address this book’s central 

concern. How do functions affect performance? Chapter 7 addressed the topic of 

code factoring and outlined the different implications of code factoring in imperative 

languages and in SQL. Several possible techniques were covered, and functions were 

mentioned as deserving a more detailed discussion, which follows.

Why create functions in PostgreSQL? In imperative languages, using functions 

is the obvious choice: functions increase code readability, facilitate code reuse, and 

have no negative impact on performance. By contrast, functions in PostgreSQL may 

increase code readability, but may also decrease code readability and may significantly 

worsen performance. Note the word “may”; the rest of the chapter concerns ways to use 

user-defined functions wisely, so that they provide performance benefits rather than 

performance disaster.
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�How Using Functions Can Worsen Performance
In a previous section, we created the function num_passengers(int), which calculates 

the number of passengers on a flight specified by a function parameter. This function 

works great for a single flight, returning a result within 150 ms.

Let’s take a look at what happens if this function is included in a SELECT list. Listing 11-13 

selects all flights that departed from ORD between July 5 and July 13 and, for each of these 

flights, calculates a total number of passengers.

Listing 11-13.  Using a function in the SELECT list decreases performance

SELECT flight_id,

       num_passengers(flight_id) AS num_pass

FROM flight f

   WHERE departure_airport='ORD'

   AND scheduled_departure BETWEEN '2020-07-05' AND '2020-07-13'

The execution time for this statement is 3.5 seconds. Now, if instead of using a 

function, a SQL statement performing the exact same calculations is used (Listing 11-14), 

the execution time will be around 900 ms.

Listing 11-14.  The same results without using a function

SELECT f.flight_id,

count(*) AS num_pass

FROM booking_leg bl

     JOIN booking b USING (booking_id)

     JOIN n passenger p

     USING (booking_id)

     JOIN flight f USING (flight_id)

WHERE departure_airport='ORD'

AND scheduled_departure BETWEEN '2020-07-05' AND '2020-07-13'

GROUP BY 1

Why such a big difference? In Chapter 7, we explained how views and CTEs can work 

as an optimization fence. The effect is even more pronounced with functions. Since 

a function is a true black box for the surrounding SQL statement, the only option for 

PostgreSQL is to execute each function as many times as many rows are selected.
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To be precise, some time is saved because for the subsequent function calls from the 

same session, PostgreSQL uses a prepared statement, but that fact can both speed up 

and slow down the execution, because the execution plan won’t take into account the 

differences in statistics between function calls.

The difference in the execution time between 0.9 seconds and 3.5 seconds might not 

seem so big, and one might argue that a moderate slowdown can be tolerated for ease of 

code maintenance, but note that between 0.9 seconds and 3.5 seconds, we are crossing 

a threshold of how long a user is willing to wait. And here, the SQL inside the function is 

pretty light and takes milliseconds to be executed.

Fine, we understand that it is not the greatest idea to execute SELECT statements 

embedded into the SELECT list of another statement. But what about functions, which 

perform simple data transformations? Like the ones we created for type conversion? In 

this case, the difference may not be so dramatic until the output size becomes really big, 

but it is still visible.

Let’s compare the execution time for the statement from Listing 11-10 with the 

execution time for the statement in Listing 11-15.

Listing 11-15.  Selecting passport information without type conversion

SELECT passenger_id,

       passport_num,

       passport_exp_date

FROM passenger_passport

Both of them select data from one single table and do not apply any filters, so the 

only time overhead will be the one incurred from executing the functions in the SELECT 

list. The passenger_passport materialized view contains over 16 million rows. The 

execution time for the statement in Listing 11-15 is 41 seconds. If we apply type casting 

without calling the function (Listing 11-16)

Listing 11-16.  Selecting passport information with type casting

SELECT passenger_id,

       passport_num::numeric,

       passport_exp_date::date

FROM passenger_passport
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…the execution time will be two minutes. Running the statement in Listing 11-10, the 

execution time will be more than nine minutes!

In this particular case, not much can be done to improve performance, except to 

come up with a better design in the first place, but later in this book, we will review other 

examples, where some performance improvements are possible.

�Any Chance Functions Can Improve Performance?
Having reviewed so many examples where functions affected performance negatively, 

one might wonder whether there are ever conditions under which functions can 

improve performance. As in many other cases, it depends.

If we are talking about improving an individual SQL statement’s performance, 

wrapping it in a function can’t make it run faster. However, functions can be extremely 

helpful when what is being optimized is a process.

�Functions and User-Defined Types
In all of the function examples so far, the functions we built returned scalar values.  

Now, let’s see what are some additional benefits, provided by functions that return  

user-defined data types.

�User-Defined Data Types
In addition to its own rich collection of data types, PostgreSQL allows the creation of a 

virtually unlimited number of user-defined data types.

User-defined types can be simple or composite. Simple user-defined types include 

the following categories: domain, enum, and range.

The following are examples of simple type creation:

CREATE DOMAIN timeperiod  AS tstzrange;

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy’);

CREATE TYPE mood_range AS RANGE...

CREATE TYPE <base type>
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Just as we can define arrays of base types, we can define arrays of user-defined types:

DECLARE

v_moods_set mood[];

Even more options are available when we create a composite type.

A composite type represents a row, or a record. A type definition consists of the 

sequence of field names and their respective data types. For example, Listing 11-17 

defines the type boarding_pass_record.

Listing 11-17.  Type boarding_pass_record

CREATE TYPE boarding_pass_record AS (

boarding_pass_id int,

booking_leg_id int,

flight_no text,

departure_airport text,

arrival_airport text,

last_name text,

first_name text,

seat text,

boarding_time timestamptz)

Now that the type boarding_pass_record is defined, we can declare variables of this 

type, the same as we can declare variables of base types:

DECLARE

v_new_boarding_pass_record boarding_pass_record;

And moreover, we can create functions, which return sets of composite types.

�Functions Returning Composite Types
Why is the fact that functions can return sets of composite types so crucial? Why would 

we want to do it? Recall from Chapter 9 that we need to be able to retrieve the whole 

object from the database, not just one component after another. Now, everything 

previously discussed can be put together.

Let’s build an example. In Listing 11-18, we present a function that returns all 

boarding passes for a specified flight.
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Listing 11-18.  Function returning all boarding passes for the flight

CREATE OR REPLACE FUNCTION boarding_passes_flight (p_flight_id int)

RETURNS SETOF boarding_pass_record

AS

$body$

BEGIN

RETURN QUERY

SELECT pass_id,

bp.booking_leg_id,

flight_no,

departure_airport::text ,

arrival_airport ::text,

last_name ,

first_name ,

seat,

boarding_time

FROM flight f

JOIN booking_leg bl USING (flight_id)

JOIN boarding_pass bp USING(booking_leg_id)

JOIN passenger USING (passenger_id)

WHERE bl.flight_id=p_flight_id;

END;

$body$

LANGUAGE plpgsql;

To execute this function, run the following:

SELECT * FROM boarding_passes_flight(13);

The result of this SELECT is presented in Figure 11-1.

Figure 11-1.  Result of the execution of the function boarding_passes_flight
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Now, let’s create another function, which will select just one boarding pass by the 

pass_id. Note that since both functions accept a single integer parameter, overloading 

won’t be possible in this case. The new function is shown in Listing 11-19.

Listing 11-19.  Function that returns one boarding pass

CREATE OR REPLACE FUNCTION boarding_passes_pass (p_pass_id int)

RETURNS SETOF boarding_pass_record

AS

$body$

BEGIN

RETURN QUERY

SELECT pass_id,

bp.booking_leg_id,

flight_no,

departure_airport::text ,

arrival_airport ::text,

last_name ,

first_name ,

seat,

boarding_time

FROM flight f

JOIN booking_leg bl USING (flight_id)

JOIN boarding_pass bp USING(booking_leg_id)

JOIN passenger USING (passenger_id)

WHERE pass_id=p_pass_id;

END;

$body$

LANGUAGE plpgsql;

When we execute this function

SELECT * FROM boarding_passes_pass(215158);

…the result will be a set that consists of only one row, but its structure will be the 

same (see Figure 11-2).
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Why would using these functions improve performance? As we discussed in Chapter 10, 

applications rarely execute SQL statements directly; instead, they often use SQL statements 

generated behind the scenes by ORMs. In this case, there is a high likelihood that boarding 

passes, passengers, and flights are accessible using different methods. That means that 

most likely, to select the same data returned by the function boarding_passes_flight, we 

will need one method to select departure airport, arrival airport, and scheduled departure 

for a flight, which is passed as a parameter to this function, another method to select 

all booking legs for that flight, another method for boarding passes, and yet another for 

passenger information. If the application developers can be convinced, consolidating this 

into a single function will be a huge performance improvement.

Selecting all boarding passes for a flight that has 600 passengers with the boarding pass 

function takes 220 ms, running SELECT * FROM boarding_passes_flight(13650). On 

the other hand, any individual SELECT from any table takes around 150 ms. Since each 

process returns data to the application, making a roundtrip, the execution time is summed 

up—using multiple calls will very quickly exceed the execution time of the function.

Previously, we learned that for scalar functions there is no difference between the 

syntaxes SELECT * FROM function_name and SELECT function name. But when a 

function returns a composite type, there is a difference.

Figure 11-1 shows the results when running

SELECT * FROM boarding_passes_flight(13)

Figure 11-3 shows the results of

SELECT boarding_passes_flight(13)

Figure 11-2.  Result of the execution of the function boarding_passes_pass

Figure 11-3.  Function results as a set of records
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�Using Composite Types with Nested Structure
Can we use composite types as elements of other composite types? Yes, PostgreSQL 

allows it.

In Figure 10-4, we presented the structure of a complex object booking_record. One 

of its components is a complex object booking_leg_record. To build the representation 

of this object as a composite type, begin by creating a flight_record type and a 

boarding_pass_record type, and then proceed with creating a booking_leg_record 

type, as shown in Listing 11-20.

Listing 11-20.  More record type definitions

CREATE TYPE flight_record AS(

flight_id int,

flight_no text,

departure_airport_code text,

departure_airport_name text,

arrival_airport_code text,

arrival_airport_name text,

scheduled_departure timestamptz,

scheduled_arrival timestamptz)

CREATE TYPE booking_leg_record AS(

booking_leg_id int,

leg_num int,

booking_id int,

flight flight_record,

boarding_passes boarding_pass_record[]);

The booking_leg_record type contains as one of its elements a composite type 

flight_record and as another component the array of boarding_pass_record 

elements.

Looks like we solved the problem stated in Chapter 10: we can create composite 

types with nested structure and create functions that return such objects. However, there 

are still plenty of problems to solve.
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To illustrate the remaining problems, let’s create a function that will return the 

whole object booking_leg_record using booking_leg_id. The code for this function is 

presented in Listing 11-21.

Listing 11-21.  Function returning a complex object with nested structure

CREATE OR REPLACE FUNCTION booking_leg_select (p_booking_leg_id int)

RETURNS SETOF booking_leg_record

AS

$body$

BEGIN

RETURN QUERY

SELECT

bl.booking_leg_id,

leg_num,

bl.booking_id,

(SELECT row(flight_id,

flight_no,

departure_airport,

da.airport_name,

arrival_airport,

aa.airport_name ,

scheduled_departure,

scheduled_arrival)::flight_record

FROM flight f

 JOIN airport da on da.airport_code=departure_airport

 JOIN airport aa on aa.airport_code=arrival_airport

 WHERE flight_id=bl.flight_id

 ),

(SELECT array_agg (row(

pass_id,

bp.booking_leg_id,

flight_no,

departure_airport ,

arrival_airport,

last_name ,
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first_name ,

seat,

boarding_time)::boarding_pass_record)

FROM flight f1

JOIN  boarding_pass bp ON f1.flight_id=bl.flight_id

      AND bp.booking_leg_id=bl.booking_leg_id

JOIN passenger p ON p.passenger_id=bp.passenger_id)

FROM booking_leg bl

WHERE bl.booking_leg_id=p_booking_leg_id

;

END;

$body$ language plpgsql;

Don’t be put off by the preceding massive function—it is long, but not too complex. 

Let’s take a closer look.

The main SELECT extracts data from the booking_leg table, using the value of the 

function parameter as a search criterion. The first three elements of the record—booking_

leg_id, leg_num, booking_id—come directly from the table booking_leg. The next 

element of the record is flight_record, where flight_id is the flight_id from the selected 

booking leg. This condition is set in the WHERE clause of the inner SELECT:

WHERE flight_id=bl.flight_id

We select the information about the flight, which is referenced in the selected 

booking leg.

The internal function row() builds the row from the set of elements, and this row is 

cast to the type flight_record, which is the type expected in the booking_leg_record.

The last element of the booking_leg_record is an array of boarding passes—as many 

passes as there are passengers in this reservation. Let’s take a closer look at this inner 

SELECT:

(SELECT array_agg (row(

pass_id,

bp.booking_leg_id,

flight_no,

departure_airport ,

arrival_airport,
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last_name ,

first_name ,

seat,

boarding_time)::boarding_pass_record)

FROM flight f1

JOIN boarding_pass bp ON f1.flight_id=bl.flight_id

     AND bp.booking_leg_id=bl.booking_leg_id

JOIN passenger p ON p.passenger_id=bp.passenger_id)

The first thing you notice about this select is that it is essentially the same select as 

we used in the boarding_pass_flight function. The differences are the following:

•	 There is no need to join with the booking_leg table, since it was 

already selected in the outer SELECT. We still need information from 

the flight table, but we can use the flight_id from the selected 

booking leg. This way, there is a Cartesian product with one line from 

the table flight.

•	 Similarly, for the boarding pass, there is no join with the booking_leg 

table; we just use the booking_leg_id, which is already there.

Finally, we use the internal function array_agg() to create a single set of records that 

is expected as the last element of the booking_leg_record.

Note T he preceding is only one of multiple ways to build an object with nested 
structure. In subsequent chapters, we will present alternative ways, which might 
be more useful in other circumstances.

And now, here is the bad news. We put in so much effort to create this function, and 

now, when we execute it, the results are somewhat disappointing. Execute

SELECT * FROM booking_leg_select (17564910)

The result is shown in Figure 11-4.

Figure 11-4.  Returned complex object with nested structure
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The result set looks exactly as we wanted it to look, but notice one important 

detail. For the scalar elements, PostgreSQL retains the element names (same as if we 

would select from a table), but when it comes to the elements that are complex objects 

themselves, their structure is not revealed. Note that, internally, PostgreSQL still retains 

the notion of what is the structure of the inner type, but it does not communicate it to the 

upper level.

Why is this a problem? Chapter 10 covered ORM pitfalls and sketched out a 

hypothetical solution in Figure 10-4. At that time, we did not discuss any specifics of 

how this goal could be achieved, but with functions that can return complex types, a 

solution seems to be reachable. However, when neither an element name nor its type 

can be identified by the application, the function output becomes useless, at least for the 

purpose of being called from an application directly.

The solution is in Chapter 13, but for now, let’s focus on functions that return records 

without nested structure.

�Functions and Type Dependencies
Chapter 7 mentioned dependencies in the context of views and materialized views. For 

both views and materialized views, the definition cannot be altered without dropping the 

object first. This, in turn, means all dependent objects must be dropped and recreated, 

even if the names and the number of columns in the view or materialized view didn’t 

change. If these dependent objects are, in turn, used in other views or materialized 

views, their dependent objects have to be dropped as well.

This may result in some highly undesirable consequences. We’ve observed 

situations in production systems where one change resulted in a cascade drop of over 60 

dependent objects, which had to be rebuilt following a particular order.

Fortunately, we do not have this problem with functions. Since SQL statements in 

the function body are not parsed during function creation, there are no dependencies 

on tables, views or materialized views, or other functions and stored procedures, which 

are used in the function body. For this reason, functions need only be recreated when 

needed as the result of an actual change, not simply due to a cascade drop.

However, functions create a new type of dependencies: functions depend on their 

returned types, including user-defined types. Just as with materialized views, user-

defined data types cannot be modified without being dropped first. To drop a type, all 

other user-defined types that include it as an element and all functions that depend 
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on that type must be dropped. This might sound like an even worse problem, but 

actually, it is exactly the right problem to have. If a user-defined type is modified, some 

of its elements must have been added, removed, or changed. That, in turn, means that 

SELECT statements that return that type of record must be revised, so the functions 

should be dropped.

In addition, unlike the creation of a materialized view, which may take some time, 

creating a function is nearly instantaneous.

�Data Manipulation with Functions
So far, this chapter has only considered functions that select data. But PL/pgSQL 

functions allow any SQL command, including DML functions.

Listing 11-22 is a function that issues a new boarding pass to a passenger.

Listing 11-22.  Create a new boarding pass

CREATE OR REPLACE FUNCTION issue_boarding_pass

(p_booking_leg_id int,

_p_passenger_id int,

 p_seat text,

 p_boarding_time timestamptz)

RETURNS SETOF boarding_pass_record

AS

$body$

DECLARE

v_pass_id int;

BEGIN

INSERT INTO boarding_pass

(passenger_id,

 booking_leg_id,

 seat,

 boarding_time,

 update_ts)

 VALUES (

p_passenger_id,

p_booking_leg_id,
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p_seat,

p_boarding_time,

now()) RETURNING pass_id INTO v_pass_id;

RETURN QUERY

SELECT  * FROM boarding_passes_pass(v_pass_id);

END;

$body$

LANGUAGE plpgsql;

Note the call to the function boarding_passes_pass in this function body. This 

function was created earlier, but even if it didn’t exist, the CREATE FUNCTION operator 

wouldn’t signal an error until this function is executed. There are pros and cons to 

this behavior. It gives more flexibility during development, but it can also create issues 

because the fact that the embedded function was removed or is not working properly 

might go unnoticed. Executing this function is the same as other functions:

SELECT * FROM issue_boarding_pass(175820,462972, '22C', '2020-06-16 

21:45'::timestamptz)

Note that this execution does not make much sense because the flight departed 

in the past, so it is present here for illustrative purposes only. Figure 11-5 presents the 

result of this execution—the data has the same format as for other functions that return 

boarding passes.

When creating this function, we made some assumptions that we would not hold 

up in real life. For example, the function doesn’t check whether a boarding pass for that 

passenger and that flight was already issued, doesn’t check seat availability against the 

seat chart, and does not capture possible errors on INSERT. In a production environment, 

this function would be much more complex.

Figure 11-5.  DML function returning a user-defined type
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�Functions and Security
In this book, we do not cover data access control/permissions in PostgreSQL, mostly 

because this topic is not related to performance. However, we will cover a little bit about 

setting up security for PostgreSQL functions and a surprising link between function 

security settings and performance.

One of the parameters in the CREATE FUNCTION operator that was not covered 

earlier is SECURITY. This parameter has only two allowed values: INVOKER and DEFINER. 

The latter is a default value; it indicates that the function will be executed using the set 

of privileges of the user who calls the function. That means that in order to be able to 

execute a function, a user should have relevant access to all the database objects that are 

used in the function body. If we explicitly specify SECURITY DEFINER, a function will be 

executed with the permissions of the user who created the function. Note that in contrast 

to other database object permissions, the execution privilege for any function is granted 

by default to PUBLIC.

Many of you (as well as us, your authors) have been in a situation where a power 

business user needs to have access to some critical data, but you do not want to give 

them READ ALL access, because you are not entirely sure about their SQL skills and 

whether their queries might bring the whole system down.

In this case, a compromise might be in order—you would create a function that 

pulls all the necessary data using a performant query, create this function with the 

SECURITY DEFINER parameter, and then give this power user the execution permission, 

first removing execution permission from everybody else. The sequence of actions is 

presented in Listing 11-23.

Listing 11-23.  Usage of the SECURITY DEFINER function

CREATE FUNCTION critical_function (par1 ...)

RETURNING SETOF...

AS $FUNC$

...

END:

$FUNC$

LANGUAGR plpgsql

SECURITY DEFINER;

--
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REVOKE EXECUTE ON critical_function (par1 ...)

FROM public;

GRANT EXECUTE ON critical_function (par1 ...)

TO powerbusinessuser;

�What About Business Logic?
In cases when you can convince your application developers to use functions to 

communicate with the database, the performance gains are dramatic. The sheer fact 

of eliminating multiple roundtrips can easily improve application performance tens or 

even hundreds of times, when we measure the application response time rather than the 

database response time.

One of the most serious blockers on this road to success is the concept of business 

logic. One of the definitions (from Investopedia.com) reads like this:

Business logic is the custom rules or algorithms that handle the exchange  
of information between a database and user interface. Business logic is 
essentially the part of a computer program that contains the information 
(in the form of business rules) that defines or constrains how a business 
operates.

Business logic is often considered a separate application layer, and when we put 

“too much logic” into database functions, it makes application developers unhappy. 

We spent a considerable amount of time trying to find common ground with business 

and application developers alike. The result of these discussions can be summarized as 

follows:

•	 We need some business logic to execute joins and selects.

•	 Selected result transformations and manipulations do not have to be 

executed on the database side.

In practice, this means that when deciding what can go to the database and what has 

to stay in the application, a decisive factor is whether bringing the dependencies into the 

database would improve performance (facilitate joins or enable the use of indexes). If 

so, the logic is moved into a function and considered “database logic”; otherwise, data is 

returned to the application for further processing of business logic.
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For example, for the airline reservation application, a function can be created 

to return available trips, that is, potential bookings. The parameters of this function 

include the departure city, the destination, the trip start date, and the return date. To be 

able to retrieve all possible trips efficiently, the function needs to know how the tables 

airport and flight can be joined and how to calculate the duration of the flight. All this 

information belongs to database logic.

However, we do not want the function to make a final decision regarding which trip 

to select. Final selection criteria may vary and are processed by the application; they 

belong to business logic.

Applying this criterion consistently can be quickly incorporated into the regular 

development cycle and encourages developing applications “right right away.”

�Functions in OLAP Systems
By this time, we hope that we convinced you that using PostgreSQL functions in OLTP 

systems is beneficial. What about OLAP?

Unless you’ve tried it, you might not know that many reporting tools, including 

Cognos, Business Objects, and Looker, can present the results of a function. In fact, 

executing a function that returns a set of records is similar to performing SELECT * FROM 

<some table>.

However, the fact that software can do something doesn’t means that it should. So 

what’s the benefit of using functions in an OLAP environment?

�Parameterizing
A view or materialized view can’t be parameterized. This might not pose any problem if 

we want to run a report for the most recent date, for yesterday, for last week, and so on, 

because we can utilize such internal functions as CURRENT_DATE or CURRENT_TIMESTEMP, 

but if we need to rerun any report for any of the past time intervals, it won’t be an easy 

task without making some changes to the view. For example, if a view includes condition

WHERE scheduled_departure BETWEEN CURRENT_DATE-7

AND CURRENT_DATE

…you will need to recompile the view to run it for different dates. But if this SELECT 

is packaged into the function recent_flights (p_period_start date), you can simply 

execute it with different parameters:
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SELECT * FROM recent_flights(CURRENT_DAY)

SELECT * FROM recent_flights(‘2020-08-01’)

�No Explicit Dependency on Tables and Views
If a report is executed as a call to a function, it can be optimized without the necessity to 

drop and recreate it. Moreover, the underlying tables can be modified, or we can end up 

using completely different tables, all invisible to the end user.

�Ability to Execute Dynamic SQL
This is another exceptionally powerful feature of PostgreSQL, which is often underused 

and which is discussed in more detail in Chapter 12.

�Stored Procedures
In contrast to other DBMSs, PostgreSQL didn’t have stored procedures for some time, 

much to the disappointment of early adopters coming from commercial systems. 

As for us, your authors, we were especially frustrated with the atomic nature of 

functions, which does not allow any transaction management, including committing of 

intermediate results.

�Functions with No Results
For a while, PostgreSQL developers had no option rather than to use functions in place 

of store procedures. You could do it using functions that return VOID, like

CREATE OR REPLACE function cancel_flight (p_filght_id int) RETURNS VOID AS <...>

Also, there is an alternative way to execute functions:PERFORM issue_boarding_

pass(175820,462972, '22C', '2020-06-16 21:45'::timestamptz)

The preceding way will execute the function and create a boarding pass, but it won’t 

return the result.
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�Functions and Stored Procedures
The difference between functions and stored procedures is that procedures do not return 

any values; thereby, we do not specify a return type. Listing 11-24 presents the CREATE 

PROCEDURE command, which is very similar to the CREATE FUNCTION command.

Listing 11-24.  CREATE PROCEDURE command

CREATE PROCEDURE procedure_name (par_name1 par_type1, ...)

AS

<procedure body>

LANGUAGE procedure language;

The syntax of the procedure body is the same as that of the function, except there is 

not a need for a RETURN type. Also, all the preceding sections on function internals apply 

to stored procedures, as well. To execute a stored procedure, the CALL command is used:

CALL cancel_flight(13);

�Transaction Management
The most important difference between how functions and stored procedures are 

executed is that you can commit or roll back a transaction within a procedure body.

At the start of the procedure execution, a new transaction starts, and any COMMIT 

or ROLLBACK command within a function body will terminate the current transaction 

and start a new one. One of the use cases is the bulk data load. We find it beneficial to 

commit changes in reasonably sized portions, for example, every 50,000 records. The 

structure of the stored procedure might look like Listing 11-25.

Listing 11-25.  Example of a stored procedure with transactions

CREATE PROCEDURE load_with_transform()

AS $load$

DECLARE

v_cnt int;

v_record record;

BEGIN

FOR v_record IN (SELECT * FROM data_source) LOOP
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  PERFORM transform (v_rec.id);

  CALL insert_data (v_rec.*);

  v_cnt:=v_cnt+1;

IF v_cnt>=50000 THEN

  COMMIT;

  v_cnt:=0;

END IF;

END LOOP;

COMMIT;

END;

$load$ LANGUAGE plpgsql;

In this example, data is processed before loading and COMMIT when we process 

50,000 records. An additional commit upon exiting the loop is necessary for the 

remaining records, processed after the last in-loop commit.

Note that no commands were issued inside this procedure and all the operations 

would be processed as a part of the outer transaction, that is, the transaction that 

initiated the execution.

�Exception Processing
Same as with functions, you can include instructions on what to do if certain processing 

exceptions occur. In Listing 11-3, we provided an example of exception processing in a 

function. Similar exception processing can be performed in procedures.

In addition, it is possible to create inner blocks inside of a function or procedure 

body and to have a different exception processing in each of them. The procedure body 

structure for this case is shown in Listing 11-26.

Listing 11-26.  Nested blocks in the procedure body

CREATE PROCEDURE multiple_blocks AS

$mult$

BEGIN

---case #1

  BEGIN

  <...>

  EXCEPTION WHEN OTHERS THEN
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    RAISE NOTICE 'CASE#1";

  END; --case #1

BEGIN

   ---case #2

  BEGIN

  <...>

  EXCEPTION WHEN OTHERS THEN

    RAISE NOTICE 'CASE#2";

  END; --case #2

BEGIN

---case #3

  BEGIN

  <...>

  EXCEPTION WHEN OTHERS THEN

    RAISE NOTICE 'CASE#3";

  END; --case #3

END; ---proc

$mult$ LANGUAGE plpbsql;

Note that BEGIN in the procedure body is different from the BEGIN command that 

starts a transaction.

�Summary
Functions and stored procedures in PostgreSQL are exceptionally powerful tools that 

are all but ignored by many database developers. They can both drastically improve and 

drastically worsen performance and can be successfully used in both OLTP and OLAP 

environments.

This chapter serves as a sneak peek of various ways functions can be used. Consult 

PostgreSQL documentation for more details on how to define and use functions and 

stored procedures.
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CHAPTER 12

Dynamic SQL

�What Is Dynamic SQL
Dynamic SQL is any SQL statement that is first built as a text string and then executed 

using the EXECUTE command. An example of dynamic SQL is shown in Listing 12-1. 

Possibilities that are opened by using dynamic SQL are underused in most of RDBMSs, 

but even more so in PostgreSQL. The recommendations provided in this chapter go 

against the grain of what many database textbooks say, but just as in previous cases, all 

suggestions are based strictly on our practical experience.

Listing 12-1.  Dynamic SQL

DECLARE

v_sql text;

cnt int;

BEGIN

v_sql:=$$SELECT count(*) FROM booking

  WHERE booking_ref='0Y7W22'$$;

EXECUTE v_sql into cnt;

�Why It Works Better in Postgres
So you may wonder what is so special about PostgreSQL relative to other DBMSs that 

the recommendations here would stray so far from conventional wisdom. Consider the 

following points.

First, in PostgreSQL, execution plans are not cached even for prepared queries (i.e., 

queries that are preparsed, analyzed, and rewritten using the PREPARE command). That 

means that optimization always happens immediately before execution.
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Second, the optimization step in PostgreSQL happens later than in other systems. 

For example, in Oracle, the execution plan for a parameterized query is always prepared 

for a generic query, even if the specific values are there. Moreover, a plan with binding 

variables is cached for future usage if the same query with different values is executed. 

The optimizer takes the table and index statistics into account but does not take into 

account the specific values of parameters. PostgreSQL does the opposite. The execution 

plan is generated for specific values.

As mentioned earlier, dynamic queries are unfairly neglected in other DBMSs as 

well. That’s primarily because for long-running queries (dozens of seconds or more), the 

overhead mostly is negligible.

�What About SQL Injection?
Often, if you suggest to a team of developers to use dynamic SQL for better performance, 

the response would be alarmed looks: what about SQL injection? Indeed, everyone has 

heard stories about stolen passwords and deleted data, because somebody was smart 

enough to inject a dangerous command instead of date of birth in a registration form. 

True, there are multiple ways for hackers to get access to data they should not get access 

to. However, when we are considering dynamic SQL, there are some simple rules that 

help minimize possible risks.

In cases when parameter values for a function call are obtained from the database 

directly (i.e., referencing IDs), they can’t contain any SQL injection. Values obtained 

from user input must be protected with PostgreSQL functions (quote_literal, quote_

indent, etc., or format). Their use will be demonstrated later in this chapter.

�How to Use Dynamic SQL in OLTP Systems
Often, it may be beneficial to build dynamic SQL inside a function and then to execute 

it rather than to pass parameter values as binding variables. We outlined the reasons 

for better performance in such situations in the previous chapters, so let’s proceed with 

examples.

Recall the query in Listing 6-6, which has two selection criteria: by departure airport 

country and by the last time the booking was updated. In Chapter 6, we demonstrated 

how PostgreSQL modifies the execution plan depending on specific values of these 

parameters.
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In this chapter, we see what happens with this query if it is executed inside a 

function.

Let’s start by creating a return type in Listing 12-2.

Listing 12-2.  Create a return type

DROP TYPE IF EXISTS booking_leg_part ;

CREATE TYPE booking_leg_part AS(

departure_airport char (3),

booking_id int,

is_returning boolean)

;

Now, let’s create a function with two parameters: ISO country code and the 

timestamp of the last update. This function is shown in Listing 12-3.

Listing 12-3.  SQL from Listing 6-6, packaged in a function

CREATE OR REPLACE FUNCTION select_booking_leg_country (

p_country text,

p_updated timestamptz)

RETURNS SETOF booking_leg_part

AS

$body$

BEGIN

RETURN QUERY

SELECT departure_airport, booking_id, is_returning

  FROM booking_leg bl

  JOIN flight f USING (flight_id)

  WHERE departure_airport IN

            (SELECT airport_code

                    FROM airport WHERE iso_country=p_country)

        AND bl.booking_id IN

            (SELECT booking_id FROM booking

                    WHERE update_ts>p_updated);

                    END;

LANGUAGE plpgsql;
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Chapter 6 demonstrated how PostgreSQL chooses different execution plans 

depending on the values for country and timestamp search parameters, and this 

influences execution time.

Since functions in PostgreSQL (just as in other systems) are atomic, we can’t run the 

EXPLAIN command to see the execution plan for the function (to be precise, the EXPLAIN 

will be executed, but the only thing it will show will be the execution itself), but since the 

expected response time for the query is known, we can get a good idea what’s going on 

under the hood.

Recall that previously, executing the statement in Listing 12-4 resulted in an 

execution time of about 40 seconds (two hash joins are executed).

Listing 12-4.  SELECT with two hash joins

SELECT departure_airport, booking_id, is_returning

  FROM booking_leg bl

  JOIN flight f USING (flight_id)

  WHERE departure_airport IN

            (SELECT airport_code

                    FROM airport WHERE iso_country='US')

        AND bl.booking_id IN

            (SELECT booking_id FROM booking

                    WHERE update_ts>'2020-07-01')

Recall also that by moving the bound on update_ts closer to the dataset’s “current 

date” of August 17, initially, execution time doesn’t change significantly. Execution time 

with update_ts>'2020-08-01 will still be about 35 seconds, with a reduction attributable 

to a smaller intermediate dataset. The execution plan for that case is shown in Figure 12-1.
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Eventually, as the value of update_ts keeps getting closer to August 17, PostgreSQL 

will choose index access, and for the query in Listing 12-5, the execution time is 12 

seconds.

Listing 12-5.  One hash join is replaced with a nested loop

SELECT departure_airport, booking_id, is_returning

  FROM booking_leg bl

  JOIN flight f USING (flight_id)

  WHERE departure_airport IN

            (SELECT airport_code

                    FROM airport WHERE iso_country='US')

        AND bl.booking_id IN

            (SELECT booking_id FROM booking

                    WHERE update_ts>'2020-08-15')

The execution plan for this case is presented in Figure 12-2.
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Figure 12-1.  Execution plan with two hash joins
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With these figures as a reference, let’s examine how the function version of the query 

performs.

Let’s try to replicate the same behavior as we observed in Chapter 6 for a long query 

with different search conditions and execute the statements shown in Listing 12-6.

Listing 12-6.  Examples of function calls

#1

SELECT * FROM select_booking_leg_country('US', '2020-07-01');

#2

SELECT * FROM select_booking_leg_country('US', '2020-08-01');

#3

SELECT * FROM select_booking_leg_country('US', '2020-08-15');

#4

SELECT * FROM select_booking_leg_country('CZ', '2020-08-01');
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Figure 12-2.  Execution plan with one hash join and one nested loop
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The execution times observed will differ depending on what parameters are passed 

to the function during the first call. As a result, the execution time for statement #3, 

which should take around 10 seconds, may vary from 10 seconds up to 1 minute, 

depending on the sequence of calls and the time you pause between calls. You can even 

open two or three connections to your local PostgreSQL and try to execute these calls in 

different order.

Why is the behavior of the function so inconsistent? Recall Chapter 11, where we 

stated that PostgreSQL may save the execution plan of the prepared statement and when 

a function is called for the first time in a session, each SQL statement that it reaches 

during the execution will be evaluated and the execution plan will be optimized and 

then it may be cached for subsequent executions.

We are purposely not describing a specific behavior with each sequence of calls, 

because it is not guaranteed. And while “not guaranteed” may be acceptable for a 

training database, it is definitely not acceptable in a production environment, especially 

when an OLTP system implements a policy that caps maximum wait time and aborts 

transactions when the wait time exceeds that limit.

In order to guarantee that each time a function is executed the execution plan will 

be evaluated and optimized for specific values, we create functions that execute dynamic 

SQL.

Listing 12-7 shows the function select_booking_leg_country_dynamic that 

executes exactly the same SQL as the select_booking_leg_country function. The only 

difference is that the former function constructs a SELECT statement inside the function 

and then executes it.

Listing 12-7.  A function that executes dynamic SQL

CREATE OR REPLACE FUNCTION select_booking_leg_country_dynamic (p_country 

text,

p_updated timestamptz)

RETURNS setof booking_leg_part

AS

$body$

BEGIN

RETURN QUERY

EXECUTE $$

SELECT departure_airport, booking_id, is_returning
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  FROM booking_leg bl

  JOIN flight f USING (flight_id)

  WHERE departure_airport IN

            (SELECT airport_code

                    �FROM airport WHERE iso_country=$$|| quote_literal( 

p_country) ||

        $$ AND bl.booking_id IN

            (SELECT booking_id FROM booking

                    WHERE update_ts>$$|| quote_literal(p_updated)||$$)$$;

END;

$body$ LANGUAGE plpgsql;

This function accepts the same set of parameters as select_booking_leg_country 

and returns the same result. But observe that its execution time for each set of 

parameters is consistent, which is exactly what we want in production systems.

Why did this behavior change? Since the SQL is built immediately prior to execution, 

the optimizer does not use a cached plan. Instead, it evaluates the execution plan for 

each execution. It may seem that this would take extra time, but in reality the opposite 

happens. The planning time is under 100 ms, and it pays off with a better execution plan, 

which saves significantly more time.

Also note that this function uses the quote_literal() function to protect from SQL 

injections.

This is the first but not the only reason why using dynamic SQL in functions is 

beneficial. We will cover more cases in support of this statement later in this chapter.

�How to Use Dynamic SQL in OLAP Systems
The title of this section may be misleading. The technique that we are about to 

demonstrate can be used in any system; however, the most impressive results can be 

achieved when the result set is large. The larger the result set is, the more pronounced 

the benefits.

Let’s imagine that for statistical analysis, we need to sort passengers by age.  

A function to define age categories is presented in Listing 12-8.
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Listing 12-8.  A function that assigns the age category

CREATE OR REPLACE FUNCTION age_category (p_age int)

RETURNS TEXT language plpgsql AS

$body$

BEGIN

    RETURN (case

            WHEN p_age <= 2 then 'Infant'

            WHEN p_age <=12 then 'Child'

            WHEN p_age < 65 then 'Adult'

            ELSE 'Senior' END);

END; $body$;

If this function is used for statistical reports, we might need to calculate age category 

for all passengers. In Chapter 11, we mentioned that executing functions in the SELECT 

list may slow things down, but the functions were more complex. The age_category 

function performs a very simple substitute. Still, function invocation takes time. Thus,

SELECT passenger_id, age_category(age) FROM passenger

LIMIT 5000000

takes 25 seconds to execute, while

SELECT passenger_id,

       CASE

            WHEN age <= 2 then 'Infant'

            WHEN age <=12 then 'Child'

            WHEN age < 65 then 'Adult'

            ELSE 'Senior'

       END from passenger LIMIT 5000000

takes only 6 seconds.

In this particular case, using a function is not really an imperative, because we need 

it only once, and even one of our biggest tables, passenger, has only 16 million rows. 

In real analytical queries, the number of rows we need to process might be hundreds of 

millions of rows, and multiple category-assigning functions need to be used. In one real-

life scenario, execution time with functions was 4 hours, while execution time with just 

one function substituted by a direct CASE operator was less than 1.5 hours.
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Does this mean we want to avoid using functions in the SELECT list at all cost? There 

may be a reason our analytics team wants to package the age category assignment in the 

function. Most likely, they are going to use this function in multiple selections and with 

different tables, and in case their category assignment will change, they do not want to 

go over all their SELECT statements and correct each of them.

A more performant solution that retains the maintainability of the function is to 

create a different function, which contains part of the code as text—see Listing 12-9.

Listing 12-9.  A function that builds a part of dynamic SQL

CREATE OR REPLACE FUNCTION age_category_dyn (p_age text)

RETURNS text language plpgsql AS

$body$

BEGIN

    RETURN ($$CASE

            WHEN $$||p_age ||$$ <= 2 THEN 'Infant'

            WHEN $$||p_age ||$$<= 12 THEN 'Child'

            WHEN $$||p_age ||$$< 65 THEN 'Adult'

            ELSE 'Senior'

END$$);

END; $body$;

Notice the difference: when we execute

SELECT age_category(25)

…it will return the value ‘Adult’.

If you execute

SELECT age_category_dyn('age')

…it will return a text line that contains the part of code

CASE

       WHEN age <= 2 THEN 'Infant'

       WHEN age<= 12 THEN 'Child'

       WHEN age< 65 THEN 'Adult'

       ELSE 'Senior'

END
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To use this function, you will need to package the SELECT statement into a function, 

but we already know how to do that—see Listing 12-10.

Listing 12-10.  Using a new age_category_dyn function to build dynamic SQL 

query

CREATE TYPE passenger_age_cat_record AS (

passenger_id int,

age_category text

);

CREATE OR REPLACE FUNCTION passenger_age_category_select (p_limit int)

RETURNS setof passenger_age_cat_record

AS

$body$

BEGIN

RETURN QUERY

EXECUTE $$SELECT

        passenger_id,

     $$||age_category_dyn('age')||$$ AS age_category

FROM passenger LIMIT $$ ||p_limit::text

;

END;

$body$ LANGUAGE plpgsql;

Now, we can execute the following statement:

SELECT * FROM passenger_age_category_select (5000000)

This will take about 11 seconds to execute, which is more than a statement without 

any function calls, but still less than when we choose to execute the original version of 

the age_category function. And once again, when we are dealing with real analytical 

queries, the effect will be more visible.

Some might argue that going to the trouble of creating functions that generate code 

is not worth the performance gains. To reiterate, there is no universal principle for 

whether or not creating functions is beneficial—either for performance, code factoring, 

or portability. Chapter 11 mentioned that code factoring does not work for PG/PL SQL 

functions the way it works for object-oriented programming languages and promised 
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to provide some examples. This section gives one of those examples. Here, the function 

age_category_dyn helps code factoring, because updates to the age category assignment 

must be made in only one place. At the same time, it has less impact on performance 

than a more traditional function with parameters. Most of the time, building a function 

that executes dynamic SQL takes some time in the beginning, because debugging is 

more difficult. However, when the function is already in place, it takes little time to make 

changes. Deciding which time is more critical—the initial development time or average 

execution time—can only be done by application and/or database developers.

�Using Dynamic SQL for Flexibility
The technique described in this section is most commonly used in OLTP systems, 

although once again, it’s not strictly limited to one type of environment.

Often, systems allow a user to select an arbitrary list of search criteria, perhaps using 

some drop-down lists or other graphical ways to construct a query.

The user does not (and should not) know anything about the way the data is stored 

in the database. However, the search fields may be located in different tables, search 

criteria may have a different selectivity, and, in general, the SELECT statement may look 

very different depending on the selection criteria.

Let’s look at an example. Suppose a function is needed to search for a booking using 

any combination of the following values:

•	 Email (or the beginning portion of email)

•	 Departure airport

•	 Arrival airport

•	 Departure date

•	 Flight ID

Is there any way to implement this function efficiently without defaulting to elastic 

search?!

Most often, when a developer needs to create a function with this kind of 

functionality, they would come up with something similar to what is presented in  

Listing 12-11.
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Listing 12-11.  Function that allows search using different combinations of 

parameters

CREATE TYPE booking_record_basic AS

(booking_id bigint,

 booking_ref text,

    booking_name text ,

    account_id integer,

    email text );

CREATE OR REPLACE FUNCTION select_booking (p_email text,

p_dep_airport text,

p_arr_airport text,

p_dep_date date,

p_flight_id int)

RETURNS SETOF booking_record_basic

AS

$func$

BEGIN

RETURN QUERY

SELECT DISTINCT b.booking_id, b.booking_ref,

booking_name, account_id, email

FROM booking b JOIN

 booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

WHERE (p_email IS NULL OR lower(email) LIKE p_email||'%')

AND (p_dep_airport IS NULL OR departure_airport=p_dep_airport)

AND (p_arr_airport IS NULL OR arrival_airport=p_arr_airport)

AND (p_flight_id IS NULL OR bl.flight_id=p_flight_id);

END;

$func$ LANGUAGE plpgsql;

This function will always return the correct result, but from a performance 

standpoint, its behavior will be, at minimum, difficult to predict. Note that when 

searching by email address, the joins to the booking_leg and flight tables are not 

needed, but they will be still present.
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Let’s compare execution times for a few examples.

#1. Search on email.

SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name, b.email FROM 

booking b

WHERE lower(email) like 'lawton52%'

As a SELECT, this takes 4.5 seconds.

SELECT * FROM select_booking ('lawton52',

NULL,

NULL,

NULL,

NULL

 )

A comparable function execution takes 13 seconds.

#2. Filter on email and flight_id.

SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name, b.email FROM 

booking b

JOIN booking_leg bl USIGN (booking_id)

WHERE lower(email) like 'lawton52%'

AND flight_id= 27191

The SELECT takes 150 ms.

SELECT * FROM select_booking ('lawton52',

NULL,

'NULL,

NULL,

27191

 )

Meanwhile, function execution takes 102 ms.

#3. Criteria on email, departure airport, and arrival airport.

SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name, b.email FROM 

booking b

JOIN booking_leg bl USIGN (booking_id)
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JOIN flight f USING (flight_id)

WHERE lower(email) like 'lawton52%'

AND departure_airport='ORD'

AND arrival_airport='JFK'

The SELECT takes 200 ms.

SELECT * FROM select_booking ('lawton52',

'ORD',

'JFK',

NULL,

NULL

 )

Function execution with the same parameters takes 910 ms.

#4. Criteria on email, departure airport, arrival airport, and scheduled departure.

SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name, b.email FROM 

booking b

JOIN booking_leg bl USIGN (booking_id)

JOIN flight f USING (flight_id)

WHERE lower(email) like 'lawton52%'

AND departure_airport='ORD'

AND arrival_airport='JFK'

AND scheduled_departure BETWEEN '07-30-2020' AND '07-31-2020'

SELECT takes 95 ms.

SELECT * FROM select_booking ('lawton52',

'ORD',

'JFK',

'2020-07-30',

NULL

 )

Function execution takes 1 second.

#5. Search on email and scheduled departure.
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SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name, b.email FROM 

booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

WHERE lower(email) like 'lawton52%'

AND scheduled_departure BETWEEN '07-30-2020' AND '07-31-2020'

SELECT takes 10 seconds.

SELECT * FROM select_booking ('lawton52',

NULL,

NULL,

'2020-07-30',

NULL

 )

Function execution takes 13 seconds.

#6. Search on flight_id.

SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name, b.email FROM 

booking b

JOIN booking_leg bl USIGN (booking_id)

WHERE flight_id= 27191

SELECT takes 130 ms.

SELECT * FROM select_booking (NULL,

NULL,

'NULL,

NULL,

27191

 )

Function execution takes 133 ms.

In reality, as we discussed previously, execution times for different function 

invocations could be even longer if the first function execution in the current 

session produces an execution plan that is suboptimal for subsequent executions. 

While experimenting with this function, we managed to find a sequence of function 

invocations that made the last example run for 3 minutes.
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How to solve this problem? Similar to the prior example, it’s possible to write a 

function that builds a SELECT dynamically depending on which parameters are passed. 

In addition, it will benefit from being analyzed before each execution.

The source code for the new function is presented in Listing 12-12.

Listing 12-12.  A function that builds dynamic SQL to search by different criteria

CREATE OR REPLACE FUNCTION select_booking_dyn (p_email text,

p_dep_airport text,

p_arr_airport text,

p_dep_date date,

p_flight_id int)

returns setof booking_record_basic

as

$func$

DECLARE

v_sql text:='SELECT DISTINCT b.booking_id, b.booking_ref, booking_name, 

account_id, email

FROM  booking b ';

v_where_booking text;

v_where_booking_leg text;

v_where_flight text;

BEGIN

IF p_email IS NOT NULL then v_where_booking :=$$ lower(email) like $$ 

||quote_literal(p_email||'%'); END IF;

IF p_flight_id IS NOT NULL then v_where_booking_leg:= $$ flight_id=$$||p_

flight_id::text;

END IF;

IF p_dep_airport IS NOT NULL

THEN v_where_flight:=concat_ws($$ AND $$, v_where_flight,  $$departure_

airport=$$||

quote_literal(p_dep_airport));

END IF;

IF p_arr_airport IS NOT NULL

THEN v_where_flight:=concat_ws($$ AND $$,v_where_flight,

$$arrival_airport=$$||quote_literal(p_arr_airport));
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END IF;

IF p_dep_date IS NOT NULL

THEN v_where_flight:=concat_ws($$ AND $$,v_where_flight,

$$scheduled_departure BETWEEN $$||

 quote_literal(p_dep_date)||$$::date AND $$||quote_literal(p_dep_

date)||$$::date+1$$);

END IF;

IF v_where_flight IS NOT NULL OR v_where_booking_leg IS NOT NULL

THEN v_sql:=v_sql||$$ JOIN booking_leg bl USING (booking_id) $$;

END IF;

IF v_where_flight IS NOT NULL THEN

v_sql:=v_sql ||$$ JOIN flight f USING (flight_id) $$;

END IF;

v_sql:=v_sql ||$$ WHERE $$||

concat_ws($$ AND $$,v_where_booking, v_where_booking_leg, v_where_flight);

--raise notice 'sql:%', v_sql;

return query EXECUTE (v_sql);

END;

$func$ LANGUAGE plpgsql;

This is a lot of code to read! Let’s walk through it and review what, exactly, is going on 

here.

The parameters of the new function are exactly the same as those of the old function, 

and the result type is also the same, but the function body is completely different. At a 

high level, this function builds a statement to be executed later in the v_sql text variable.

Building the query dynamically means that we have the option to only include those 

joins that are needed. The booking table is always needed, which is why the initial value 

of v_sql is assigned as

'SELECT DISTINCT b.booking_id, b.booking_ref, booking_name, account_id, 

email

FROM  booking b ';

Then, depending on which other parameters are passed as NOT NULL, the function 

determines which other tables are needed. It may only be the table booking_leg, if the 

p_flight_id parameter is not null—flight-related parameters are not used—or it could 

be both tables: booking_leg and flight.
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After adding all necessary tables, the full search criteria are built by concatenating 

all conditions with the separator 'AND'. With the search criteria, the v_sql statement 

is finalized and executed. To see what the final query is for different invocations of the 

function, uncomment the RAISE NOTICE statements.

So is this too much work for a performance improvement? Try to compile this 

function and execute it with the same parameters from the preceding examples. It’ll 

become clear quickly that the select_booking_dyn() function execution times do 

not exceed the execution times of the corresponding SQL statements for every set of 

parameters. Moreover, the execution time is predictable and does not depend on the first 

execution in the current session.

Once again, dynamic functions are not easy to debug, and you may need to include 

a lot of debugging printouts, but if performance in your production system is critical, the 

results are well worth the effort.

�Using Dynamic SQL to Aid the Optimizer
Since the whole chapter is dedicated to the way to improve query performance by using 

dynamic SQL, this section header might be puzzling. However, this section concerns 

a different case of performance issues. In these examples, dynamic SQL is not used to 

construct case-specific SQL, but to nudge the optimizer to choose a better execution plan.

Looking closely at all the examples in the previous section, one combination of the 

search criteria is performing notably poorly, even though the result set is small: the case 

when the search is on the email on the booking and the departure airport. Even in cases 

when email is restrictive enough, the optimizer fails to use the index on booking_id in 

the second join. If we execute the query in Listing 12-13, the execution plan shows hash 

joins—see Figure 12-3.

Listing 12-13.  Selecting booking by email and departure airport

SELECT DISTINCT b.booking_id, b.booking_ref,

b.booking_name, b.email

FROM booking b

JOIN  booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

WHERE lower(email) like 'lawton510%'

AND departure_airport='JFK'
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The execution time for this query is about 7 seconds, and the result contains only 224 

rows, so this is a small query, and the execution time should be faster.

The reason for this suboptimal plan has been mentioned before—the PostgreSQL 

optimizer does not estimate the size of intermediate result sets correctly. The actual 

number of rows filtered by the pattern index is 3941, while the estimate in the plan is 28219.

The technique to optimize this query is literally to help the optimizer do its job and 

remove the need to estimate the size of the result set. How? First, find the booking IDs 

that correspond to the email address that is being searched for, and then pass the list of 

booking_ids to the main SELECT statement. Note: The function that we use to illustrate 

this case is very case-specific and used for illustrative purposes only (Listing 12-14).  

A function with a more generalized approach closer to what would be used in a 

production system would be massive.

Figure 12-3.  Execution plan for Listing 12-13 with hash joins
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Listing 12-14.  Dynamic SQL to improve the code from Listing 12-13

CREATE OR REPLACE FUNCTION select_booking_email_departure(p_email text, 

p_dep_airport text)

RETURNS SETOF booking_record_basic AS

$body$

DECLARE

v_sql text;

v_booking_ids text;

BEGIN

EXECUTE $$SELECT array_to_string(array_agg(booking_id), ',')

FROM booking

WHERE lower(email) like $$||quote_literal(p_email||'%')

INTO v_booking_ids;

v_sql=$$SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name, 

b.email

FROM booking b

JOIN  booking_leg bl USING(booking_id)

JOIN flight f USING (flight_id)

WHERE b.booking_id IN ($$||v_booking_ids||$$)

AND departure_airport=$$||quote_literal(p_dep_airport);

RETURN QUERY EXECUTE v_sql;

END;

$body$ LANGUAGE plpgsql;

Why does this work? We know that the search by email is going to be relatively 

restrictive, because what is passed is nearly the whole email address or, at least, the 

essential part of it. So, in the first step, the relatively small number of bookings with this 

email is preselected and saved in the text variable v_booking_ids. Then, the SELECT is 

constructed with an explicit list of booking_ids.

Executing this new function

SELECT * FROM select_booking_email_departure('lawton510','JFK')

…the execution time will be between 0.5 and 0.6 seconds. Examining the EXPLAIN 

command output for the generated SQL, you will see the execution plan as it appears in 

Figure 12-4.
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Even with several thousand IDs, the index-based access proves to be more efficient.

�FDWs and Dynamic SQL
As mentioned in the Introduction, detailed discussion of distributed queries is out of the 

scope of this book. However, since dynamic SQL is covered, this is a good opportunity to 

make a few remarks about working with foreign data wrappers (FDWs).

A foreign data wrapper is a library that can communicate with an external data 
source (i.e., data that resides outside your PostgreSQL server), hiding the details of 
connecting to the data source and obtaining data from it.

FDW is a very powerful tool, and more and more foreign data wrappers for 

different types of databases are becoming available. PostgreSQL does an outstanding 

job optimizing queries that include foreign tables, that is, mappings of the tables from 

the external systems. However, since the access to external statistics may be limited, 

especially when the external systems are not PostgreSQL based, the optimization may 

be not so precise. We have found it very helpful to use the techniques described in the 

previous section.

Figure 12-4.  Execution plan for dynamic SQL with the list of booking_ids
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The first way to optimize would be to run the local part of the query identifying 

which records are needed from the remote sever and then access a remote table. An 

alternative way is to send a query with constant-defined conditions (e.g., WHERE update_

ts> CURRENT_DATE -3) to the remote site, pull the remote data to the local site, and 

then execute the rest of the query. Using one of these two techniques helps to minimize 

inconsistencies in the execution time.

�Summary
Dynamic SQL is an exceptionally powerful tool in PostgreSQL, which is not utilized 

enough by database developers. Using dynamic SQL can improve performance in 

situations where all other optimization techniques fail.

Dynamic SQL works best within functions; a SQL statement is generated based on 

function input parameters and then executed. It can be used both in OLTP and OLAP 

environments.

If you choose to use dynamic SQL for your project, be ready for extensive and time-

consuming debugging. It might feel discouraging in the beginning, but the performance 

improvements are well worth it.
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CHAPTER 13

Avoiding the Pitfalls 
of Object-Relational 
Mapping
Chapter 10 discussed a typical interaction between an application and a database 

and explained ORIM (object-relational impedance mismatch) and how it affects 

performance. It also stated that any potential solution should allow operating with large 

objects (i.e., datasets) and should support the exchange of complex objects. This chapter 

introduces an approach developed by us and successfully utilized in a production 

environment. This approach is called NORM (No-ORM).

We are by no means pioneers in the quest to overcome object-relational impedance 

mismatch, nor are we the first to propose an alternative to ORM. NORM is only one of 

many possible solutions. However, one feature that makes NORM stand out among other 

tools is the ease of use by application developers.

The NORM GitHub repo (https://github.com/hettie-d/NORM) contains some 

documentation on the approach and an example of the code built according to the 

NORM methodology.

�Why Application Developers Like NORM
Often, new development methodologies require application developers to make 

significant changes to the development process, which inevitably leads to lower 

productivity. It is not unusual for potential performance gains to fail to justify the 

increase in development time. After all, developer time is the most expensive resource in 

any project.

https://doi.org/10.1007/978-1-4842-6885-8_13#DOI
https://github.com/hettie-d/NORM
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In Chapter 11, the benefits of using functions were preceded by the caveat “if you can 

convince application developers.” And often, you can’t convince them, because of the 

difficulties of adapting to a new programming style. That is not the case with NORM. In 

the following sections, we will explain the appeal of this approach for both application 

developers and database developers.

�ORM vs. NORM
Chapter 10 discussed a bottleneck in data exchange created by ORM. Figure 13-1 

is a copy of Figure 10-2 from Chapter 10, and it represents the dataflow between an 

application and a database.

The major problem is that complex objects from the application model are 

disassembled into atomic objects before communicating with the database, generating 

too many small queries, which bring down system performance.

The approach proposed by NORM is presented in Figure 13-2.

Figure 13-1.  How ORM works

Figure 13-2.  How NORM works
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In this figure, A-Model is an application model, D-Model is a database model, and 

T-Model is a transfer model. The presence of the T-Model is a unique feature of the 

NORM approach, which makes the mapping symmetrical. We are not trying to build 

a database model based on an application model, nor we are insisting on creating 

database objects first. Instead, we call for a contract to be established between the 

application layer and the database, similar to the way you would see a contract over 

a RESTful web service. The contract, or a T-Model, comes in a form of a JSON object. 

Through this contract, it is possible to simplify the persistence of objects by serializing 

the objects into JSON payloads that the database can consume.

This results in one database call to persist an object regardless of its structure or 

complexity.

Likewise, when retrieving objects, the application can deserialize the result coming 

back from the database to a model in a single database call. It can also pass additional 

parameters as a part of the contract to tell the database that it needs additional pieces of 

the model, similar to an ODATA web service request.

Application developers love the simplified implementation of the data access layer 

on the application side. The fact that NORM uses a contract to determine the inputs 

and outputs of every call to the database allows application developers to code to the 

contract and easily mock out any dependencies when testing, as the calls to and from the 

database will abide by the contract. Thus, after a contract is established, database and 

application developers can do their part simultaneously and independently from each 

other. Moreover, different groups of application developers can use the same contract for 

different projects.

On the application side, all modern object-oriented languages have libraries for 

serializing and deserializing objects. As each new database interaction occurs, it is 

possible to reuse the same pattern for implementation.

This allows application developers to spend more time designing the JSON payload 

to ensure it meets the current and future needs of the business. Reusing the same pattern 

of interactions also reduces implementation time, minimizes the likelihood of defects, 

and allows minimal code changes to impact the entire database access implementation.
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�NORM Explained
To illustrate how NORM works, let’s get back to the example in Chapter 10.

Figure 13-3 represents a subset of the postgres_air Entity-Relationship diagram 

used to build the example.

In Chapter 10, discussing the interaction between the application and the database, 

we drafted an object (which we can now call a T-object) that represented all the 

information related to a booking. From the airline passenger perspective, a booking 

represents their travel itinerary. In an attempt to keep the code sample readable, we 

eliminated one level of nesting and opted to present just a booking leg, that is, one of the 

flights of an itinerary. Thus, for the purpose of this case study, our T-object is a booking 

leg object. The ERD in Figure 13-3 presents all tables and relationships needed to build 

the mapping from a database object to a transfer object. The corresponding transfer 

object is presented in Figure 13-4.

Figure 13-3.  ERD for the case study
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Note that this object represents the contract, that is, the object structure that the 

application is expecting to receive. It differs significantly from how the data is stored 

in the database, and the most important part is that the database implementation has 

no impact on how the application interacts with the database, as long as the database 

response remains in accordance to the contract.

An example JSON object following this contract is shown in Figure 13-5.

In short, the interaction between the application and the database can be 

summarized as follows:

Figure 13-4.  The matching transport object (contract)
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	 1.	 The application serializes data into JSON format, then converts it 

into an array of text strings, and sends it to the database by calling 

a corresponding database function.

	 2.	 A database function parses the JSON that was passed as a 

parameter and executes whatever the function is supposed to do: 

either a search or data transformation.

	 3.	 The result set is converted to JSON (or rather an array of strings, 

which represents an array of JSON objects) and passed to the 

application, where it is deserialized and is ready to be consumed 

by the application.

Figure 13-5.  Transfer object as JSON
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On the application side, the Java classes presented in Listings 13-1, 13-2, and 13-3 are 

mapped to the same transfer object.

Listing 13-1.  FlightEntity class

package com.xxx.adapter.repository.entity.tls;

import com.fasterxml.jackson.annotation.JsonProperty;

import java.time.ZonedDateTime;

public class FlightEntity {

    @JsonProperty("flight_id")

    private int flightId;

    @JsonProperty("flight_no")

    private String flightNumber;

    @JsonProperty("departure_airport_code")

    private String departureAirportCode;

    @JsonProperty("departure_airport_name")

    private String departureAirportName;

    @JsonProperty("arrival_airport_code")

    private String arrivalAirportCode;

    @JsonProperty("arrival_airport_name")

    private String arrivalAirportName;

    @JsonProperty("scheduled_departure")

    private ZonedDateTime scheduledDeparture;

    @JsonProperty("scheduled_arrival")

    private ZonedDateTime scheduledArrival;

}
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Listing 13-2.  BoardingPass Class

package com.xxx.adapter.repository.entity.tls;

import com.fasterxml.jackson.annotation.JsonProperty;

import java.time.ZonedDateTime;

public class BoardingPassEntity {

    @JsonProperty("boarding_pass_id")

    private int boardingPassId;

    @JsonProperty("booking_leg_id")

    private int bookingLegId;

    @JsonProperty("last_name")

    private String lastName;

    @JsonProperty("first_name")

    private String firstName;

    @JsonProperty("seat")

    private String seatNumber;

    @JsonProperty("boarding_time")

    private ZonedDateTime boardingTime;

}

Listing 13-3.  BookingLegEntity Class

package com.braviant.adapter.repository.entity.tls;

import com.fasterxml.jackson.annotation.JsonProperty;

import java.util.List;

public class BookingLegEntity {

    @JsonProperty("booking_leg_id")

    private int bookingLegId;

    @JsonProperty("leg_num")

    private int legNumber;
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    @JsonProperty("booking_id")

    private String booking_id;

    @JsonProperty("flight")

    private FlightEntity flight;

    @JsonProperty("boardingPass")

    private List<BoardingPassEntity> boardingPasses;

}

It is worth mentioning that we can build completely different transfer objects 

using the same set of tables. For example, before any flight departs, a document that is 

called manifest has to be produced. This document lists all the passengers on the fight 

along with their seat assignments. The transfer object for the manifest is presented in 

Figure 13-6.

The matching JSON is presented in Figure 13-7.

Figure 13-6.  Transfer object for the flight manifest
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�Implementation Details
Now, let’s get more specific and show how to achieve this goal.

Listing 13-4 combines type definitions from Listings 11-17 and 11-20. We define 

types boarding_pass_record and flight_record and then booking_leg_record, which 

has these types as components.

Listing 13-4.  Booking_leg type definitions

CREATE TYPE boarding_pass_record AS (

boarding_pass_id int,

booking_leg_id int,

Figure 13-7.  Manifest object as JSON
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flight_no text,

departure_airport text,

arrival_airport text,

last_name text,

first_name text,

seat text,

boarding_time timestamptz)

CREATE TYPE flight_record AS(

flight_id int,

flight_no text,

departure_airport_code text,

departure_airport_name text,

arrival_airport_code text,

arrival_airport_name text,

scheduled_departure timestamptz,

scheduled_arrival timestamptz)

CREATE TYPE booking_leg_record AS(

booking_leg_id int,

leg_num int,

booking_id int,

flight flight_record,

boarding_passes boarding_pass_record[]);

Looking at these type definitions, it is clear they do indeed represent the transport 

object booking_leg from Figure 13-4. The next step is to build this transport object 

using the booking_leg_id. This was done in Chapter 11, in Listing 11-21. However, to 

make this function usable by the application, it needs a few changes. Specifically, it 

should return not a set of records, but a JSON object. This task is done in two steps.

First, use the slightly modified function booking_leg_select_json, shown in Listing 13-5.

Chapter 13  Avoiding the Pitfalls of Object-Relational Mapping



280

Listing 13-5.  Function returning the booking_leg transport object

CREATE OR REPLACE FUNCTION booking_leg_select_json (p_booking_leg_id int)

RETURNS booking_leg_record[]

AS

$body$

DECLARE

v_result booking_leg_record[];

v_sql text;

BEGIN

SELECT array_agg(single_item)

  FROM

  (SELECT

row(bl.booking_leg_id,

leg_num,

bl.booking_id,

(SELECT row(flight_id,

flight_no,

departure_airport,

da.airport_name,

arrival_airport,

aa.airport_name ,

scheduled_departure,

scheduled_arrival)::flight_record

FROM flight f

 JOIN airport da on da.airport_code=departure_airport

 JOIN airport aa on aa.airport_code=arrival_airport

 WHERE flight_id=bl.flight_id

 ),

(SELECT array_agg (row(

pass_id,

bp.booking_leg_id,

flight_no,

departure_airport ,

arrival_airport,

last_name ,
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first_name ,

seat,

boarding_time)::boarding_pass_record)

FROM flight f1

JOIN boarding_pass bp ON f1.flight_id=bl.flight_id

     AND bp.booking_leg_id=bl.booking_leg_id

JOIN passenger p ON p.passenger_id=bp.passenger_id)

   )::booking_leg_record  as single_item

FROM booking_leg bl

WHERE bl.booking_leg_id=p_booking_leg_id)s

INTO v_result;

   RETURN (v_result);

END;

$body$ LANGUAGE plpgsql;

$body$ language plpgsql;

The difference between the two functions is minimal: The first one returns a set of 

records, aggregating only the set of boarding passes. The second one aggregates the 

whole result set into an array of records.

At this point, this change is insufficient to resolve the problem in Chapter 11: 

the presence of multiple special characters that make the return object hard for the 

application to use. In fact, executing

SELECT * FROM booking_leg_select_json(17564910)

results in a line of hard-to-interpret symbols (Figure 13-8).

To bypass this problem, we wrote a function core to the proposed framework. This 

function is presented in Listing 13-6, and it is also a part of the NORM GitHub repo.

Figure 13-8.  Result of the execution
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Listing 13-6.  ARRAY_TRANSPORT function

CREATE OR REPLACE

FUNCTION array_transport (all_items  anyarray) RETURNS SETOF text

 RETURNS NULL ON NULL INPUT

LANGUAGE plpgsql AS

$body$

DECLARE

  item  record;

BEGIN

FOREACH item IN array all_items

LOOP

   RETURN NEXT(to_json(item)::text);

   END LOOP;

END;

$body$;

This function takes as a parameter any array; in this case, this means that it can be 

used to process the result set of any function that returns an array of user-defined types, 

regardless of its complexity and the nesting level.

Using the standard to_json() PostgreSQL function, it builds JSON for any record in 

just one pass.

After the JSON array is built, each element is converted to a text string so that it can 

be transported through JDBC. Referring back to Figure 13-2, you will see that we have 

now implemented the desired data exchange process, at least in one direction. Now, 

executing the following

SELECT * FROM array_transport(booking_leg_select_json(17564910))

…the result is much more readable (see Figure 13-9).

Figure 13-9.  Text representation of JSON
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Astute readers may notice that this result was already shown in Figure 13-5 as a 

transport object and might wonder why break this process into two steps and why not 

just return the set of text strings in the first place.

The reason is that we need to preserve strong type dependencies. This development is 

driven by the contract; therefore, there is a commitment to return objects of the specified 

type. JSON is typeless; any text string that contains grammatically correct JSON objects 

is valid. If the return type is modified because requirements change, we will need to 

drop the type, which won’t happen unless all dependent objects are cascade dropped—

including all the functions that return the type. In effect, it ensures the database is 

honoring the contract.

Finally, it’s prudent to note that the use of nested queries in the SELECT list, as 

demonstrated in Listing 13-3, works well when result sets are small, containing just a 

handful of records. If a larger number of returned objects are expected or the objects 

themselves are more complex, slightly different techniques may be necessary. The 

NORM GitHub repo has some relevant examples; see https://github.com/hettie-d/

NORM/blob/master/sql/account_pkg.sql.

�Complex Searches
The function in Listing 13-2 allows only one filtering criterion—booking_leg_id. 

However, NORM allows us to utilize the full search power of the relational database 

engine and perform queries of any complexity while still delivering the results in the 

format that can be easily consumed by the application.

By now, the next step should be obvious. We combine the dynamic query that we 

built in Chapter 12 (Listing 12-12) with the way we format the function output as shown 

in Listing 13-5. The result is presented in Listing 13-7. There, we show a simplified 

version of the function.

Listing 13-7.  Search by complex criteria

CREATE OR REPLACE FUNCTION search_booking_leg(p_json json)

RETURNS booking_leg_record[]

as

$func$

DECLARE

v_search_condition text:=null;
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v_rec record;

v_result booking_leg_record[];

v_sql text:=$$SELECT array_agg(single_item)

  FROM

  (SELECT

row(bl.booking_leg_id,

leg_num,

bl.booking_id,

(SELECT row(flight_id,

flight_no,

departure_airport,

da.airport_name,

arrival_airport,

aa.airport_name ,

scheduled_departure,

scheduled_arrival)::flight_record

FROM flight f

 JOIN airport da on da.airport_code=departure_airport

 JOIN airport aa on aa.airport_code=arrival_airport

 WHERE flight_id=bl.flight_id

 ),

(SELECT array_agg (row(

pass_id,

bp.booking_leg_id,

flight_no,

departure_airport ,

arrival_airport,

last_name ,

first_name ,

seat,

boarding_time)::boarding_pass_record)

FROM flight f1

JOIN boarding_pass bp ON f1.flight_id=bl.flight_id

     AND bp.booking_leg_id=bl.booking_leg_id

JOIN passenger p ON p.passenger_id=bp.passenger_id)
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   )::booking_leg_record  as single_item

FROM booking_leg bl

 $$;

v_where_booking_leg text;

v_where_flight text;

BEGIN

FOR v_rec in

 (SELECT * FROM json_each_text(p_json) )

 LOOP

  CASE WHEN v_rec.key IN ('departure_airport','arrival_airport' )

        THEN IF v_where_flight IS NULL

                �THEN v_where_flight :=  v_rec.key||'='||quote_literal 

(v_rec.value);

                ELSE v_where_flight:=v_where_flight ||' AND '

                    ||v_rec.key||'='||quote_literal(v_rec.value);

                END IF;

       WHEN v_rec.key ='scheduled_departure' THEN

             IF v_where_flight IS NULL

                �THEN v_where_flight := v_rec.key||$$ BETWEEN    $$|| quote_

literal(v_rec.value)||$$::date    AND $$||quote_literal(v_

rec.value)||$$::date+1$$;

                 ELSE v_where_flight:=v_where_flight ||' AND '

                    �||v_rec.key||$$ BETWEEN  $$||  quote_literal(v_rec.

value)||$$::date AND    $$||quote_literal(v_rec.

value)||$$::date+1$$;

                 END IF;

    WHEN v_rec.key = 'flight_id' THEN

        v_where_booking_leg :='bl.flight_id= '|| v_rec.value ;

    ELSE NULL;

  END CASE;

  END LOOP;

IF v_where_flight IS NULL THEN

v_search_condition:=

   $$ WHERE $$||v_where_booking_leg;

 ELSE  v_search_condition:=
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$$ JOIN flight f1 ON f1.flight_id=bl.flight_id

   WHERE $$ ||concat_ws(' AND ',

  v_where_flight, v_where_booking_leg );

   END IF;

v_sql:=v_sql ||v_search_condition||')s';

EXECUTE v_sql INTO v_result;

RETURN (v_result);

END;

$func$ LANGUAGE plpgsql;

Once again, that’s a lot of code, but different parts of it already appeared in the book 

in Chapter 12 and in the beginning of this chapter. The dynamic search criteria are built 

similarly to the example presented in Listing 12-12, and the SELECT list is the same as in 

Listing 13-5.

We feel compelled to give you a working example. You can compile this code in your 

local copy of postgres_air and try to run with different parameters.

As we already mentioned multiple times, constructing a function with dynamic SQL 

is not an easy task, especially in the beginning, and debugging will take extra time. When 

to invest this time into the development process is up to you to decide. The reason we 

encourage you to experiment with these functions is that we want to demonstrate their 

efficiency and the persistent execution time.

Also, when you develop one set of functions for one of your application object 

classes, you will see that it will be much easier to build the similar sets of functions for all 

of the object classes, using the same development pattern.

Finally, we would like to mention that there are other ways to construct dynamic SQL 

for arbitrary search criteria. Refer to the NORM GitHub repo for an alternative example.

�Updates
NORM can handle any data manipulation operation, that is, INSERT, UPDATE, and 

DELETE, which are collectively called update requests.

An update request is sent from the application as a complex object and, on the 

database level, may result in multiple update operations applied to different tables. 

Once again, the database development is contract-driven. A database function receives 
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a JSON object from the application, parses the object, and interprets the actions that are 

required on the database level.

�Insert
Since the boarding pass is never issued at the moment when the reservation is created, 

the function that inserts a booking leg into the database is trivial; it needs to insert into 

one table only—see Listing 13-8.

Listing 13-8.  Booking_leg_insert function

CREATE OR REPLACE FUNCTION booking_leg_insert (p_object json)

RETURNS SETOF text

AS

$body$

DECLARE

v_result booking_leg_record[];

v_sql text;

v_rec record;

v_booking_id int;

v_flight_id int;

v_leg_num int;

v_is_returning boolean;

v_booking_leg_id int;

BEGIN

FOR v_rec IN

 (SELECT * FROM json_each_text(p_object) )

 LOOP

  CASE

  WHEN v_rec.key ='booking_id' THEN v_booking_id:=v_rec.value;

  WHEN v_rec.key ='flight_id'  THEN v_flight_id:=v_rec.value;

  WHEN v_rec.key ='leg_num'    THEN v_leg_num:=v_rec.value;

  WHEN v_rec.key ='is_returning' THEN v_is_returning:=v_rec.value;

   ELSE NULL;

END  CASE;

END LOOP;
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INSERT INTO booking_leg (booking_id, flight_id, leg_num, is_returning, 

update_ts)

  VALUES (v_booking_id, v_flight_id, v_leg_num, v_is_returning, now())

    RETURNING booking_leg_id into v_booking_leg_id;
 RETURN QUERY (
   SELECT * FROM array_transport(booking_leg_select_json(v_booking_leg_id)));
   END;
$body$ LANGUAGE plpgsql;

�Update
Although a booking leg is represented by a complex object, updates that can be 

performed on it are limited. In cases when rebooking is allowed, we can change the 

flight number on the booking leg, but we can’t change the flight itself—there are other 

functions to change flights. Also, the boarding passes are always issued separately. Thus, 

the update in this case is limited to changing the flight number, issuing boarding passes, 

or removing boarding passes (passes can’t be updated).

For the sake of keeping the amount of the code in this chapter within reasonable 

limits, Listing 13-9 shows an update function with limited functionality.

Listing 13-9.  Booking_leg update function

CREATE OR REPLACE FUNCTION booking_leg_update
(p_booking_leg_id int,
p_object json)
RETURNS SETOF text
AS
$body$
DECLARE
v_result booking_leg_record[];
v_sql text;
v_rec record;
v_flight_id int;
v_flight_each record;
v_booking_leg_update text;
BEGIN
FOR v_rec IN
 (SELECT * FROM json_each_text(p_object) )
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 LOOP

  CASE

  WHEN v_rec.key ='flight'  THEN

  FOR v_flight_each IN (SELECT * FROM json_each_text(v_rec.value::json))

     LOOP

       CASE

         �WHEN v_flight_each.key='flight_id' THEN  v_flight_id:=v_flight_

each.value;

           �v_booking_leg_update:=concat_ws(', ', v_booking_leg_update, 

'flight_id='||quote_literal(v_flight_each.value)) ;

         ELSE NULL;

       END CASE;

     END LOOP;

  WHEN v_rec.key IN ('leg_num', 'is_returning')

    �THEN   v_booking_leg_update:=concat_ws(', ', v_booking_leg_update, 

v_rec.key||'='||quote_literal(v_rec.value)) ;

   ELSE NULL;

END  CASE;

END LOOP;

 IF v_booking_leg_update IS NOT NULL THEN

   EXECUTE  ($$UPDATE ¨booking_leg SET $$|| v_booking_leg_update||$$

    WHERE booking_leg_id=$$||p_booking_leg_id::text);

   END IF;

  RETURN QUERY (SELECT * FROM  array_transport

          (booking_leg_select_json(p_booking_leg_id)));

   END;

$body$ lANGUAGE plpgsql;

The first parameter of this function is a booking_leg_id of the record that is 

being updated. The second parameter is a JSON hash that the function interprets to 

determine which tables and fields should be updated. Note that no matter how many 

and which keys are passed in the p_object parameter, the function ignores all except 

those for which we have specified a processing algorithm. For example, although we 

may receive all the values for the flight record, we only process the flight_id, which we 

use to update the booking_leg table. Although a flight is a nested object in the booking 

leg, it is not updatable (we need a separate function to update flights), and then the 

flight will be updated in all of the dependent bookings.

Chapter 13  Avoiding the Pitfalls of Object-Relational Mapping



290

For example, call the insert function:

SELECT * FROM booking_leg_insert

($${"leg_num":3,"booking_id":232346,"flight_id":13650,"is_

returning":"false"}$$::json)

The result will be a new booking leg:

 

Then, this new booking leg is updated:

SELECT * FROM booking_leg_update (17893568, $${"flight":{"flight_

id":13651,"flight_no":"1240"}, "is_returning":"true"}

$$)

The result will show the updated booking leg:

 

Note that although the flight_no in the flight record is passed, this value is ignored. 

This command is not modifying a record in the flight table; it is only changing the  

flight_id in the booking_leg table.

We can also create a function to insert, similar to the one created in Chapter 11, but 

returning the new booking_leg_record type.

�Delete
To delete a component from a complex object, the special key “command” is used, 

which has only one valid value: “delete.” For example, boarding passes can’t be updated. 

If needed, an old boarding pass is deleted and a new one issued.

A call to remove a boarding pass can look like this:
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SELECT * FROM booking_leg_update (17893568,

$${"boarding_passes":[{"boarding_pass_id":1247796,

"command":"delete" }]}

$$)

To learn more about complex object updates in NORM, please refer to the NORM 

GitHub repo at https://github.com/hettie-d/NORM.

�Why Not Store JSON?!
At this point, many of you may ask: why to go into such complexities when PostgreSQL 

supports the JSON type? Why not to store JSON “as is”?

Some reasons were discussed in Chapter 9. In particular, it discussed key-value and 

hierarchical models and explained their limitations. If a booking leg, as defined in this 

chapter, was stored as a JSON, flight information would be duplicated, because it belongs 

to a different hierarchy. Another reason is that JSON is typeless and therefore unreliable 

in terms of providing a consistent interface to develop against.

In addition, although we can build indexes to facilitate search on specific JSON keys, 

their performance is worse than with B-tree indexes on regular columns. Indexing JSON 

and related performance concerns are covered in Chapter 14.

�Performance Gains
What is the effect of using NORM on performance? As discussed in Chapter 10, this 

kind of performance difference is difficult to benchmark. We need to measure overall 

application performance, rather than comparing the speed of separate operations, and 

the applications themselves in this case are written in very different programming styles. 

We are not providing any examples of the application code in this chapter since it is out 

of scope of this book.

However, based on our industrial experience, this approach used in place of 

traditional ORM can improve the performance of application controllers by 10–50 

times. Moreover, application performance appears to be more consistent, since it 

avoids the N+1 problem (i.e., when the code needs to load the children of a parent-child 

relationship: most ORMs have lazy-loading enabled by default, so queries are issued for 

the parent record and then one query for each child record).
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�Working Together with Application Developers
As discussed many times already, overall system performance is not limited to database 

performance, and optimization starts with gathering requirements. NORM is a very good 

illustration for this statement.

With NORM, development starts from defining a contract, which allows application 

and database developers to work in parallel on their tasks. In addition, this contract 

means that future performance improvements on the database side can be made 

without making any changes to the application.

�Summary
NORM is an approach to application design and development, which allows 

seamless data exchange between a back end and a data layer eliminating the need for 

ORM. Applied consistently, it helps to produce performant systems while simplifying 

application development.

NORM is one of several potential solutions; however, it has a proven record of 

success and can be used as a template for those who want to avoid potential ORM 

pitfalls.
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CHAPTER 14

More Complex Filtering 
and Search
Previous chapters discussed several ways to support filtering and search with indexes in 

PostgreSQL. Why are more needed, and why haven’t these types of index been covered 

yet? Prior discussion of this topic focused on the most common indexes, those that are 

needed in nearly any application. However, there are data types that cannot be efficiently 

supported with indexes such as B-trees.

�Full Text Search
Everything discussed in the previous chapters is applicable to structured data, and all the 

queries considered so far are Boolean. That is, a row is either needed for computation 

of the result or not, and a computed row either belongs to the output or not. Nothing 

resides in between. SQL is a powerful language for structured data and lends itself well 

to this sort of analysis.

In this section, we consider unstructured data. The most common example of 

unstructured data is text written in a natural language. Such texts are usually called 

documents. In contrast with structured data, the search for documents is always 

imprecise, because we are typically interested in a document meaning that is not 

precisely expressed in the content of the document. However, the criteria must be 

precisely expressed in a query. Welcome to the world of uncertainty!

There are several different models for document search; the one implemented in 

PostgreSQL is called a Boolean model. Note that modern Internet search engines use 

more complex models.
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In the Boolean search model, a document is considered a list of terms. Each term 

usually corresponds to a word in the document transformed using certain linguistic 

tools. This conversion is needed to improve the quality of search. For example, we expect 

that the words “word” and “words” should map to the same term. The transformations 

are not trivial: “a leaf” and “leaves” are the forms of the same word; however, “to leave” is 

different. And it’s not just morphological transformations: meaning depends on context. 

For example, “host” and “computer” have the same meaning in a document describing 

network protocols, but these words are different in a document related to organizing a 

conference.

In PostgreSQL, the linguistic rules defining the transformations are encapsulated in 

a configuration. Several predefined configurations for different languages are available, 

and additional configurations may be defined. One of the predefined configurations 

does not depend on any language. Instead of processing words, it converts text into a set 

of trigrams (i.e., three-character sequences) contained in the text.

The result of linguistic processing is represented as a value of type ts_vector. The 

values of ts_vector are lists of terms and not related to any language or even text. A 

ts_vector can be built from any list of values.

Why is text search called full text search? In the medieval ages (the 1970s), when the 

capacity of hard drives was small, lists of terms were built from titles or abstracts. So full 

text means that all the words in the document are considered as a source of terms.

Similarly, a query for document search is represented as a value of type ts_query. 

These values are constructed from a textual representation of a query that can contain 

words and logical connectors AND, OR, and NOT. A simple query consists of words only. 

A document matches such a query if all terms in the query are present in the ts_vector 

corresponding to the document.

The match operator @@ returns true if a document satisfies the query and false 

otherwise. It can be used in the WHERE clause of a SELECT statement or anywhere else 

where a Boolean expression is expected.

The Boolean search produces definite results: a document either matches a query or 

does not match. Is it still uncertain? Yes, it is. Some information is lost when a document 

is converted to ts_vector, and some information is lost when a query is converted into 

ts_query as well.

The text search features of PostgreSQL can work without any indexes. PostgreSQL 

also provides special types of indexes that can speed up text search. We discuss these 

index types later in this chapter.
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�Multidimensional and Spatial Search
Filtering conditions considered in previous chapters used scalar attributes. Some kinds 

of indexes, for example, compound indexes, may contain several attributes, but the 

ordering of the attributes is essential: the index is useless if the value of the first attribute 

is not specified.

A fixed ordering of attributes is not desirable for some applications and data types. 

These applications require that multiple attributes are treated symmetrically, without 

any preference to any attribute. Typical examples are objects on a plane or three-

dimensional space with coordinates as attributes. These kinds of data are collectively 

called spatial.

More importantly, spatial data often requires different types of queries. The most 

common queries are

•	 Range queries – Find all objects located at a certain distance or closer 

to the specified point in the space.

•	 Nearest-neighbor queries – Find the k objects closest to the specified 

point.

These queries cannot be supported with one-dimensional indexes even if multiple 

indexes are used.

Of course, this kind of search is not limited to space only. The coordinates might 

have timestamp values or event values in a discrete domain.

PostgreSQL provides index types suitable for spatial data. These indexes are briefly 

discussed in the next section.

�Generalized Index Types in PostgreSQL
The CREATE INDEX operator includes an optional index type specified on index creation. 

So far, this hasn’t been demonstrated in prior examples, because all of the previously 

created indexes were B-tree indexes, and B-tree is the default value for the index type. 

The other possible values are hash, GIST, spgist, GIN, and BRIN, at the time of writing.

This section discusses some of these types in more detail.
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�GIST Indexes
Some applications use multi-attribute objects like points with coordinates on a surface 

or a plane. Previously, we discussed compound indexes that include multiple attributes. 

However, compound indexes are not symmetric: the attributes are ordered. In contrast, 

the coordinates of a point should be treated symmetrically.

The GIST index type does exactly what is needed for this application: it indexes 

points, and search conditions are expressed with a rectangle. All points that are in the 

rectangle are returned as the result of the search.

To be more precise, GIST is a family of index structures, each of which supports a 

certain data type. Support for points is included in the PostgreSQL distribution; some 

other data types may be installed as extensions.

Of course, the attributes included in a GIST index are not necessarily coordinates. 

Such attributes may represent time or other ordered data types.

�Indexes for Full Text Search
PostgreSQL provides two kinds of indexes that can support text search. We begin by 

discussing GIN indexes, where GIN stands for Generalized Inverted.

For the purpose of indexing, a document is considered as a list of terms (or tokens), 

for example, represented as a value of the ts_vector data type described earlier.

For each term contained in at least one document, an inverted index contains a 

list of documents containing the term. Thus, the overall structure is symmetrical: a 

document has a list of terms, and a term has a list of documents. This symmetry explains 

why the index type is called inverted.

Inverted indexes can efficiently support text search. For example, to find documents 

containing all terms specified in a query, PostgreSQL scans all lists of documents for 

these terms and leaves only documents that appear in the lists for all terms in the query. 

The lists are ordered, so a single pass over the lists is sufficient to produce the result set.

A GIN index can be created as a functional index with an expression converting 

the document being indexed into a ts_vector, or values of ts_vector can be stored as a 

separate column. The advantage of the former approach is that it uses less space, while 

the advantage of the latter is that the index does not depend on the configuration (as the 

configuration is needed only to compute the value of ts_vector). If the values of ts_vector 

are stored, an index can refer to documents written in different natural languages and 

converted into ts_vector with different configurations.
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The structure of GIN is not derived from or related to a natural language; as noted 

earlier, it treats documents as lists. Thus, it can work with data other than documents—in 

fact, any attribute type containing multiple values, such as arrays. The GIN index will 

find all rows with multivalued attributes containing all values specified in a query, just as 

it finds all documents containing specified terms.

Documents (values of ts_vector type) can also be indexed with GIST. To build such 

an index, the values of ts_vector are converted into bitmaps of fixed length, constructed 

as follows. Each term that appears in any of the documents being indexed is hashed 

to obtain a number that represents its position in the bitmap. Each term is a bitmap of 

the same length, with a single bit equal to 1 (representing the term) and all other bits to 

zero. A bitmap for a document is a bitwise logical OR of all the bitmaps that represent 

terms in the document. Thus, the document bitmap has a bit equal to 1 in all positions 

corresponding to terms appearing in that document. A query bitmap is constructed 

similarly.

A search on this index is based on the following fact: a document satisfies the query 

if its bitmap contains 1 in every position that the query bitmap has a 1.

Different terms can be hashed into the same position. Therefore, a GIST index can 

return documents that are not relevant for the query; and usually, a recheck of ts_vector 

values is needed, but PostgreSQL can recognize this automatically.

The number of false matches grows if the number of different terms becomes high. 

Therefore, the GIST index is efficient for collections of documents where the total 

number of different terms is small. This is uncommon with texts in natural languages, so 

GIN indexes are usually more efficient in this case. GIST indexes for textual search are 

still useful in special cases.

�Indexing Very Large Tables
Any index occupies some space, and indexes on large tables can be very large. Is it 

possible to reduce the size of an index?

Database textbooks distinguish between dense and sparse indexes. All the indexes 

covered so far are dense; that is, they contain all values of the indexed column (or 

columns). A sparse index contains only a fraction of all values but still reduces the 

number of reads needed to find any value of the indexed attribute. This differs from 

conditional indexes that do not speed-up search of values not included in the index.
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Some database systems always store table rows in the order of (surrogate) primary 

key. The index on a primary key can then contain only one value per table block, and 

hence it can be a sparse index. More advanced database systems allow to order tables 

on values of other attributes, not necessarily unique. Such organization of tables also 

provides for sparse indexes. Sometimes such indexes are called cluster indexes as the 

rows with same value of the indexed column are placed close to each other.

PostgreSQL does not provide any means for explicit control of row ordering. 

However, in many cases, rows are ordered naturally. For example, rows registering 

certain kinds of events will be, most likely, appended to the table and will be naturally 

ordered on the arrival timestamp, making sparse indexing possible.

A generalization of sparse indexes implemented in PostgreSQL is called BRIN 

(stands for Block Range Index). A table for which a BRIN index is created is considered 

as a sequence of block ranges, where each range consists of a fixed number of adjacent 

blocks. For each range, a BRIN index entry contains a summary of column values 

contained in the block range. For example, a summary may contain minimal and 

maximal values of the timestamp column of the event log table.

To find any value of the indexed attribute, it is sufficient to find an appropriate block 

range (using the index) and then scan all blocks in the range.

The structure of the summarization method depends on the type of the column 

being indexed. For intervals, a summary may be an interval containing all intervals 

contained in the block range. For spatial data, a summary can be a bounding box 

containing all boxes in the block range.

If the column values are not ordered or rows are not ordered in the table, a scan of a 

BRIN index will return multiple block ranges to be scanned.

The summarization is expensive. Therefore, PostgreSQL provides multiple choices 

for BRIN index maintenance: a BRIN index can be updated automatically with triggers; 

alternatively, delayed summarization can be done automatically together with vacuum 

or started manually.

�Indexing JSON and JSONB
Sometimes developers looking for flexibility convert table rows into text or 

semistructured format (JSON or XML) and then use text search instead of more specific 

indexes. This approach definitely works better than external indexing tools, but is 

significantly slower than specific indexes.

Chapter 14  More Complex Filtering and Search



299

Returning to the question we posed at the end of Chapter 13, why go into the trouble 

of building functions that transform the search results into JSON when we can simply 

store the JSON type directly in the database?

Let’s see how such an approach would work in practice. To do this, let’s build a 

table that stores bookings as JSON objects. The first problem we will encounter is 

that we might need different JSON structures for different application endpoints (we 

already built several different record types in Chapters 11–13). But let’s assume we can 

consolidate different requirements and store the data in a way that would satisfy most 

use cases. We can use the code presented in Listing 14-1.

Listing 14-1.  Building a table with JSONB column type

--create simplifies booking leg type

CREATE TYPE booking_leg_record_2 AS

(booking_leg_id integer,

      leg_num integer,

      booking_id integer,

      flight flight_record);

--create simplified booking type

CREATE TYPE booking_record_2 AS

(     booking_id integer,

      booking_ref text,

      booking_name text,

      email text,

      account_id integer,

      booking_legs booking_leg_record_2[],

      passengers passenger_record[]

);

---create table

CREATE TABLE booking_jsonb AS

SELECT  b.booking_id,

to_jsonb ( row (

 b.booking_id,  b.booking_ref,  b.booking_name, b.email, b.account_id,

ls.legs,

ps.passengers

 ) :: booking_record_2 ) as cplx_booking
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FROM booking b

JOIN

 (SELECT booking_id,    array_agg(row (

booking_leg_id, leg_num, booking_id,

 row(f.flight_id, flight_no, departure_airport,

 dep.airport_name,

arrival_airport,

arv.airport_name,

 scheduled_departure, scheduled_arrival

 )::flight_record

)::booking_leg_record_2)  legs

FROM  booking_leg l

JOIN flight  f   ON  f.flight_id = l.flight_id

JOIN   airport dep  ON dep.airport_code =  f.departure_airport

JOIN   airport arv  ON arv.airport_code =  f.arrival_airport

GROUP BY booking_id)  ls

ON b.booking_id = ls.booking_id

JOIN

( SELECT    booking_id,

 array_agg(

 �row(passenger_id, booking_id, passenger_no, last_name, first_name):: 

passenger_record)  as passengers

 FROM passenger

 GROUP by booking_id) ps

 ON ls.booking_id = ps.booking_id

) ;

Note that we create the table with a column type of JSONB (JSON Binary), 

not JSON. The only difference between these types is that JSONB stores a binary 

representation of the JSON data, rather than a string. For the JSON type, the only indexes 

you can build are B-tree indexes on specific tags, and then you need to specify a full path, 

including the indexes in the arrays, which would make it impossible, for example, to 

index “any” booking leg.

If we want to build highly performant indexes on JSON columns, we need to use the 

JSONB type.
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Building this table will take a while. And it will take a while to build a GIN index:

CREATE INDEX idxgin ON booking_jsonb USING GIN (cplx_booking);

However, after this index is created, it feels like all the world’s problems are solved. 

Now we can retrieve all the data we need without any joins and any complex structure 

builds, using simple queries like the one shown in Listing 14-2.

Listing 14-2.  Search using a GIN index on a JSONB column

SELECT  *

FROM  booking_jsonb

WHERE

cplx_booking @@ '$.**.departure_airport_code == "ORD" && $.**.arrival_

airport_code == "JFK"'

The execution plan in Figure 14-1 proves that the GIN index is used.

There are several issues that make this approach less appealing than it looks at a 

first glance. First, this search is still slower than the search that uses B-tree indexes. For 

example, if you call the function that we created in Chapter 13

SELECT * FROM search_booking_leg($${"departure_airport":"ORD", "arrival_

airport":"JFK"}$$:: json)

…it will execute 2–2.5 times faster than a search using a GIN index.

Second, GIN indexes do not support searches on date-time attributes or searches 

using the like operator or searches on any transformed attribute values, like lower(). 

You can specify several complex search conditions with json_path expressions and 

JSONB operators and functions, including regular expressions, in the WHERE clause, but 

these will be checked with a heap scan. A good idea is to combine such conditions with 

others that are supported with indexes.

Figure 14-1.  Execution plan with a GIN index
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You can facilitate these searches creating additional trigram indexes, as described 

earlier in this chapter. In fact, we saw a production system that was built in a similar way: 

data from multiple tables/schemas was used to create “search documents” of type JSON, 

and then ts_vector columns were added and indexed.

However, there is a third problem with this approach. As already stated, one JSON 

structure would support only one hierarchy. If we built a booking_jsonb column as 

described earlier, we could relatively easily update a flight in the booking leg, but we 

couldn’t update the actual departure time or flight status.

This means that the booking_jsonb table will have to be rebuilt periodically in order 

to remain useful. Indeed, the production system mentioned earlier had a complex 

sequence of triggers that rebuilt all potentially affected JSON data. In cases with a 

relatively low expected number of updates, this restriction might not be critical, but that 

is not the case with delayed flights and changing flight schedules.

�Summary
PostgreSQL has a multitude of different indexes. This book covers many of them, but 

not all of them; new index types appear with nearly every new version. We wouldn’t be 

surprised if by the publish date, new indexes will be in use.

Both Chapter 5 and this chapter provide a number of examples of how to choose the 

right indexes to support different searches. Choosing the indexes that are best suited for 

your system, for specific searches, is not a straightforward task. Do not to stop at creating 

B-tree indexes for individual columns. Do you need compound indexes? Functional 

indexes? Will a GIST index help solve your problem? How critical is response time for 

this particular query? How much does this particular index impact updates? Only you 

can answer these questions.
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CHAPTER 15

Ultimate Optimization 
Algorithm
The preceding chapters covered a lot of optimization techniques: not only different 

ways to optimize SQL statements but also how database design affects performance, the 

importance of working together with application developers, the use of functions, and 

many other aspects of database performance.

Still, the question posed in the Introduction remains: where to start, when you have  

a real-world problem, when your users see an hourglass and you have no idea why?  

A related but more challenging task is to figure out what to do from the start. You do not 

have a problem yet. You have a task, possibly a draft of a query, or maybe you are lucky 

enough to have detailed requirements. How do you make sure you are doing it right?

In this chapter, we will present a step-by-step guide that will help you to write 

queries right right away and, when you have the option, to choose the database design 

that is right for you.

�Major Steps
Figure 15-1 presents a flowchart that we suggest you can use to identify the best strategy 

for your query in question. In the subsequent sections, we will discuss each step in more 

detail.
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�Step-by-Step Guide

�Step 1: Short or Long?
The first step is to determine whether the query in question is short or long. As discussed 

in Chapters 5 and 6, looking at the query itself won’t necessarily help you find the answer. 

Step 1 is a great time to recall that query optimization starts from gathering requirements, 

and it’s important to work together with business owners and/or business analytics.

Check whether the business is interested in the most recent data or they need 

to follow historic trends, and so on. The business might say that they need to see all 

canceled flights, but it would be a good idea to ask whether they want to see all canceled 

flights from the beginning of time or within the past 24 hours.

If you determine that the query in question is short, go to Step 2; otherwise go, to 

Step 3.

�Step 2: Short
So, your query is a short query. Which steps do you need to follow to make sure that not 

only is it written in the best possible way but also that query performance will be stable 

even when data volumes grow?

Figure 15-1.  Steps of the Ultimate Optimization Algorithm
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�Step 2.1: The Most Restrictive Criteria

Find the most restrictive criteria for your query. Remember that often you can’t tell 

which criteria this will be by just looking at the query. Query the tables to find the 

number of distinct values of attributes. Be aware of the value distribution (i.e., find out 

which values are the least frequent). When the most restrictive criteria are identified, 

proceed to the next step.

�Step 2.2: Check the Indexes

In this step, you need to check whether there are indexes that support the search on the 

most restrictive condition. This includes the following:

•	 Check whether all search attributes for the most restrictive condition 

are indexed. If the index(es) is missing, request or create one.

•	 If more than one field is involved, check whether a compound 

index would perform better and whether the performance gains are 

enough to justify the creation of an additional index.

•	 Check whether you can use an index-only scan using either a 

compound or covering index.

�Step 2.3: Add an Excessive Selection Criterion, If Applicable

If the most restrictive condition is based on a combination of attributes from different 

tables and thereby can’t be indexed, consider adding an excessive selection criterion.

�Step 2.4: Constructing the Query

Start writing the query by applying the most restrictive criteria; this may mean starting 

from a select from a single table or a join that incorporates the most restrictive criteria.

Do not omit this step. Often, when database developers know the relationships 

between objects, they tend to write all the joins before applying filtering. While we 

are aware that this is an often-recommended approach, we believe that for complex 

queries with multiple joins, it might complicate development. We suggest starting from a 

SELECT that you know is executed efficiently, and then adding one table at a time.
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Check query performance and the execution plan each time you add a new join. 

Remember, optimizers tend to err in estimating the size of intermediate result sets 

more and more the further from the root of the execution tree they are. If the number of 

joins in the query is approaching ten, you may consider either using CTEs, if you are on 

version 12 or higher, or you may consider building dynamic SQL.

�Step 3: Long
Your query is a long query. In this case, the first step would be to determine whether you 

can use incremental refresh. Once again, this is when you need to work together with the 

business owner and/or business analysts to understand better what the purpose of the 

query is. Often, requirements are formulated without considering data dynamics. When 

the results of a query are stored in a table and it is updated periodically, it can either be 

pulled fresh each time (a full refresh, pulling all data from the dawn of time to the most 

recently available data), or it can be pulled incrementally, bringing in only data that has 

changed since the last data pull. The latter is what we mean by incremental updates. In 

the vast majority of cases, it is possible to pull data incrementally. For example, instead 

of creating the passenger_passport materialized view as shown in Chapter 7, create it as 

the table passenger_passport, and add/update rows when new passport information is 

entered.

•	 If it is possible to use incremental updates, go to Step 4.

•	 Otherwise, go to Step 5.

�Step 4: Incremental Updates
Treat the query to select recently added/updated records as a short query with time 

of update being the most restrictive criterion. Go to Step 2 and follow the steps for 

optimizing short queries.

�Step 5: Non-incremental Long Query
If running incremental updates is not possible, proceed with the following steps of long 

query optimization:
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•	 Find the most restrictive join, semi-join, or anti-join, if applicable 

(refer to Chapter 6 for details), and make sure it is executed first.

•	 Keep adding tables to your join, one by one, and check the execution 

time and the execution plan each time.

•	 Make sure you do not scan any large tables multiple times. Plan your 

query to go through large tables only once, as described in Chapter 6.

•	 Pay attention to grouping. In the majority of cases, you need to 

postpone grouping to the last step, that is, you need to make sure 

that GROUP BY is the last statement in the execution plan. Be aware 

of some cases described in Chapter 6, when grouping should be 

performed earlier to minimize the size of intermediate datasets.

�But Wait, There Is More!
Throughout this book, we’ve insisted that database optimization is not limited to 

optimizing individual queries; individual queries do not come from outer space. Still, the 

optimization algorithm described in the previous sections is a guide only to the process 

of optimizing an individual query or rather writing a query the right way from the start. 

However, we’ve covered several other techniques.

Here are other things to consider:

•	 Parameters – Most likely, the query you are optimizing is 

parameterized, that is, if you have a condition on flight_id, it 

won’t be flight_id=1234 all the time, but rather could be any 

arbitrary flight_id. As we discussed in Chapter 5, depending on 

particular filtering values, the most restrictive criterion may differ 

(e.g., “Canceled” flight status will be more restrictive than most other 

criteria).

•	 Dynamic SQL – In the latter situation, the right approach is to use 

dynamic SQL, which will be also the case when the selection criteria 

themselves vary.

Chapter 15  Ultimate Optimization Algorithm



308

•	 Functions – As discussed in Chapter 11, functions in and of 

themselves do not improve performance and may significantly 

degrade the execution times. However, if dynamic SQL is needed, it is 

difficult to get around using functions.

•	 Database design changes – While working on queries, you might feel 

the need to make some DDL changes, from creating new indexes 

to changing the table schema. You will need to work with your 

DBAs and system architects to determine which changes can be 

implemented.

•	 Interaction with the application – If your query is executed by an 

application, query performance might be pretty good, while the 

overall application performance may not be. If you and your team 

choose to use NORM or another similar approach, you will need 

to work with application developers to determine what belongs to 

business logic and what belongs to database logic, as described in 

Chapters 11 and 13.

�Summary
This chapter provided a step-by-step guide to help you navigate the process of writing 

queries right right away. We encourage you to give it a try and follow these steps when 

working on your next project.
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CHAPTER 16

Conclusion
Like all good things must do, this book is coming to an end.

In the Introduction, we shared that we wrote this book because we felt we could 

not not write it. Countless times, we’ve met the question: “Is there a book you can 

recommend for getting started with PostgreSQL?”

In the preponderance of cases, those asking this question were not database 

development novices. PostgreSQL is not yet the database of choice for most educational 

institutions, and a typical developer “new to PostgreSQL” already knows how to 

write syntactically correct SELECT statements, but is not familiar with the particulars 

of PostgreSQL. This includes not just any minor language differences, but more 

importantly, differences in how data is stored and how queries are processed.

Yes, of course, documentation is always available, but it is not always easy to 

find what you need, unless you already know exactly what you are looking for. Other 

resources include many excellent tutorials on various subjects, as well as the blogs of 

leading PostgreSQL experts. Most of the time, however, they are focused on specific 

topics, showing off numerous great features of PostgreSQL, but not necessarily 

indicating where exactly they fit into the big picture.

Of course, this book does not present the full picture either—PostgreSQL has a lot 

to offer, and we did not attempt to provide exhaustive coverage. Rather, we approach 

PostgreSQL from a different perspective: we demonstrate how to make these great 

features work.

That being said, we hope that this book will become a go-to book for database 

developers who are starting to explore PostgreSQL. We also hope that those who have 

already been using PostgreSQL for a while will also find some useful information, 

perhaps some techniques that they haven’t used before.
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Our goal is to give you a structure that you can use to navigate the challenges of 

database development and a resource you can consult in “what if” situations. While it is 

impossible to cover in one book all that PostgreSQL has to offer, our hope is that having 

this book as a guide will make it easier for you to find more details in the PostgreSQL 

documentation.

Throughout, we’ve tried to explain not only what to do but also why it works, 

because if you know the “why,” you will be able to recognize other situations in which a 

similar solution could work. Understanding relational theory is a key to understanding 

these “whys,” which is why this book began with a healthy portion of theory. For those 

who persevered through the theoretical chapters, your work will be rewarded. These 

theoretical foundations bring you one step closer to “thinking like a database,” which 

allows you to write your queries right right away, rather than “write first and then 

optimize.”

In addition, we’ve introduced the postgres_air schema, which is now open sourced 

and is available at https://github.com/hettie-d/postgres_air. We hope this realistic 

dataset will be helpful as a training, experimentation, and demonstration tool, as well as 

an educational resource.

In the Introduction, our target audience was described as IT professionals working in 

PostgreSQL who want to develop performant and scalable applications, anyone whose 

job title contains the words “database developer” or “database administrator,” or anyone 

who is a backend developer charged with programming database calls. We hope that one 

of the takeaways from this book will be that collaboration between all these groups and 

business owners is key to developing performant applications.

Database queries do not run in a vacuum: the database is a service. Database work 

is invisible if everything works well, and it is extremely visible if something goes wrong. 

With that in mind, we hope that your work will remain mostly invisible!

And now have fun with PostgreSQL!
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