
PostgreSQL
Query
Optimization

The Ultimate Guide to Building
Efficient Queries
—
Henrietta Dombrovskaya
Boris Novikov
Anna Bailliekova

PostgreSQL Query
Optimization

The Ultimate Guide to Building
Efficient Queries

Henrietta Dombrovskaya
Boris Novikov
Anna Bailliekova

PostgreSQL Query Optimization: The Ultimate Guide to Building Efficient Queries

ISBN-13 (pbk): 978-1-4842-6884-1			 ISBN-13 (electronic): 978-1-4842-6885-8
https://doi.org/10.1007/978-1-4842-6885-8

Copyright © 2021 by Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484268841. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Henrietta Dombrovskaya
Braviant Holdings, Chicago, IL, USA

Anna Bailliekova
Zendesk, Madison, WI, USA

Boris Novikov
HSE University, Saint Petersburg, Russia

https://doi.org/10.1007/978-1-4842-6885-8
https://orcid.org/0000-0003-4657-0757

iii

Table of Contents

Chapter 1: ��Why Optimize?��� 1

What Do We Mean by Optimization?�� 1

Why It Is Difficult: Imperative and Declarative��� 2

Optimization Goals��� 5

Optimizing Processes��� 7

Optimizing OLTP and OLAP��� 8

Database Design and Performance�� 8

Application Development and Performance��� 10

Other Stages of the Lifecycle��� 10

PostgreSQL Specifics��� 11

Summary��� 12

Chapter 2: ��Theory: Yes, We Need It!��� 13

Query Processing Overview��� 13

Compilation�� 13

Optimization and Execution�� 14

Relational, Logical, and Physical Operations��� 15

Relational Operations��� 15

Logical Operations�� 19

About the Authors��� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

iv

Queries as Expressions: Thinking in Sets��� 20

Operations and Algorithms��� 20

Summary��� 21

Chapter 3: ��Even More Theory: Algorithms��� 23

Algorithm Cost Models��� 23

Data Access Algorithms��� 24

Storage Structures��� 25

Full Scan��� 26

Index-Based Table Access�� 27

Index-Only Scan��� 28

Comparing Data Access Algorithms��� 28

Index Structures��� 31

What Is an Index?��� 31

B-Tree Indexes�� 33

Why Are B-Trees Used So Often?�� 35

Bitmaps�� 35

Other Kinds of Indexes��� 36

Combining Relations�� 37

Nested Loops�� 37

Hash-Based Algorithms�� 39

Sort-Merge Algorithm��� 41

Comparing Algorithms�� 42

Summary��� 42

Chapter 4: ��Understanding Execution Plans��� 43

Putting Everything Together: How an Optimizer Builds an Execution Plan���������������������������������� 43

Reading Execution Plans�� 44

Understanding Execution Plans��� 49

What Is Going On During Optimization?�� 49

Why Are There So Many Execution Plans to Choose From?��� 50

Table of Contents

v

How Are Execution Costs Calculated?�� 51

How Can the Optimizer Be Led Astray?�� 54

Summary��� 55

Chapter 5: ��Short Queries and Indexes��� 57

Which Queries Are Considered Short?��� 57

Choosing Selection Criteria�� 59

Index Selectivity��� 60

Unique Indexes and Constraints��� 61

Indexes and Non-equal Conditions�� 65

Indexes and Column Transformations�� 65

Indexes and the like Operator�� 70

Using Multiple Indexes��� 72

Compound Indexes�� 73

How Do Compound Indexes Work?��� 74

Lower Selectivity�� 76

Using Indexes for Data Retrieval�� 76

Covering Indexes�� 77

Excessive Selection Criteria��� 79

Partial Indexes��� 83

Indexes and Join Order�� 85

When Are Indexes Not Used��� 88

Avoiding Index Usage��� 89

Why Does PostgreSQL Ignore My Index?�� 89

Let PostgreSQL Do Its Job!�� 92

How to Build the Right Index(es)?�� 97

To Build or Not to Build��� 97

Which Indexes Are Needed?��� 98

Which Indexes Are Not Needed?�� 98

Indexes and Short Query Scalability�� 99

Summary��� 100

Table of Contents

vi

Chapter 6: ��Long Queries and Full Scans�� 101

Which Queries Are Considered Long?�� 101

Long Queries and Full Scans��� 103

Long Queries and Hash Joins�� 104

Long Queries and the Order of Joins��� 105

What Is a Semi-join?�� 105

Semi-joins and Join Order�� 107

More on Join Order��� 109

What Is an Anti-join?�� 112

Semi- and Anti-joins Using the JOIN Operator��� 113

When Is It Necessary to Specify Join Order?��� 116

Grouping: Filter First, Group Last��� 118

Grouping: Group First, Select Last�� 125

Using SET operations��� 128

Avoiding Multiple Scans��� 132

Conclusion��� 138

Chapter 7: ��Long Queries: Additional Techniques��� 139

Structuring Queries�� 139

Temporary Tables and CTEs��� 140

Temporary Tables��� 140

Common Table Expressions (CTEs)��� 142

Views: To Use or Not to Use��� 147

Why Use Views?��� 154

Materialized Views��� 154

Creating and Using Materialized Views�� 154

Refreshing Materialized Views��� 156

Create a Materialized View or Not?�� 156

Do Materialized Views Need to Be Optimized?��� 158

Dependencies��� 159

Partitioning��� 160

Table of Contents

vii

Parallelism��� 165

Summary��� 166

Chapter 8: ��Optimizing Data Modification��� 167

What Is DML?��� 167

Two Ways to Optimize Data Modification��� 167

How Does DML Work?�� 168

Low-Level Input/Output�� 168

The Impact of Concurrency Control�� 169

Data Modification and Indexes��� 172

Mass Updates and Frequent Updates�� 173

Referential Integrity and Triggers��� 174

Summary��� 175

Chapter 9: ��Design Matters��� 177

Design Matters��� 177

Why Use a Relational Model?��� 181

Types of Databases�� 182

Entity-Attribute-Value Model�� 182

Key-Value Model��� 183

Hierarchical Model��� 184

Combining the Best of Different Worlds��� 185

Flexibility vs. Efficiency and Correctness��� 185

Must We Normalize?�� 187

Use and Misuse of Surrogate Keys�� 189

Summary��� 195

Chapter 10: ��Application Development and Performance��������������������������������������� 197

Response Time Matters��� 197

World Wide Wait��� 198

Performance Metrics��� 199

Impedance Mismatch��� 200

Table of Contents

viii

The Road Paved with Good Intentions��� 200

Application Development Patterns��� 201

“Shopping List Problem”�� 203

Interfaces��� 205

Welcome to the World of ORM�� 205

In Search of a Better Solution�� 207

Summary��� 210

Chapter 11: ��Functions��� 211

Function Creation��� 211

Internal Functions��� 212

User-Defined Functions�� 212

Introducing Procedural Language�� 213

Dollar Quoting��� 214

Function Parameters and Function Output: Void Functions�� 215

Function Overloading�� 216

Function Execution��� 218

Function Execution Internals�� 220

Functions and Performance��� 223

How Using Functions Can Worsen Performance�� 224

Any Chance Functions Can Improve Performance?��� 226

Functions and User-Defined Types��� 226

User-Defined Data Types�� 226

Functions Returning Composite Types��� 227

Using Composite Types with Nested Structure�� 231

Functions and Type Dependencies��� 235

Data Manipulation with Functions��� 236

Functions and Security�� 238

What About Business Logic?�� 239

Functions in OLAP Systems��� 240

Table of Contents

ix

Parameterizing��� 240

No Explicit Dependency on Tables and Views��� 241

Ability to Execute Dynamic SQL�� 241

Stored Procedures��� 241

Functions with No Results�� 241

Functions and Stored Procedures�� 242

Transaction Management��� 242

Exception Processing��� 243

Summary��� 244

Chapter 12: ��Dynamic SQL�� 245

What Is Dynamic SQL��� 245

Why It Works Better in Postgres��� 245

What About SQL Injection?��� 246

How to Use Dynamic SQL in OLTP Systems��� 246

How to Use Dynamic SQL in OLAP Systems��� 252

Using Dynamic SQL for Flexibility�� 256

Using Dynamic SQL to Aid the Optimizer��� 263

FDWs and Dynamic SQL��� 266

Summary��� 267

Chapter 13: ��Avoiding the Pitfalls of Object-Relational Mapping��������������������������� 269

Why Application Developers Like NORM�� 269

ORM vs. NORM��� 270

NORM Explained�� 272

Implementation Details�� 278

Complex Searches��� 283

Updates�� 286

Insert�� 287

Update�� 288

Delete��� 290

Table of Contents

x

Why Not Store JSON?!��� 291

Performance Gains�� 291

Working Together with Application Developers�� 292

Summary��� 292

Chapter 14: ��More Complex Filtering and Search��� 293

Full Text Search�� 293

Multidimensional and Spatial Search�� 295

Generalized Index Types in PostgreSQL��� 295

GIST Indexes��� 296

Indexes for Full Text Search��� 296

Indexing Very Large Tables��� 297

Indexing JSON and JSONB��� 298

Summary��� 302

Chapter 15: ��Ultimate Optimization Algorithm�� 303

Major Steps�� 303

Step-by-Step Guide�� 304

Step 1: Short or Long?�� 304

Step 2: Short��� 304

Step 3: Long�� 306

Step 4: Incremental Updates�� 306

Step 5: Non-incremental Long Query��� 306

But Wait, There Is More!��� 307

Summary��� 308

Chapter 16: ��Conclusion�� 309

�Index�� 311

Table of Contents

xi

About the Authors

Henrietta Dombrovskaya is a database researcher and developer with over 35 years

of academic and industrial experience. She holds a PhD in computer science from the

University of Saint Petersburg, Russia. At present, she is Associate Director of Databases

at Braviant Holdings, Chicago, Illinois. She is an active member of the PostgreSQL

community, a frequent speaker at the PostgreSQL conference, and the local organizer

of the Chicago PostgreSQL User Group. Her research interests are tightly coupled with

practice and are focused on developing efficient interactions between applications and

databases. She is a winner of the “Technologist of the Year” 2019 Award of the Illinois

Technology Association.

Boris Novikov is currently a professor in the Department of Informatics at National

Research University Higher School of Economics in Saint Petersburg, Russia. He

graduated from Leningrad University’s School of Mathematics and Mechanics. He has

worked for Saint Petersburg University for a number of years and moved to his current

position in January 2019. His research interests are in a broad area of information

management and include several aspects of design, development, and tuning of

databases, applications, and database management systems (DBMSs). He also has

interests in distributed scalable systems for stream processing and analytics.

Anna Bailliekova is Senior Data Engineer at Zendesk. Previously, she built ETL

pipelines, data warehouse resources, and reporting tools as a team lead on the Division

Operations team at Epic. She has also held analyst roles on a variety of political

campaigns and at Greenberg Quinlan Rosner Research. She received her undergraduate

degree with College Honors in Political Science and Computer Science from Knox

College in Galesburg, Illinois.

xiii

About the Technical Reviewer

Tom Kincaid is Vice President of CTO Operations at

EnterpriseDB. Tom has been developing, deploying, and

supporting database systems and enterprise software for over

25 years. Prior to joining EnterpriseDB, Tom was General

Manager of 2ndQuadrant in North America where he

oversaw all aspects of 2ndQuadrant’s dynamic and growing

business for Postgres products, training, support, and

professional services. He worked directly with companies

from all industries and of all sizes helping them successfully

make Postgres part of their mission-critical operations.

Tom was previously Vice President of Professional Services and later Vice President

of Products and Engineering at EnterpriseDB, the world’s largest Postgres company.

He has overseen the design and delivery of Postgres training solutions as well as the

deployment of PostgreSQL at both Fortune 500 financial institutions and military

facilities all over the world. Teams Tom has managed have delivered major features that

have become part of the PostgreSQL open source database. He has overseen the design

and successful delivery of high-availability products for PostgreSQL and several other

databases.

Tom is also the founder and organizer of the Boston PostgreSQL User Group.

xv

Acknowledgments

The authors collectively want to thank Jonathan Gennick, Jill Balzano, and everyone at

Apress for the opportunity to share their perspective.

Chad Slaughter and John Walsh were early readers and provided invaluable

feedback. Alyssa Ritchie provided Java classes to show example application code.

The contributions of Tom Kincaid as the technical reviewer cannot be overstated.

His careful, thorough, and thoughtful feedback improved the content, organization,

and usability of the text. This book is more precise, more understandable, and more

comprehensive, thanks to Tom. Any remaining issues are, of course, the responsibility of

the authors.

Henrietta Dombrovskaya would like to thank Chad Slaughter, in his capacity as

System Architect at Enova International, and Jef Jonjevic, her squad lead, who believed

in her and let her build things differently. Jeff Czaplewski, Alyssa Ritchie, and Greg

Nelson spent hours, days, and weeks making NORM work with Java. Alyssa and Jeff also

contributed to papers that won international recognition for this approach. At Braviant

Holdings, Bob Sides took a risk and let Henrietta build things in a way no one has done

before and to prove the power of this approach.

Anna Bailliekova would like to thank Andy Civettini, for teaching her how to write

about complex and technical topics in an accessible way and years of academic and

professional mentorship and encouragement. The Division Operations team at Epic has

an almost frightening commitment to continuous improvement; their influence is felt

every time she writes SQL.

Finally, John, Nadia, and Kira Bailliekova have each supported and sacrificed for the

sake of this book; Anna is endlessly grateful to them.

xvii

Introduction

“Optimization” is a broad enough term to encompass performance tuning, personal

improvement, and marketing via social engine and invariably evinces high hopes and

expectations from readers. As such, we find it prudent to begin this book not with

an introduction to what is covered, but rather, why this book exists and what will not

be covered, to avoid disappointing any readers who approach it with inappropriate

expectations. Then, we proceed with what this book is about, the target audience, what is

covered, and how to get the most use out of it.

�Why We Wrote This Book
Like many authors, we wrote this book because we felt we could not not write it. We

are both educators and practitioners; hence, we see both how and what computer

science students are taught in class and what knowledge they lack when they enter the

workforce. We do not like what we see and hope this book will help bridge this gap.

When learning about data management, most students never see a real production

database, and even more alarming, many of their professors never see one, either. While

lack of exposure to real-life systems affects all computer science students, the education

of future database developers and database administrators (DBAs) suffers the most.

Using a small training database, one can learn how to write syntactically correct SQL

and even write a SELECT statement that properly asks for the desired result. However,

learning to write performant queries requires a production-sized dataset. Moreover, it

might not be evident that performance might present a problem if a student is operating

on a dataset that can easily fit into the computer’s main memory and return a result in

milliseconds regardless of the complexity of the query.

In addition to lacking exposure to realistic datasets, students often don’t use DBMSs

that are widely used in industry. While the preceding statement is true in relation

to many DBMSs, in the case of PostgreSQL, it is even more frustrating. PostgreSQL

xviii

originated in an academic environment and is maintained as an open source project,

making it an ideal database for teaching relational theory and demonstrating database

internals. However, so far, few academic institutions have adopted PostgreSQL for their

educational needs.

While PostgreSQL is rapidly developing and becoming a more powerful tool,

more and more businesses favor it over proprietary DBMSs in an attempt to reduce

costs. More and more IT managers are looking for employees who are familiar with

PostgreSQL. More and more potential candidates learn to use PostgreSQL on their own

and miss opportunities to get the most out of it.

We hope that this book will help all interested parties: candidates, hiring managers,

database developers, and organizations that are switching to PostgreSQL for their data

needs.

�What Won’t Be Covered
Many people believe that optimization is a sort of magic possessed by an elite circle of

wizards. They believe that they can be admitted into this circle if they receive tokens of

sacred knowledge from their elders. And as soon as they have the keys, their abilities will

have no limits.

Since we are aware of these misconceptions, we want to be transparent from the

very beginning. The following is the list of topics that are often discussed in books about

optimization that will not be covered in this book:

•	 Server optimization – Because it is not expected on a daily basis

•	 Most system parameters – Because database developers are not likely

to have privileges to alter them

•	 Distributed systems – Because we do not have enough industrial

experience with them

•	 Transactions – Because their impact on performance is very limited

•	 New and cool features – Because they change with every new release

and our goal is to cover the fundamentals

•	 Black magic (spells, rituals, etc.) – Because we are not proficient

in them

Introduction

xix

There are plenty of books available that cover all of the topics listed in the preceding

list, except probably black magic, but this book is not one of them. Instead, we focus on

everyday challenges database developers face: when that one application page keeps

timing out, when a customer is kicked out of the application just before the “Contract

Signed” page, when the CEO dashboard is showing an hourglass instead of yesterday’s

product KPI, and when procuring more hardware is not an option.

Everything we present in this book has been tested and implemented in an industrial

environment, and though it may look like black magic, we will explain any query

performance improvement or lack thereof.

�Target Audience
Most of the time, a book about optimization is viewed as a book for DBAs. Since our goal

is to prove that optimization is more than just building indexes, we hope that this book

will be beneficial for a broader audience.

This book is for IT professionals working in PostgreSQL who want to develop

performant and scalable applications. It is for anyone whose job title contains the

words “database developer” or “database administrator” or who is a backend developer

charged with programming database calls. It is also useful to system architects involved

in the overall design of application systems running against a PostgreSQL database.

What about report writers and business intelligence specialists? Unfortunately, large

analytical reports are most often thought of as being slow by definition. However, if a

report is written without considering how it will perform, the execution time might end

up being not just minutes or hours, but years! For most analytical reports, execution time

can be significantly reduced by using simple techniques covered in this book.

�What Readers Will Learn
In this book, the readers will learn how to

•	 Identify optimization goals in OLTP (Online Transaction Processing)

and OLAP (Online Analytical Processing) systems.

•	 Read and understand PostgreSQL execution plans.

•	 Identify indexes that will improve query performance.

Introduction

xx

•	 Optimize full table scans.

•	 Distinguish between long queries and short queries.

•	 Choose the right optimization technique for each query type.

•	 Avoid the pitfalls of ORM frameworks.

At the end of the book, we present the Ultimate Optimization Algorithm, which

guides a database developer through the process of producing the most performant

query.

�The Postgres Air Database
Throughout this book, examples are built on one of the databases of a virtual airline

company called Postgres Air. This company connects over 600 virtual destinations

worldwide, offers about 32,000 direct virtual flights weekly, and has over 100,000 virtual

members in its frequent flyer program and many more passengers every week. The

company fleet consists of virtual aircraft. As operations are entirely virtual, the company

is not affected by the COVID-19 pandemic.

Please note that all data provided in this database is fictional and provided for

illustrative purposes only. Although some data appears very realistic (especially

descriptions of airports and aircraft), they cannot be used as sources of information

about real airports or aircraft. All phone numbers, email addresses, and names are

generated.

To install the training database on your local system, please access the shared

directory postgres_air_dump using this link: https://drive.google.com/drive/

folders/13F7M80Kf_somnjb-mTYAnh1hW1Y_g4kJ?usp=sharing

You can also use a QR code as shown in Figure 1.

Introduction

https://drive.google.com/drive/folders/13F7M80Kf_somnjb-mTYAnh1hW1Y_g4kJ?usp=sharing
https://drive.google.com/drive/folders/13F7M80Kf_somnjb-mTYAnh1hW1Y_g4kJ?usp=sharing

xxi

This shared directory contains data dump of the postgres_air schema in three

formats: directory format, default pg_dump format, and compressed SQL format.

The total size of each is about 1.2 GB. Use directory format if you prefer to download

smaller files (the max file size is 419 MB). Use SQL format if you want to avoid warnings

about object ownership.

For directory format and default format, use pg_restore (www.postgresql.org/

docs/12/app-pgrestore.html). For SQL format, unzip the file and use psql for restore.

In addition, after you restore the data, you will need to run the script in Listing 1 to

create several indexes.

Listing 1.  Initial set of indexes

SET search_path TO postgres_air;

CREATE INDEX flight_departure_airport ON

flight(departure_airport);

CREATE INDEX flight_scheduled_departure ON postgres_air.flight

(scheduled_departure);

CREATE INDEX flight_update_ts ON postgres_air.flight (update_ts);

CREATE INDEX booking_leg_booking_id ON postgres_air.booking_leg

(booking_id);

CREATE INDEX booking_leg_update_ts ON postgres_air.booking_leg

(update_ts);

CREATE INDEX account_last_name

 ON account (last_name);

Figure 1.  QR code to access the database dump

Introduction

http://www.postgresql.org/docs/12/app-pgrestore.html
http://www.postgresql.org/docs/12/app-pgrestore.html

xxii

We will use this database schema to illustrate the concepts and methods that are

covered in this book. You can also use this schema to practice optimization techniques.

This schema contains data that might be stored in an airline booking system. We

assume that you have booked a flight online, at least once, so the data structure should

be easily understood. Of course, the structure of this database is much simpler than the

structure of any real database of this kind.

Anyone who books a flight needs to create an account, which stores login

information, first and last names, and contact information. We also store data about

frequent flyers, which might or might not be attached to an account. A person who

makes a booking can book for several passengers, who might or might not have their

accounts in the system. Each booking may include several flights (legs). Before the flight,

each traveler is issued a boarding pass with a seat number.

The Entity-Relationship (ER) diagram for this database is presented in Figure 2.

•	 airport stores information about airports and contains the airport’s

three-character (IATA) code, name, city, geographical location, and

time zone.

•	 flight stores information about flights between airports. For each

flight, the table stores a flight number, arrival and departure airports,

scheduled and actual arrival and departure times, aircraft code, and

flight status.

•	 account stores login credentials, the account holder’s first and

last names, and possibly a reference to a frequent flyer program

membership; each account may potentially have multiple phone

numbers, which are stored in the phone table.

•	 frequent_flyer stores information about membership in the frequent

flyer program.

•	 booking contains information about booked trips; each trip may have

several booking legs and several passengers.

•	 booking_leg stores individual legs of bookings.

•	 passenger stores information about passengers, linked to each booking.

Note that a passenger ID is unique to a single booking; for any other

booking, the same person will have a different passenger ID.

Introduction

xxiii

•	 aircraft provides the aircraft’s description, and the seat table stores

seat maps for each of aircraft types.

•	 Finally, the boarding_pass table stores information about issued

boarding passes.

Figure 2.  ER diagram of the booking schema

Introduction

1
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_1

CHAPTER 1

Why Optimize?
This chapter covers why optimization is such an important part of database

development. You will learn the differences between declarative languages, like SQL,

and imperative languages, like Java, which may be more familiar, and how these

differences affect programming style. We also demonstrate that optimization applies not

only to database queries but also to database design and application architecture.

�What Do We Mean by Optimization?
In the context of this book, optimization means any transformation that improves system

performance. This definition is purposely very generic, since we want to emphasize that

optimization is not a separate development phase. Quite often, database developers

try to “just make it work” first and optimize later. We do not think that this approach

is productive. Writing a query without having any idea of how long it will take to run

creates a problem that could have been avoided altogether by writing it the right way

from the start. We hope that by the time you finish this book, you’ll be prepared to

optimize in precisely this fashion: as an integrated part of query development.

We will present some specific techniques; however, the most important thing is to

understand how a database engine processes a query and how a query planner decides

what execution path to choose. When we teach optimization in a classroom setting,

we often say, “Think like a database!” Look at your query from the point of view of a

database engine, and imagine what it has to do to execute that query; imagine that you

have to do it yourself instead of the database engine doing it for you. By thinking about

the scope of work, you can avoid imposing suboptimal execution plans. This is discussed

in more detail in subsequent chapters.

If you practice “thinking like a database” long enough, it will become a natural way

of thinking, and you will be able to write queries correctly right away, often without the

need for future optimization.

https://doi.org/10.1007/978-1-4842-6885-8_1#DOI

2

�Why It Is Difficult: Imperative and Declarative
Why isn’t it enough to write a SQL statement which returns the correct result? That’s

what we expect when we write application code. Why is it different in SQL, and why is it

that two queries that yield the same result may drastically differ in execution time? The

underlying source of the problem is that SQL is a declarative language. That means that

when we write a SQL statement, we describe the result we want to get, but we do not

specify how that result should be obtained. By contrast, in an imperative language, we

specify what to do to obtain a desired result—that is, the sequence of steps that should

be executed.

As discussed in Chapter 2, the database optimizer chooses the best way of doing it.

What is best is determined by many different factors, such as storage structures, indexes,

and data statistics.

Let’s look at a simple example; consider the queries in Listing 1-1 and Listing 1-2.

Listing 1-1.  A query selecting flights with the BETWEEN operator.

SELECT flight_id

 ,departure_airport

 ,arrival_airport

FROM flight

WHERE scheduled_arrival BETWEEN

'2020-10-14' AND '2020-10-15';

Listing 1-2.  A query selecting flights by casting to date.

SELECT flight_id

,departure_airport

,arrival_airport

FROM flight

WHERE scheduled_arrival:: date='2020-10-14';

These two queries look almost identical and should yield identical results. However,

the execution time will be different because the work done by the database engine will

be different. In Chapter 5, we will explain why this happens and how to choose the best

query from a performance standpoint.

Chapter 1 Why Optimize?

3

Thinking imperatively is natural for humans. Generally, when we think about

accomplishing a task, we think about the steps that we need to take. Similarly, when we

think about a complex query, we think about the sequence of conditions we need to

apply to achieve the desired result. However, if we force the database engine to follow

this sequence strictly, the result might not be optimal.

For example, let’s try to find out how many people with frequent flyer level 4 fly out

of Chicago for Independence Day. If at the first step you want to select all frequent flyers

with level 4, you may write something like this:

SELECT * FROM frequent_flyer WHERE level =4

Then, you may want to select these people’s account numbers:

SELECT * FROM account WHERE frequent_flyer_id IN (

 SELECT frequent_flyer_id FROM frequent_flyer WHERE level =4

)

And then, if you want to find all bookings made by these people, you might write the

following:

WITH level4 AS (SELECT * FROM account WHERE

frequent_flyer_id IN (

 SELECT frequent_flyer_id FROM frequent_flyer WHERE level =4

)

SELECT * FROM booking WHERE account_id IN

(SELECT account_id FROM level4)

Possibly, next, you want to find which of these bookings are for the flights which

originate in Chicago on July 3. If you continue to construct the query in a similar manner,

the next step will be the code in Listing 1-3.

Listing 1-3.  Imperatively constructed query

WITH bk AS (

WITH level4 AS (SELECT * FROM account WHERE

frequent_flyer_id IN (

 SELECT frequent_flyer_id FROM frequent_flyer WHERE level =4

))

Chapter 1 Why Optimize?

4

SELECT * FROM booking WHERE account_id IN

(SELECT account_id FROM level4

))

SELECT * FROM bk WHERE bk.booking_id IN

 (SELECT booking_id FROM booking_leg WHERE

 Leg_num=1 AND is_returning IS false

 AND flight_id IN (

SELECT flight_id FROM flight

 WHERE

 departure_airport IN ('ORD', 'MDW')

 AND scheduled_departure:: DATE='2020-07-04')

)

At the end, you may want to calculate the actual number of travelers. This can be

achieved with the query in Listing 1-4.

Listing 1-4.  Calculating a total number of passengers

WITH bk_chi AS (

WITH bk AS (

WITH level4 AS (SELECT * FROM account WHERE

frequent_flyer_id IN (

 SELECT frequent_flyer_id FROM frequent_flyer WHERE level =4

))

SELECT * FROM booking WHERE account_id IN

(SELECT account_id FROM level4

))

SELECT * FROM bk WHERE bk.booking_id IN

 (SELECT booking_id FROM booking_leg WHERE

 Leg_num=1 AND is_returning IS false

 AND flight_id IN (

SELECT flight_id FROM flight

 WHERE

 departure_airport IN ('ORD', 'MDW')

 AND scheduled_departure:: DATE='2020-07-04')

))

SELECT count(*) from passenger WHERE booking_id IN (

 SELECT booking_id FROM bk_chi)

Chapter 1 Why Optimize?

5

With the query constructed like this, you are not letting the query planner choose

the best execution path, because the sequence of actions is hard-coded. Although the

preceding statement is written in a declarative language, it is imperative by nature.

Instead, to write a declarative query, simply specify what you need to retrieve from

the database, as shown in Listing 1-5.

Listing 1-5.  Declarative query to calculate the number of passengers

SELECT count(*) FROM

booking bk

JOIN booking_leg bl ON bk.booking_id=bl.booking_id

JOIN flight f ON f.flight_id=bl.flight_id

JOIN account a ON a.account_id=bk.account_id

JOIN frequent_flyer ff ON ff.frequent_flyer_id=a.frequent_flyer_id

JOIN passenger ps ON ps.booking_id=bk.booking_id

WHERE level=4

AND leg_num=1

AND is_returning IS false

AND departure_airport IN ('ORD', 'MDW')

AND scheduled_departure BETWEEN '2020-07-04'

AND '2020-07-05'

This way, you allow the database to decide which order of operations is best, which

may vary depending on the distribution of values in the relevant columns.

You may want to run these queries after all required indexes are built in Chapter 5.

�Optimization Goals
So far, we have implied that a performant query is a query which is executed fast.

However, that definition is neither precise nor complete. Even if, for a moment, we

consider reduction of execution time as the sole goal of optimization, the question

remains: what execution time is “good enough.” For a monthly general ledger of a big

corporation, completion within one hour may be an excellent execution time. For a daily

marketing analysis, minutes might be great. For an executive dashboard with a dozen

reports, refresh within 10 seconds may be the best time we can achieve. For a function

called from a web application, even a hundred milliseconds can be alarmingly slow.

Chapter 1 Why Optimize?

6

In addition, for the same query, execution time may vary at different times of day or

with different database loads. In some cases, we might be interested in average execution

time. If a system has a hard timeout, we may want to measure performance by capping

the maximum execution time. There is also a subjective component in response time

measurement. Ultimately, a company is interested in user satisfaction. Most of the time,

user satisfaction depends on response time, but it is also a subjective characteristic.

However, beyond execution time, other characteristics may be taken into account.

For example, a service provider may be interested in maximizing system throughput.

A small startup may be interested in minimizing resource utilization without

compromising the system's response time. We know one company which increased

the system's main memory to keep the execution time fast. Their goal was to make sure

that the whole database could fit into main memory. That worked for a while until the

database grew bigger than any main memory configuration available.

How do we define optimization goals? We use the familiar SMART goal framework.

SMART goals are

•	 Specific

•	 Measurable

•	 Achievable (attainable)

•	 Result-based (relevant)

•	 Time-bound (time-driven)

Most people know about SMART goals applied to health and fitness, but the same

concept is perfectly applicable to query optimization. Examples of SMART goals are

presented in Table 1-1.

Chapter 1 Why Optimize?

7

�Optimizing Processes
It is essential to bear in mind that a database does not exist in a vacuum. A database is

the foundation for multiple, often independent applications and systems. For any user

(external or internal), overall system performance is the one they experience and the one

that matters.

At the organization level, the objective is to reach better performance of the whole

system. It might be response time or throughput (essential for the service provider) or

(most likely) a balance of both. Nobody is interested in database optimizations that have

no impact on overall performance.

Database developers and DBAs often tend to over-optimize any bad query that

comes to their attention, just because it is bad. At the same time, their work is often

isolated from both application development and business analytics. This is one reason

optimization efforts may appear to be less productive than they could be. A SQL query

cannot be optimized in isolation, outside the context of its purpose and the environment

in which it is executed.

Table 1-1.  SMART goal examples

Characteristic Bad Example Good Example

Specific All pages should respond fast. Each function execution should be completed

before a system-defined timeout.

Measurable Customers shouldn’t wait

too long to complete their

application.

Response time of the registration page should

not exceed 4 seconds.

Achievable Daily data refresh time in the

data warehouse should never

increase.

When source data volume grows, the daily

data refresh time should grow not more than

logarithmically.

Result-based Each report refresh should run as

fast as possible.

Refresh time for each report should be short

enough to avoid lock waits.

Time-bound We will optimize as many reports

as we can.

By the end of the month, all financial reports

should run in under 30 seconds.

Chapter 1 Why Optimize?

8

Since queries might not be written declaratively, the original purpose of a query

might not be evident. Finding out the business intent of what is to be done might be the

first and the most critical optimization step. Moreover, questions about the purpose of a

report might lead to the conclusion that it is not needed at all. In one case, questioning

the purpose of the most long-running reports allowed us to cut the total traffic on the

reporting server by 40%.

�Optimizing OLTP and OLAP
There are many ways to classify databases, and different database classes may differ in

both performance criteria and optimization techniques. Two major classes are OLTP

(Online Transaction Processing) and OLAP (Online Analytical Processing). OLTP

databases support applications, and OLAP databases support BI and reporting. Through

the course of this book, we will emphasize different approaches to OLTP and OLAP

optimization. We will introduce the concepts of short queries and long queries and

explain how to distinguish one from the other.

Hint I t does not depend on the length of the SQL statement.

In the majority of cases, in OLTP systems we are optimizing short queries and in

OLAP systems both short and long queries.

�Database Design and Performance
We have already mentioned that we do not like the concept of “first write and then

optimize” and that this book's goal is to help you write queries right right away. When

should a developer start thinking about performance of the query they are working on?

The answer is the sooner, the better. Ideally, optimization starts from requirements. In

practice, this is not always the case, although gathering requirements is essential.

To be more precise, gathering requirements allows us to come up with the best

database design, and database design can impact performance.

If you are a DBA, chances are, from time to time, you get requests to review new

tables and views, which means you need to evaluate someone else’s database design.

If you do not have any exposure to what a new project is about and the purpose of the

new tables and views, there is not much you can do to determine whether the proposed

Chapter 1 Why Optimize?

9

design is optimal. The only thing you may be able to evaluate without going into

the details of the business requirements is whether the database design is normalized.

Even that might not be obvious without knowing the business specifics.

The only way to evaluate a proposed database design is to ask the right questions.

The right questions include questions about what real-life objects the tables represent.

Thus, optimization starts with gathering requirements. To illustrate that statement, let’s

look at the following example: in this database, we need to store user accounts, and we

need to store each account holder’s phone number(s). Two possible designs are shown

in Figures 1-1 and 1-2, respectively.

Which of the two designs is the right one? It depends on the intended usage of the

data. If phone numbers are never used as search criteria and are selected as a part of an

account (to be displayed on the customer support screen), if UX has fields labeled with

specific phone types, then a single-table design is more appropriate.

However, if we want to search by phone number regardless of type, having all phones

in a separate table will make the search more performant.

Figure 1-1.  Single-table design

Figure 1-2.  Two-table design

Chapter 1 Why Optimize?

10

Also, users are often asked to indicate which phone number is their primary phone.

It is easy to add one Boolean attribute is_primary to the two-table design, but it will be

more complicated in the one-table design. An additional complication might arise when

somebody does not have a landline or a work phone, which happens often. On the other

hand, people often have more than one cell phone, or they might have a virtual number,

like Google Voice, and they might want to record that number as the primary number to

reach them. All these considerations are in favor of the two-table design.

Lastly, we can evaluate the frequency of each use case and how critical response

time is in each case.

�Application Development and Performance
We are talking about application development, not just the database side of development

because once again, database queries are not executed by themselves—they are parts of

applications. Traditionally, optimizing the individual queries is viewed as “optimization,”

but we are going to take a broader approach.

Quite often, although each database query executed by an application returns

results in less than 0.1 seconds, an application page response time may amount to 10

seconds or more. Technically speaking, optimization of such processes is not a “database

optimization” in its traditional meaning, but there is a lot a database developer can do to

improve the situation. We cover a relevant optimization technique in Chapters 10 and 13.

�Other Stages of the Lifecycle
The life of an application does not end after release in production, and the optimization

is a continuous process as well. Although our goal should be to optimize long-term, it

is hard to predict how exactly the system will evolve. It is a good practice to continually

keep an eye on the system performance, not only on the execution times but on trends.

A query may be very performant, and one might not notice that the execution

time started to increase because it is still within acceptable limits, and no automated

monitoring system will be alerted.

Query execution time may change because data volume increased or the data

distribution changed or execution frequency increased. In addition, we expect new

indexes and other improvements in each new PostgreSQL release, and some of them

may be so significant that they prompt rewriting original queries.

Chapter 1 Why Optimize?

11

Whatever the cause of the change is, no part of any system should be assumed to be

optimized forever.

�PostgreSQL Specifics
Although the principles described in the previous section apply to any relational

database, PostgreSQL, like any other database, has some specifics that should be

considered. If you have some previous experience in optimizing other databases, you

might find a good portion of your knowledge does not apply. Do not consider this a

PostgreSQL deficiency; just remember that PostgreSQL does lots of things differently.

Perhaps the most important feature you should be aware of is that PostgreSQL does

not have optimizer hints. If you previously worked with a database like Oracle, which

does have the option of “hinting” to the optimizer, you might feel helpless when you

are presented with the challenge of optimizing a PostgreSQL query. However, here is

some good news: PostgreSQL does not have hints by design. The PostgreSQL core team

believes in investing in developing a query planner which is capable of choosing the

best execution path without hints. As a result, the PostgreSQL optimization engine is one

of the best among both commercial and open source systems. Many strong database

internal developers have been drawn to Postgres because of the optimizer. In addition,

Postgres has been chosen as the founding source code base for several commercial

databases partly because of the optimizer. With PostgreSQL, it is even more important to

write your SQL statements declaratively, allowing the optimizer to do its job.

Another PostgreSQL feature you should be aware of is the difference between

the execution of parameterized queries and dynamic SQL. Chapter 12 of this book is

dedicated to the use of dynamic SQL, an option which is often overlooked.

With PostgreSQL, it is especially important to be aware of new features and

capabilities added with each release. In recent years, Postgres has had over 180 of them

each year. Many of these features are around optimization. We are not planning to cover

them all; moreover, between the writing of this chapter and its publication, there will

indubitably be more. PostgreSQL has an incredibly rich set of types and indexes, and it

is always worth consulting recent documentation to check whether a feature you wanted

might have been implemented.

More PostgreSQL specifics will be addressed later in the book.

Chapter 1 Why Optimize?

12

�Summary
Writing a database query is different from writing application code using imperative

languages. SQL is a declarative language, which means that we specify the desired

outcome, but do not specify an execution path. Since two queries yielding the same

result may be executed differently, utilizing different resources and taking a different

amount of time, optimization and “thinking like a database” are core parts of SQL

development.

Instead of optimizing queries that are already written, our goal is to write

queries correctly from the start. Ideally, optimization begins at the time of gathering

requirements and designing the database. Then, we can proceed with optimizing both

individual queries and the way the database calls from the application are structured.

But optimization does not end there; in order to keep the system performant, we need to

monitor performance throughout the system lifecycle.

Chapter 1 Why Optimize?

13
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_2

CHAPTER 2

Theory: Yes, We Need It!
In order to write performant queries, a database developer needs to understand how

queries are processed by a database engine. And to do that, we need to know the basics

of relational theory. If the word “theory” sounds too dry, we can call it “the secret life of

a database query.” In this chapter, we will take a look at this “secret life,” explaining what

happens to a database query between the moment you click “Execute” or press Enter

and the moment you see the result set returned from the database.

As discussed in the last chapter, a SQL query specifies what results are needed or

what must be changed in the database but does not specify how exactly the expected

results should be achieved. It is the job of the database engine to convert the source SQL

query into executable code and execute it. This chapter covers the operations used by

the database engine as it interprets a SQL query and their theoretical underpinning.

�Query Processing Overview
In order to produce query results, PostgreSQL performs the following steps:

•	 Compile and transform a SQL statement into an expression

consisting of high-level logical operations, known as a logical plan.

•	 Optimize the logical plan and convert it into an execution plan.

•	 Execute (interpret) the plan and return results.

�Compilation
Compiling a SQL query is similar to compiling code written in an imperative language.

The source code is parsed, and an internal representation is generated. However, the

compilation of SQL statements has two essential differences.

https://doi.org/10.1007/978-1-4842-6885-8_2#DOI

14

First, in an imperative language, the definitions of identifiers are usually included

in the source code, while definitions of objects referenced in SQL queries are mostly

stored in the database. Consequently, the meaning of a query depends on the database

structure: different database servers can interpret the same query differently.

Second, the output of an imperative language compiler is usually (almost)

executable code, such as byte code for a Java virtual machine. In contrast, the output

of a query compiler is an expression consisting of high-level operations that remain

declarative—they do not give any instruction on how to obtain the required output. A

possible order of operations is specified at this point, but not the manner of executing

those operations.

�Optimization and Execution
The instructions on how to execute the query appear at the next phase of query

processing, optimization. An optimizer performs two kinds of transformations: it

replaces logical operations with their execution algorithms and possibly changes the

logical expression structure by changing the order in which logical operations will be

executed.

Neither of these transformations is straightforward; a logical operation can be

computed using different algorithms, and the optimizer tries to choose the best one.

The same query may be represented with several equivalent expressions producing the

same result but requiring a significantly different amount of computational resources

for execution. The optimizer tries to find a logical plan and physical operations

that minimize required resources, including execution time. This search requires

sophisticated algorithms that are out of scope for this book. However, we do cover how

an optimizer estimates the amount of resources needed for physical operations and how

these resources depend on the specifics of how data is stored.

The output of the optimizer is an expression containing physical operations.

This expression is called a (physical) execution plan. For that reason, the PostgreSQL

optimizer is called the query planner.

Finally, the query execution plan is interpreted by the query execution engine,

frequently referred to as the executor in the PostgreSQL community, and output is

returned to the client application.

Let’s take a closer look at each step of query processing and the operations each uses.

Chapter 2 Theory: Yes, We Need It!

15

�Relational, Logical, and Physical Operations
To go deeper into how SQL is understood by the database engine, we must at last

confront this chapter’s titular concern: theory. Many modern database management

systems, including PostgreSQL, are called relational because they are based on relational

theory.1 Despite some bad press (that theory is dry, incomprehensible, or irrelevant),

understanding a small part of relational theory is essential to master optimization—

specifically, relational operations. To be more precise, we will need to understand how

relational operations correspond to logical operations and the query language used in

queries. The previous section covered three steps of query processing at a high level;

this section describes each level in more detail, starting with descriptions of relational

operations.

Some readers may think the material covered here is trivial and find it already
familiar, while others may feel that this is introducing an unnecessary complication.
For now, hang in there and trust that this is building a foundation for what comes
next.

�Relational Operations
The central concept of relational theory is a relation. For our purposes, we view a relation

as a table, although academics may quibble that this elides some subtle but important

differences.

Any relational operation takes one or more relations as its arguments and produces

another relation as its output. This output can be used as an argument for another

relational operation producing yet another relation that, in turn, can become an

argument. This way, we can build complex expressions and represent complex queries.

The possibility to construct complex expressions makes the set of relational operations

(called relational algebra) a powerful query language.

Moreover, expressions in relational algebra can be used to define additional

operations.

The first three operations to be discussed are filter, project, and product.

1�C. J. Date, An Introduction to Database Systems; J. Ullman, Principles of Database Systems,
Second Edition

Chapter 2 Theory: Yes, We Need It!

16

The filter operation (represented in Figure 2-1) is often called selection, and is called

restriction in relational theory. We prefer to use the term filter to avoid confusion with

the SQL SELECT statement, while the term restriction has too deep of mathematical

origins. This operation accepts a single relation as an argument and includes in its

output all tuples (or rows) satisfying the condition specified as a filtering condition, for

example:

SELECT * FROM flight

 WHERE departure_airport='LAG'

 AND (arrival_airport='ORD'

 OR arrival_airport='MDW')

 AND scheduled_departure BETWEEN '2020-05-27' AND

 '2020-05-28'

Here, we start from the relation flight and apply restrictions on the values of

arrival_airport, departure_airport, and scheduled_departure attributes. The

result is a set of records, that is, also a relation.

Figure 2-1.  Filter

Chapter 2 Theory: Yes, We Need It!

17

The project operation (represented in Figure 2-2) similarly takes a single relation as

an argument and removes some attributes (columns). The relational project operation

also removes duplicates from the output, while the SQL project operation does not, for

example:

SELECT city, zip FROM address

when executed in PostgreSQL will return as many rows as there are records in the

address table. But if we perform the relational operation project, it would leave one

record for each zip code. To achieve the same result in PostgreSQL, we would need to

add the distinct keyword:

SELECT DISTINCT city, zip FROM address

Figure 2-2.  Project

Chapter 2 Theory: Yes, We Need It!

18

The product operation (also called Cartesian product, and represented by Figure 2-3)

produces the set of all pairs of rows from its first and second arguments. It is very difficult

to find a real-life, useful example of a product, but let’s imagine we want to find all

possible flights which might exist (from any airport in the world to any airport in the

world). The product operation will look like this:

SELECT d.airport_code AS departure_airport

 a.airport_code AS arrival_airport

FROM airport a,

 airport d

Now that we have covered these primary relational operations, you may feel cheated:

where is the join operation? We know that join operations are essential. The answer

is hidden in plain sight: a join operation can be expressed as a product followed by

filtering. From a relational theory point of view, a join operation is redundant. This is a

perfect example of how a declarative language works; the formal definition is one way

(but not the only way) to find the result of a join. If we compute a Cartesian product of

two relations and then apply a filter, we will obtain the desired result. But hopefully,

no database engine would use this approach on a larger dataset; it could literally take

years! In Chapter 3, we will discuss how joins can be implemented more efficiently than

straightforward computation based on the formal definition.

Relational operations also include grouping, union, intersection, and set difference.

The last piece of relational theory which we need for optimization is equivalence

rules. All relational operations satisfy several equivalence rules, including

•	 Commutativity – JOIN(R,S) = JOIN (S,R)

Figure 2-3.  Product

Chapter 2 Theory: Yes, We Need It!

19

Commutativity means that the order of two relations is not important. If we have two

relations, R and S, then R JOIN S will produce the same result as S JOIN R.

•	 Associativity – JOIN(R, JOIN(S,T) = JOIN(JOIN(R,S), T)

Associativity means that if we have three relations, R, S, and T, we can choose to first

perform R JOIN S and then JOIN T to the result or we can first perform S JOIN T and then

JOIN R to the result of the first JOIN, and the results will be equivalent in both cases.

•	 Distributivity – JOIN(R, UNION(S,T)) = UNION(JOIN(R,S), JOIN(R, T))

Distributivity means that if we are joining a relation with a UNION of two other

relations, the result will be the same as when we perform two joins, R JOIN S and R JOIN

T separately, and then UNION the results.

The equivalence rules listed in the preceding text are just examples among dozens.

Why is it important to know about these rules? For efficiency, it might be better to

execute operations in a different order than they are listed in. There will be multiple

examples of such transformations in subsequent chapters. Equivalences ensure that a

query may be represented with several different expressions, providing the impetus for

an optimizer.

�Logical Operations
The set of logical operations needed for representation of SQL queries includes all

relational operations, but the semantics is different. As noted earlier, the SQL project

operation does not remove duplicates. An additional operation for removal of duplicates

is included.

Other additional operations are needed to represent SQL constructs that cannot

be expressed in relational theory, for example, left, right, and full outer joins produce a

result that is not a relation (but still is a SQL table).

Many equivalence rules are also valid for logical operations. For any relatively

complex query, an optimizer can choose the best from a huge number of expressions.

More information about relational theory can be found in the resources found in the

end notes.

Chapter 2 Theory: Yes, We Need It!

20

�Queries as Expressions: Thinking in Sets
Writing declarative queries is not an easy task for humans. People are more familiar with

actions than with rules or conditions. Thinking in sets2 makes it easier: we can think about

actions on tables and operations on tables, rather than on individual objects (or rows).

All logical operations mentioned earlier can be easily expressed in SQL. These

operations accept tables as arguments, both tables stored in the database and tables that

are the result output of previous operations.

A PostgreSQL expression written as a SQL query will be processed by the optimizer

and will mostly likely be replaced with another, equivalent expression, using the

equivalence rules discussed earlier.

Since the result of any relational operation is a relation, it can be passed directly to

the next relational operation, without the need for intermediate storage. Some database

developers choose to create temporary tables to store intermediate results, but such

practices can produce unneeded computational overhead and block the optimizer.

In more theoretical words, the previous paragraph states that the ability of an

optimizer to produce an efficient execution plan depends on two factors:

•	 A rich set of equivalences provides for a large space of equivalent

expressions.

•	 Relational operations produce no side effects, such as temporary

tables—that is, the only thing produced is the result of the operation.

�Operations and Algorithms
In order to make a query executable, logical operations must be replaced with physical

operations (also called algorithms). In PostgreSQL, this replacement is performed by the

query planner, and the overall execution time of a query depends on which algorithms

are chosen and whether they are chosen correctly.

When we move from the logical to the physical level, mathematical relations are

transformed into tables which are stored in the database, and we need to identify ways

to retrieve data from the tables. Any stored data must be extracted with one of the data

access algorithms discussed in the next chapter. Usually, data access algorithms are

combined with operations consuming their results.

2�Joe Celko, Joe Celko’s Thinking in Sets: Auxiliary, Temporal, and Virtual Tables in SQL (The
Morgan Kaufmann Series in Data Management Systems)

Chapter 2 Theory: Yes, We Need It!

21

More complex logical operations, such as join, union, and grouping, can be

implemented with several alternative algorithms. Sometimes a complex logical

operation is replaced with multiple physical operations.

These algorithms are discussed in detail in Chapter 3.

�Summary
The database engine interprets SQL queries by parsing them into a logical plan,

transforming the results, choosing algorithms to implement the logical plan, and finally

executing the chosen algorithms. The logical operations used by the database engine are

based on operations derived from relational theory, and understanding these is crucial

to thinking like a database.

Chapter 2 Theory: Yes, We Need It!

23
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_3

CHAPTER 3

Even More Theory:
Algorithms
By now, those of you who are diligently reading this book without skipping chapters

might be impatient. We are already in Chapter 3, and we are still talking about theory!

When are we going to get to write code?

Very soon! This chapter covers the last part of query processing, and by the end, we

will have all the pieces we need to understand execution plans.

Chapter 2 covered relational operations and stated that we need physical operations,

or algorithms, to execute queries. Mapping these algorithms to logical operations is

not straightforward; sometimes, a complex logical operation is replaced with multiple

physical operations, or several logical operations are merged into a single physical

operation.

This chapter describes these algorithms, starting from algorithms for data retrieval

and then proceeding to algorithms for more complex operations.

Understanding these algorithms will allow us to go back to execution plans and get a

better grasp of their components. Thus, we will be only one step away from our goal:

learning how to tune queries.

�Algorithm Cost Models
Chapter 1 mentioned several ways of measuring the performance of a system, including

response time, cost, and user satisfaction. These metrics are external to the database,

and although external metrics are the most valuable, they aren’t available to the query

optimizer.

https://doi.org/10.1007/978-1-4842-6885-8_3#DOI

24

Instead, an optimizer uses internal metrics based on the amount of computing

resources needed to execute a query or a single physical operation within a plan. The

most important resources are those that affect execution time, namely, CPU cycles and

I/O accesses (read/write disk blocks). Other resources, such as memory or disk space,

have an indirect impact on execution time; for example, the amount of available memory

will influence the ratio of CPU cycles and I/O accesses. The distribution of memory is

controlled by server parameters and will not be covered in this text.

These two primary metrics, CPU cycles and number of I/O operations, are not

directly comparable. However, in order to compare query execution plans, the optimizer

has to combine them into a single cost function: the lower the cost, the better the plan.

For several decades, the number of I/O operations was the dominating component of

the cost because rotating hard drives are orders of magnitude slower than CPUs. This is

not necessarily the case for modern hardware, so the optimizer must be tuned to use the

correct ratio. This is also controlled via server parameters.

A cost model of a physical operation estimates the resources needed to execute

the operation. Generally, the cost depends on the tables given as arguments to the

operation. To represent cost models, we’ll use simple formulas with the following

notation: for any table or relation R, TR and BR denote the number of rows in the table

and the number of storage blocks occupied by the table, respectively. Additional

notation will be introduced as needed.

The following section discusses physical operations, outlining algorithms and

cost models for each. As the relative speed of CPU and external storage may vary in a

wide range, CPU costs and I/O costs are considered separately. Two logical operations

discussed in the previous chapter, project and filter, are not included. These are

typically combined with the operation that precedes them, because they can be applied

independently to a single row, without depending on other rows in the argument table.

�Data Access Algorithms
To begin executing a query, the database engine must extract stored data. This section

concerns algorithms used to read data from database objects. In practice, these

operations are often combined with their following operation in the query execution

plan. This is advantageous in cases where it is possible to save execution time by

avoiding reading that will be subsequently filtered out.

Chapter 3 Even More Theory: Algorithms

25

The efficiency of such operations depends on the ratio of rows that are retained to

the total rows in the stored table. This ratio is called selectivity. The choice of algorithm

for a given read operation depends on the selectivity of filters that can be simultaneously

applied.

�Storage Structures
It should come as no surprise that data is stored in files that reside on hard drives.

Any file used for database objects is divided in blocks of the same length; by default,

PostgreSQL uses blocks containing 8192 bytes each. A block is the unit that is transferred

between the hard drive and the main memory, and the number of I/O operations

needed to execute any data access is equal to the number of blocks that are being read or

written.

Database objects consist of logical items (table rows, index records, etc.). PostgreSQL

allocates space for these items in blocks. Several small items can reside in the same

block; larger items may spread among several blocks. The generic structure of a block is

shown in Figure 3-1.

Figure 3-1.  The generic block structure in PostgreSQL

Chapter 3 Even More Theory: Algorithms

26

The allocation of items to blocks also depends on the type of the database object.

Table rows are stored using a data structure called a heap: a row can be inserted in any

block that has sufficient free space, without any specific ordering. Other objects (e.g.,

indexes) may use blocks differently.

�Full Scan
In a full scan, the database engine consecutively reads all of the rows in a table and

checks the filtering condition for each row. To estimate the cost of this algorithm, we

need a more detailed description, as shown in the pseudocode in Listing 3-1.

Listing 3-1.  Pseudocode for a full-scan data access algorithm

FOR each block IN a_table LOOP

 read block;

 FOR each row IN block LOOP

 IF filter_condition (row)

 THEN output (row)

 END IF;

 END LOOP;

END LOOP;

The number of I/O accesses is BR; the total number of iterations of the inner loop

is TR. We also need to estimate the cost of operations producing the output. This cost

depends on selectivity, denoted as S, and is equal to S * TR. Putting all these parts

together, we can estimate the cost of a full scan as

c1 * BR + c2 * TR + c3 * S* TR

where constants c1, c2, and c3 represent properties of hardware.

A full scan can be used with any table; additional data structures are not needed.

Other algorithms depend on the existence of indexes on the table, described in the

following.

Chapter 3 Even More Theory: Algorithms

27

�Index-Based Table Access
Note that until we got to physical operations, we did not even mention data access

algorithms. We do not need to “read” relations—they are abstract objects. If we follow

the idea that relations are mapped to tables, there is no other way to retrieve data than to

read the whole table into the main memory. How else will we know which rows of data

contain which values? But relational databases wouldn’t be such a powerful tool for data

processing if we stopped there. All relational databases, including PostgreSQL, allow for

building additional, redundant data structures, making data access dramatically faster

than a simple sequential read.

These additional structures are called indexes.

How indexes are built will be covered later in this chapter; for now, we need to

understand two facts about indexes. First, they are “redundant” database objects; they

do not store any additional information that can’t be found in the source table itself.

Second, indexes provide additional data access paths; they allow us to determine

what values are stored in the rows of a table without actually reading the table—this is

how index-based access works. And, as mentioned previously, this happens entirely

invisibly to the application.

If a filtering condition (or conditions) is encapsulated by an index on a table, the

index can be used to access data from that table. The algorithm extracts a list of pointers

to blocks that contain rows with values satisfying the filtering condition, and only these

blocks are read from the table.

To get a table row from a pointer, the block containing this row must be read. The

underlying data structure of a table is a heap, that is, rows are stored unordered. Their

order is not guaranteed, nor does it correspond to properties of the data. There are

two separate physical operations used by PostgreSQL to retrieve rows via indexes:

index scan and bitmap heap scan. In an index scan, the database engine reads each

entry of the index that satisfies the filter condition and retrieves blocks in index order.

Because the underlying table is a heap, multiple index entries might point to the same

block. To avoid multiple reads of the same block, the bitmap heap scan implemented

in PostgreSQL builds a bitmap indicating the blocks that contain needed rows. Then

all rows in these blocks are filtered. An advantage of the PostgreSQL implementation is

that it makes it easy to use multiple indexes on the same table within the same query, by

applying logical ANDs and ORs on the block bitmaps generated by each index.

Chapter 3 Even More Theory: Algorithms

28

The cost model of this algorithm is much more complex. Informally, it can be

described this way: for small values of selectivity, most likely, all rows satisfying the filtering

conditions will be located in different blocks and, consequently, the cost is proportional to

the number of result rows. For larger values of selectivity, the number of processed blocks

approaches the total number of blocks. In the latter case, the cost becomes higher than the

cost of a full scan because resources are needed to access the index.

�Index-Only Scan
Data access operations do not necessarily return entire rows. If some columns are not

needed for the query, these columns can be skipped as soon as a row passes filtering

conditions (if any). More formally, this means that the logical project operation is

combined with data access. This combination is especially useful if an index used for

filtering contains all columns that are needed for the query.

The algorithm reads data from the index and applies remaining filtering conditions

if necessary. Usually there is no need to access table data, but sometimes additional

checks are needed—this will be discussed in detail in Chapter 5.

The cost model for an index-only scan is similar to the model for index-based table

access except that there’s no need to actually access table data. For small values of

selectivity, the cost is approximately proportional to the number of returned rows. For

large values of selectivity, the algorithm performs an (almost) full scan of the index. The

cost of an index scan is usually lower than the cost of a full table scan because it contains

less data.

�Comparing Data Access Algorithms
The choice of the best data access algorithm depends mostly on query selectivity.

The relationship of cost to selectivity for different data access algorithms is shown

in Figure 3-2. We intentionally omitted all numbers on this chart as they depend on

hardware and table size, while the qualitative comparison does not.

Chapter 3 Even More Theory: Algorithms

29

The line for a full scan is linear and is almost horizontal because the growth is due to

generation of output. Typically, the cost of output generation is negligible in comparison

with other costs for this algorithm.

The line representing the cost of index-based table access starts from (almost) 0 and

grows quickly with the growth of selectivity. The growth slows down for large values of

selectivity, where the cost is significantly higher than the cost of a full scan.

The most interesting point is the intersection of two lines: for smaller values of

selectivity, index-based access is preferable, while a full scan is better for larger values

of selectivity. The position of the intersection depends on hardware and may depend on

the size of the table. For relatively slow rotating drives, index-based access is preferable

only if selectivity does not exceed 2–5%. For SSDs or virtual environments, this value

can be higher. On older spinning disk drives, random block access can be an order of

magnitude slower than sequential access, so the additional overhead of indexes is higher

for a given proportion of rows.

The line representing an index-only scan is the lowest, meaning that this algorithm is

preferable if it is applicable (i.e., all needed columns are in the index).

The query optimizer estimates both the selectivity of a query and the selectivity of

the intersection point for this table and this index. The query shown in Listing 3-2 has a

range filtering condition that selects a significant portion of the table.

Listing 3-2.  A range filtering query executed with a full table scan

SELECT flight_no, departure_airport, arrival_airport

FROM flight

 WHERE scheduled_departure BETWEEN

'2020-05-15' AND '2020-08-31';

Figure 3-2.  Relationship of cost and query selectivity for different data access
algorithms

Chapter 3 Even More Theory: Algorithms

30

In this case, the optimizer chooses a full scan (see Figure 3-3).

However, a smaller range in the same query results in index-based table access. The

query is shown in Listing 3-3 and its execution plan in Figure 3-4.

Listing 3-3.  Range filtering with index-based table access

SELECT flight_no, departure_airport, arrival_airport

FROM flight

 WHERE scheduled_departure BETWEEN

'2020-08-12' AND '2020-08-13';

In reality, the job of a query optimizer is much more complex: filtering conditions

can be supported with multiple indexes with different values of selectivity. Multiple

indexes can be combined to produce a block bitmap with fewer number of blocks to be

scanned. As a result, the number of choices available to the optimizer is significantly

larger than three algorithms.

Thus, there are no winners and losers among data access algorithms. Any algorithm

can become a winner under certain conditions. Further, the choice of an algorithm

depends on storage structures and statistical properties of the data. The database

maintains metadata known as statistics for tables including information on things

Figure 3-3.  Sequential scan

Figure 3-4.  Bitmap index scan (index-based access)

Chapter 3 Even More Theory: Algorithms

31

such as column cardinality, sparseness, and so on. Usually these statistics are not

known during application development and may change throughout the application

lifecycle. Therefore, the declarative nature of the query language is essential for system

performance. More specifically, as the table statistics change or if other costing factors

are adjusted, a different execution plan can be chosen for the same query.

�Index Structures
This section begins with an abstract definition of what kind of storage structure can be

called an index; briefly covers the most common index structures, such as trees and hash

indexes; and touches on some PostgreSQL specifics.

We show how to estimate the scale of improvement for different types of indexes and

how to detect cases when index usage won’t provide any performance benefits.

�What Is an Index?
One might assume that any person who works with databases knows what an index

is. Alas, a surprising number of people, including database developers and report

writers and, in some cases, even DBAs, use indexes, even create indexes, with only a

superficial understanding of what indexes are and how they are structured. To avoid

misunderstanding, we’ll begin with a definition of what we mean by an index.

There are many types of indexes, so it is foolhardy to search for structural
properties to recognize an index. Instead, we define an index based on its usage. A
data structure is called an index if it is:

• A redundant data structure

• I nvisible to the application

•  Designed to speed up data selection based on certain criteria

Chapter 3 Even More Theory: Algorithms

32

The redundancy means that an index can be dropped without any data loss and can

be reconstructed from data stored elsewhere (in the tables, of course). Invisibility means

that an application cannot detect if an index is present or absent. That is, any query

produces the same results with or without an index. And finally, an index is created

with the hope (or confidence) that it improves performance of a specific query or (even

better!) several queries.

The performance improvement does not come for free. As an index is redundant,

it must be updated when table data are updated. That produces some overhead for

update operations that is sometimes not negligible. In particular, PostgreSQL indexes

may have an outsized impact on vacuum operations. However, many database textbooks

overestimate this overhead. Modern high-performance DBMSs use algorithms that

reduce the cost of index updates, so usually, it is beneficial to create several indexes on a

table.

Although index structures can differ significantly among index types, the speed-up

is achieved due to a fast check of some filtering conditions specified in a query. Such

filtering conditions specify certain restrictions on table attributes. Figure 3-5 shows the

structure of the most common indexes.

The right part of Figure 3-5 shows a table, and the left represents an index that can

be viewed as a special kind of a table. Each row of the index consists of an index key

and a pointer to a table row. The value of an index key usually is equal to the value of a

table attribute. The example in Figure 3-5 has airport code as its value; hence, this index

supports search by airport code.

A column can have the same value in multiple rows of a table. If this column is

indexed, the index must contain pointers to all rows containing this value of an index

key. In PostgreSQL, an index contains multiple records, that is, the index key is repeated

for every pointer to a table row.

Figure 3-5 explains how to reach the corresponding table row when an index record

is located; however, it does not explain why an index row can be found much faster than

a table row. Indeed, this depends on how the index is structured, and this is exactly what

is discussed in the following subsections.

Chapter 3 Even More Theory: Algorithms

33

�B-Tree Indexes
The most common structure of an index is a B-tree. The structure of a B-tree is shown in

Figure 3-6; airport codes are the index keys. The tree consists of hierarchically organized

nodes that are associated with blocks stored on a disk.

Figure 3-5.  A structure of an index

Chapter 3 Even More Theory: Algorithms

34

The leaf nodes (shown in the bottom row in Figure 3-6) contain index records exactly

like those in Figure 3-5; these records contain an index key and a pointer to a table row.

Non-leaf nodes (located at all levels except the bottom) contain records that consist of

the smallest key (in Figure 3-5, the lowest alphanumeric value) in a block located at the

next level and a pointer to this block. All records in all blocks are ordered, and at least

half of the block capacity is used in every block.

Any search for a key K starts from the root node of the B-tree. During the block

lookup, the largest key P not exceeding K is found, and then the search continues in the

block pointed to by the pointer associated with P until the leaf node is reached, where a

pointer refers to table rows. The number of accessed nodes is equal to the depth of the

tree. Of course, the key K is not necessarily stored in the index, but the search finds either

the key or the position where it could be located.

B-trees also support range search (expressed as a between operation in SQL). As

soon as the lower end of the range is located, all index keys in the range are obtained

with a sequential scan of leaf nodes until the upper end of the range is reached. A scan

of leaf nodes is also needed to obtain all pointers if the index is not unique (i.e., an index

value may correspond to more than one row).

Figure 3-6.  An example of a B-tree

Chapter 3 Even More Theory: Algorithms

35

�Why Are B-Trees Used So Often?
We know from computer science that no lookup algorithm can find an index key

among N different keys faster than in log N time (measured in CPU instructions). This

performance is achieved with binary search on an ordered list or with binary trees.

However, the cost of updates (such as insertions of new keys) can be very high for

both ordered lists and binary trees: an insertion of a single record can cause complete

restructuring. This makes both structures unusable for external storage.

In contrast, B-trees can be modified without significant overhead. When a record is

inserted, the restructuring is limited to one block. If the block capacity is exceeded, then

the block is split into two blocks, and the update is propagated to upper levels. In the

worst case, the number of modified blocks cannot exceed the depth of the tree.

To estimate the cost of a B-tree search, we need to calculate the depth. If each block

contains f pointers, then the number of blocks at each level is f times larger than in the

previous one. Consequently, the depth of a tree containing N records is log N / log

f. This formula gives the number of disk accesses needed for a single key search. The

number of CPU instructions is limited for each block, and usually binary search is used

inside a block. Consequently, the CPU cost is only slightly worse than the best that is

theoretically possible. Block size in PostgreSQL is 8 Kb. An 8 Kb block can fit dozens of

index records; consequently, an index with six to seven levels can accommodate billions

of index records.

In PostgreSQL, a B-tree index can be created for any ordinal data type; that is, for any

two distinct values of the data type, one value is less than the other. This includes user-

defined types.

�Bitmaps
A bitmap is an auxiliary data structure that is used internally in PostgreSQL for several

different purposes. Bitmaps can be considered a kind of index: they are built to facilitate

access to other data structures containing several data blocks. Typically, bitmaps are

used to compactly represent properties of table data.

Usually a bitmap contains one bit for each block (8192 bytes). The value of the bit is

1 if the block has a property and 0 if it hasn’t. Figure 3-7 shows how bitmaps are used to

access data through multiple indexes

Chapter 3 Even More Theory: Algorithms

36

The database engine starts by scanning both indexes and building a bitmap for

each that indicates which data blocks contain table rows with requested values. These

bitmaps are shown in the rows labeled Index 1 and Index 2. As soon as these bitmaps

are created, the engine performs a bitwise logical AND operation to find which blocks

contain requested values for both selection criteria. Finally, data blocks corresponding

to 1s in the final bitmap are scanned. This means that blocks that satisfy only one of the

two criteria in a logical AND never have to be accessed.

Note that requested values may reside in different rows in the same block. The

bitmap ensures that relevant rows will not be missed, but does not guarantee that all

scanned blocks contain a relevant row.

Bitmaps are very compact; however, bitmaps may occupy several blocks for very

large tables. To speed up processing such bitmaps, PostgreSQL builds a hierarchical

structure: an upper level indicates the blocks of the lower-level bitmap to be processed.

�Other Kinds of Indexes
PostgreSQL offers a variety of index structures supporting several data types and several

classes of search conditions.

A hash index uses a hash function to calculate the address of an index block

containing an index key. This type of index has better performance than a B-tree index

for equality conditions. However, this index is completely useless for range queries. The

cost estimation for hash index search does not depend on index size (in contrast with

logarithmic dependency for B-trees).

An R-tree index supports a search on spatial data. An index key for an R-tree always

represents a rectangle in a multidimensional space. A search returns all objects having a

Figure 3-7.  Using bitmaps for table access through multiple indexes

Chapter 3 Even More Theory: Algorithms

37

non-empty intersection with the query rectangle. The structure of an R-tree is similar to

the structure of a B-tree; however, splitting overflowed nodes is much more complicated.

R-tree indexes are efficient for a small number of dimensions (typically, two to three).

Other types of indexes available in PostgreSQL are useful for full text search, search

in very large tables, and much more. Additional details on these topics are covered in

Chapter 14. Any of these indexes can be relatively easily configured for user-defined data

types. However, we do not discuss indexes on user-defined types in this book.

�Combining Relations
The real power of relational theory and SQL databases relies on combining data from

several tables.

In this section, we describe algorithms for operations that combine data, including

Cartesian product, joins, union, intersection, and even grouping. Surprisingly, most of

these operations can be implemented with almost identical algorithms. For this reason,

we discuss algorithms rather than the operations they implement. We will use the names

R and S for input tables when describing these algorithms.

�Nested Loops
The first algorithm is for a Cartesian product, that is, the set of all pairs of rows from the

input tables. The easy way to calculate the product is to loop over table R and, for each row

of R, loop over S. The pseudocode for this simple algorithm is presented in Listing 3-4, and

the graphical representation of the algorithm is shown in Figure 3-8.

Listing 3-4.  Pseudocode for nested loops

FOR row1 IN table1 LOOP

 FOR row2 IN table2 LOOP

 INSERT output row

 END LOOP

END LOOP

The time needed for this simple algorithm is proportional to the product of the sizes

of the input tables: rows(R) * rows(S).

Chapter 3 Even More Theory: Algorithms

38

A remarkable theoretical fact states that any algorithm that calculates a Cartesian

product cannot perform better; that is, any algorithm’s cost will be proportional to the

product of the sizes of its inputs or higher. Of course, some variations of this algorithm

may perform better than others, but the cost remains proportional to the product.

Slight modifications of the nested loop algorithm can calculate nearly any

logical operation that combines data from two tables. The pseudocode in Listing 3-5

implements the join operation.

Listing 3-5.  Nested loop algorithm for a join operation

FOR row1 IN table1 LOOP

 FOR row2 IN table2 LOOP

 IF match(row1,row2) THEN

 INSERT output row

 END IF

 END LOOP

END LOOP

Observe that a nested loop join is a straightforward implementation of the abstract

definition of a join, as a Cartesian product followed by a filter. As the nested loop join

processes all pairs of rows from the input, the cost remains the same, although the size of

the output is smaller than in the case of a Cartesian product.

Figure 3-8.  Nested loop algorithm

Chapter 3 Even More Theory: Algorithms

39

In practice, one or both input tables are stored tables, rather than the result of preceding

operations. If this is the case, a join algorithm can be combined with data access.

Although the processing cost remains the same, variations of the nested loop

algorithm combined with a full scan execute nested loops on blocks of input tables and

another level of nested loops on rows contained in these blocks. More sophisticated

algorithms minimize the number of disk accesses by loading multiple blocks of the first

table (outer loop) and processing all rows of these blocks with a single pass over S.

The abovementioned algorithms can work with any join conditions. However, the

majority of joins we will ever need to execute are natural joins, that is, the join condition

requires that some attributes of R are equal to the corresponding attributes of S.

The nested loop join algorithm can also be combined with index-based data access

if the table S has an index on attributes used in the join condition. For natural joins, the

inner loop of the index-based nested loop algorithm shrinks to few rows of S for each row

of R. The inner loop can even vanish completely if the index on S is unique, for example,

the join attribute of S is its primary key.

The index-based nested loop algorithm is usually the best choice if the number of

rows in R is also small. However, index-based access becomes inefficient if the number of

rows to be processed becomes high, as discussed in Chapter 2.

It is possible to formally prove that there does not exist an algorithm more

performant for Cartesian products and joins with arbitrary conditions than nested

loops. However, the important question is whether there exists a better algorithm for any

specific types of join conditions. The next section shows this is true for natural joins.

�Hash-Based Algorithms
The output of a natural join consists of pairs of rows from R and S that have equal values

on the join attributes. The idea of the hash join algorithm is simple: if the values are

equal, then the hash values are also equal.

The algorithm partitions both input tables according to values of the hash function

and then joins rows in each bucket independently. The schema of this algorithm is

shown in Figure 3-9.

Chapter 3 Even More Theory: Algorithms

40

The basic version of the hash join algorithm includes two phases:

	 1.	 During the build phase, all tuples of R are stored in buckets

according to the values of the hash function.

	 2.	 In the probe phase, each row of table S is sent to an appropriate

bucket. If matching rows of table R are in the bucket, output rows

are produced.

The easiest way to find matching rows in the bucket is to use nested loops (actually

loop over all rows in the bucket for each row of S). PostgreSQL uses a better matching

algorithm based on Bloom filtering.

The two phases of the hash-based algorithm are shown as separate physical

operations in the execution plan.

The cost of a hash join can be approximately estimated with the following formula,

where JA is the join attribute:

cost(hash,R,S)=size(R)+size(S)+size(R)*size(S)/size(JA)

The first and second terms in this formula approximate the cost of a single pass over

all the rows of R and S. The last term represents the size of the join result to be produced.

Of course, the cost of output is the same for all join algorithms, but we did not need to

include it in the nested loop algorithm cost estimation because it is smaller than the cost

of nested loops.

Figure 3-9.  Hash join algorithm

Chapter 3 Even More Theory: Algorithms

41

This formula shows that a hash-based algorithm is significantly better than nested

loops for large tables and a large number of different values of the join attribute. For

example, if the join attribute is unique in one of the input tables, then the last term will

be equal to just the size of the other table.

The basic hash join algorithm works if all buckets produced at the build phase can fit

into main memory. Another variation, called hybrid hash join, joins tables that cannot

fit into main memory. The hybrid hash join partitions both tables so that partitions of

one table can fit and then executes a basic algorithm for each pair of corresponding

partitions. The cost of a hybrid hash join is higher because partitions are stored

temporarily on the hard disk and both tables are scanned twice. However, the cost is still

proportional to the sum of the sizes, rather than the product.

�Sort-Merge Algorithm
Another algorithm (called sort-merge) for natural joins is schematically shown in

Figure 3-10.

The first phase of the algorithm sorts both input tables in ascending order by the join

attribute.

When the input tables are properly ordered, the merge phase scans both input tables

once and, for each value of the join attribute, calculates the Cartesian product of rows

containing this value of the join attribute. Note that this product is a necessary part of the

join result. New rows with the same value attribute cannot appear in the remaining part

of input because the input tables are ordered.

Figure 3-10.  Sort-merge algorithm

Chapter 3 Even More Theory: Algorithms

42

The cost of the merge phase can be expressed with the same formula as for a hash

join, that is, proportional to the sum of sizes of input and output. The actual cost is

somewhat lower because there is no need for the build phase.

The cost of sorting can be estimated with the following formula:

Size(R)*log(size(R)) + size(s)*log(size(S))

The sort-merge algorithm is especially efficient if one of both input tables is already

sorted. This may happen in a series of joins with the same join attribute.

�Comparing Algorithms
Just as with data access algorithms, there are no default winners or losers. Any of the

algorithms can be the best, depending on the circumstances. The nested loop algorithm

is more universal and is the best for small index-based joins; a sort-merge and hash are

more efficient for large tables, when applicable.

�Summary
Having covered cost models for algorithms, data access algorithms, the purpose and

structure of indexes, and algorithms for more complex operations, such as joins, we

finally have enough building blocks to move on to the full product of the query planner—

an execution plan.

The next chapter covers how to read and understand execution plans and improve

them.

Chapter 3 Even More Theory: Algorithms

43
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_4

CHAPTER 4

Understanding Execution
Plans
At long last, it’s time to look at execution plans. Before we begin, let’s review our

theoretical foundations. Chapter 3 explained how logical operations are mapped to their

physical execution, covering data retrieval and more complex operations.

In this chapter, understanding these algorithms will allow us to interpret execution

plans and get a better grasp of their components.

�Putting Everything Together: How an Optimizer
Builds an Execution Plan
The output of the PostgreSQL optimizer is an execution plan. While a SELECT defines

what needs to be done, an execution plan defines how to execute SQL operations.

The job of the optimizer is to build the best possible physical plan that implements a

given logical plan. This is a complex process: sometimes, a complex logical operation is

replaced with multiple physical operations, or several logical operations are merged into

a single physical operation.

To build a plan, the optimizer uses transformation rules, heuristics, and cost-based

optimization algorithms. A rule converts a plan into another plan with better cost.

For example, filter and project operations reduce the size of the dataset and therefore

should be executed as early as possible; a rule might reorder operations so that filter and

project operations are executed sooner. An optimization algorithm chooses the plan with

the lowest cost estimate. However, the number of possible plans (called the plan space)

for a query containing several operations is huge—far too large for the algorithm to

consider every single possible plan. After all, time spent choosing the correct algorithm

contributes to the total execution time of the query. Heuristics are used to reduce the

number of plans evaluated by the optimizer.

https://doi.org/10.1007/978-1-4842-6885-8_4#DOI

44

�Reading Execution Plans
To paraphrase Elvis, a little less abstraction, a little more action, please. We’re ready to

see execution plans in the wild. The query in Listing 4-1 selects all flights that departed

from JFK and arrived at ORD with a scheduled departure on August 14, 2020. For each

flight, the total number of passengers is calculated.

Listing 4-1.  A query selecting the number of passengers on specific flights

SELECT f.flight_no,

 f.actual_departure,

 count(passenger_id) passengers

 FROM flight f

 JOIN booking_leg bl ON bl.flight_id = f.flight_id

 JOIN passenger p ON p.booking_id=bl.booking_id

 WHERE f.departure_airport = 'JFK'

 AND f.arrival_airport = 'ORD'

 AND f.actual_departure BETWEEN

 '2020-08-14' and '2020-08-15'

GROUP BY f.flight_id, f.actual_departure;

A logical plan for this query is shown in Listing 4-2.

Listing 4-2.  The logical plan for the query in Listing 4-1

project f.flight_no, f.actual_departure, count(p.passenger_id)[] (

 group [f.flight_no, f.actual_departure] (

 filter [f.departure_airport = 'JFK'] (

 filter [f.arrival_airport = 'ORD'] (

 filter [f.actual_departure >='2020-08-14'](

 filter [f.actual_departure <='2020-08-15'] (

 join [bl.flight_id = f.flight_id] (

 access (flights f),

 join(bl.booking_id=p.booking_id (

 access (booking_leg bl),

 access (passenger p)

))))))))

Chapter 4 Understanding Execution Plans

45

The logical plan shows which logical operations should be executed, but it does not

provide details on how they will be executed. The query planner produces an execution

plan for the query, shown in Figure 4-1.

To obtain the execution plan for a query, the EXPLAIN command is run. This

command takes any grammatically correct SQL statement as a parameter and returns its

execution plan.

We encourage you to run the code examples throughout this book and examine the
execution plans. However, a word of caution: choosing the correct execution plan
is a nondeterministic process. The plans that your local database produces might
differ slightly from the plans shown in this book; even when the plans are identical,
execution times may vary with differences in hardware and configuration.

Figure 4-1.  Execution plan

Chapter 4 Understanding Execution Plans

46

Hopefully, looking at Figure 4-1, the value of the preceding chapters is evident—each

line represents an operation previously covered, so it’s clear what’s going on under the

hood. Note that, in addition to the names of the algorithms, each line of the execution

plan includes several mysterious numbers in parentheses. This mystery can be easily

resolved by recalling Chapter 3, which discussed how the costs of different algorithms

are calculated.

Specifically, a plan contains estimations of costs, expected number of rows in the

output, and expected average width of the output rows. All these values are calculated

from the database statistics. The values of costs include the accumulated cost of all

pervious operations. There are two cost estimations for each operation: the first shows

the cost needed to produce the first row of output, while the second estimates the cost

of the complete result. Later in this chapter, we will explain how the costs are estimated.

Estimates for the number and width of output rows are needed to estimate the cost of an

operation that consumes the output.

It’s important to emphasize that all these numbers are approximate. The actual

values obtained during execution may differ. If you suspect that the optimizer chose a

plan that is not optimal, you might need to look at these estimates. Usually, the error is

small for stored tables, but it inevitably grows after each operation.

An execution plan is presented as a tree of physical operations. In this tree, nodes

represent operations, and arrows point to operands. Looking at Figure 4-1, it might be

not quite clear why it represents a tree. There are multiple tools, including pgAdmin,

which can generate a graphical representation of an execution plan. Figure 4-2 illustrates

possible output. In fact, this figure represents the execution plan for Listing 4-4, which

we will discuss later in this chapter.

Chapter 4 Understanding Execution Plans

47

For more complex queries, the graphical representation of the execution plan may

be less helpful—see the graphical representation of the execution plan for Listing 4-1 in

Figure 4-3.

In such cases, a more compact graphical representation could be more useful, like

the one presented in Figure 4-4.

Figure 4-2.  Graphical representation of the simple execution plan (Listing 4-4)

Figure 4-3.  Graphical representation of the execution plan for Listing 4-1

Chapter 4 Understanding Execution Plans

48

Now, let’s get back to the actual output of the EXPLAIN command, shown in

Figure 4-1. It shows each node of the tree on a separate line starting with ->, with the

depth of the node represented by the offset. Subtrees are placed after their parent node.

Some operations are represented with two lines.

The execution of a plan starts from the leaves and ends at the root. This means that

the operation that is executed first will be on the line that has the rightmost offset. Of

course, a plan may contain several leaf nodes that are executed independently. As soon

as an operation produces an output row, this row is pushed to the next operation. Thus,

there is no need to store intermediate results between operations.

In Figure 4-1, execution starts from the last line, accessing the table flight using the

index on the departure_airport column. Since several filters are applied to the table

and only one of the filtering conditions is supported by the index, PostgreSQL performs

an index bitmap scan (covered in Chapter 2). The engine accesses the index and

compiles the list of blocks that could contain needed records. Then, it reads the actual

blocks from the database using bitmap heap scan, and for each record extracted from

the database, it rechecks that rows found via the index are current and applies filter

operations for additional conditions for which we do not have indexes: arrival_airport

and scheduled_departure.

Figure 4-4.  Alternative graphical representation of the same execution plan

Chapter 4 Understanding Execution Plans

49

The result is joined with the table booking_leg. PostgreSQL uses a sequential read to

access this table and a hash join algorithm on condition bl.flight_id = f.flight_id.

Then, the table passenger is accessed via a sequential scan (since it doesn’t have

any indexes), and once again, the hash join algorithm is used on the p.booking_id =

bl.booking_id condition.

The last operation to be executed is grouping and calculating the aggregate function

sum(). After sorting, it appears that only one flight satisfied the search criteria. Thus,

there is no need to utilize any algorithms for grouping, and the count of all passengers on

that flight is performed.

The next section addresses what else can be gleaned from the execution plan and

why it is important.

�Understanding Execution Plans
Often, when we explain how to read execution plans in the manner described in the

preceding text, our audience feels overwhelmed by the size of the execution plan for

a relatively simple query, especially given that a more complex query can produce

an execution plan of 100+ lines. Even the plan presented in Figure 4-1 might require

some time to read. Sometimes, even when each and every single line of a plan can be

interpreted, the question remains: “I have a query, and it is slow, and you tell me to look

at the execution plan, and it is 100+ lines long. What should I do? Where should I start?”

The good news is that most of the time, you do not need to read the whole plan to

understand what exactly makes the execution slow. In this section, we will learn more

about interpreting execution plans.

�What Is Going On During Optimization?
As mentioned in Chapter 2, the optimizer performs two kinds of transformations: it

replaces logical operations with corresponding physical execution algorithms and

(possibly) changes the logical expression structure by changing the order in which

logical operations are executed.

Chapter 4 Understanding Execution Plans

50

The first step is query rewriting. In this step, the PostgreSQL optimizer enhances the

code by eliminating subqueries, substituting views with their textual presentation, and

so on. It is essential to keep in mind that this step always happens. When the concept of

a view is introduced, SQL textbooks often suggest that “views can be used like tables,”

which is misleading. In most cases, views are substituted by their source code. However,

“most of the time” does not mean “always.” Chapter 7 discusses views, how the optimizer

processes them, and their potential performance pitfalls.

The next step after query rewrite is what we usually call optimization, which includes

the following:

•	 Determining the possible orders of operations

•	 Determining the possible execution algorithms for each operation

•	 Comparing the costs of different plans

•	 Selecting the optimal execution plan

Many SQL developers presume that PostgreSQL executes queries accessing (and

joining) tables in the same order they appear in the FROM clause.

However, the order of joins is not preserved most of the time—the database does not

expect these instructions. In subsequent chapters, we will discuss in more detail what

influences the order of operations. For now, let’s consider how to evaluate an execution

plan.

�Why Are There So Many Execution Plans to Choose From?
We’ve noted several times that one SQL statement can be executed in many ways, using

different execution plans. In fact, there could be hundreds, thousands, or even millions

of possible ways to execute one statement! This chapter gives some sense of where these

numbers are coming from. Plans may vary in

•	 Order of operations

•	 Algorithms used for joins and other operations (e.g., nested loops,

hash join)

•	 Data retrieval methods (e.g., indexes usage, full scan)

Chapter 4 Understanding Execution Plans

51

Formally speaking, the optimizer finds the best plan by computing the costs for

all possible plans and then comparing the costs. But since we know that there are

three basic algorithms to execute each join, even a simple SELECT on three tables can

generate nine possible execution plans; given the 12 possible join orders, there are 108

possible plans (3*3*12=108). If we then consider all the potential data retrieval methods

for each table, there are several thousand plans to compare.

Fortunately, PostgreSQL does not check every possible plan.

The cost-based optimization algorithm relies on the optimality principle: a sub-plan

of an optimal plan is optimal for the corresponding subquery. A plan can be considered

a composition of multiple component pieces, or sub-plans. A sub-plan is a plan that

includes any operations of the original plan as a root node and all its descendant nodes,

that is, all operations that contribute to the input arguments for the operation chosen as

a root of the sub-plan. The optimizer builds the optimal plan starting from the smallest

sub-plans (i.e., data access to single tables) and gradually produces more complex

sub-plans, including more operations with only a few checks of cost on each step. The

algorithm is exhaustive in the sense that the optimal plan will be built, despite the fact

that a significant portion of possible plans will not be tried.

For example, in the preceding example, once the optimizer selects the correct data

retrieval algorithm for one of the three tables, it will not consider any plans that do not

use this optimal algorithm.

Still, the number of produced sub-plans can be huge. Heuristics cut out parts of

the plan space that are unlikely to contain optimal plans, reducing the number of plans

examined by the optimization algorithm. While this feature helps the optimizer select an

execution plan more quickly, it can also affect performance negatively: there is a risk that

the best execution plan will be accidentally dropped before the cost comparison.

Although heuristics may cut out the optimal plan, the algorithm builds the best of

the remaining plans.

Now, let’s take a closer look at how these costs are calculated.

�How Are Execution Costs Calculated?
In Chapter 3, we discussed ways to measure the performance of database algorithms. We

talked about internal metrics and established that the costs of algorithms are measured

in the number of I/O operations and CPU cycles. Now, we are going to apply this theory

to practice.

Chapter 4 Understanding Execution Plans

52

The cost of each execution plan depends on

•	 Cost formulas of algorithms used in the plan

•	 Statistical data on tables and indexes, including distribution of values

•	 System settings (parameters and preferences), such as join_

collapse_limit or cpu_index_tuple_cost

Chapter 3 covered the formulas to calculate cost for each algorithm. Each of these

formulas depends on the size of the table(s) used, as well as on the expected size of the

result set. And finally, users can alter the default cost for operations with system settings.

The choice of an optimal plan can be implicitly controlled by changes in the optimizer

parameters that are used during the cost estimation. Thus, all three pieces of information

factor into the calculation of the cost of execution plans.

This is counterintuitive; often, SQL developers have the subconscious expectation

that the “best possible plan” exists and, moreover, that it is the same for all “similar”

queries. However, due to the factors listed in the preceding list, the optimizer may

produce different execution plans for nearly identical SQL queries or even for the

same query. How this can happen? The optimizer chooses the plan with the best cost

estimation. However, there may be several plans with only slightly different costs. The

cost estimation depends on the database statistics that are gathered from random

samples. The statistics gathered yesterday may slightly differ from those gathered today.

Due to these slight changes, a plan that was the best yesterday can become second

best today. Of course, statistics may also change as a result of insertions, updates, and

deletions.

Let’s look at some examples. Listings 4-3 and 4-4 present two queries, which appear

almost identical. The only difference is in the filtering value. However, the execution

plans presented in Figures 4-5 and 4-6 are markedly different.

Listing 4-3.  Simple SELECT with one condition

SELECT flight_id, scheduled_departure

 FROM flight f

 JOIN airport a

 ON departure_airport=airport_code

 AND iso_country='US'

Chapter 4 Understanding Execution Plans

53

Listing 4-4.  The same SELECT as Listing 4-3, with a different search value

SELECT flight_id, scheduled_departure

 FROM flight f

 JOIN airport a

ON departure_airport=airport_code

AND iso_country='CZ'

What causes this difference? Figure 4-7 gives a clue: The first query selects a

significant portion of all airports, and using an index won’t improve performance. The

second query, by contrast, will select only one airport, and in this case index-based

access will be more efficient.

Figure 4-5.  Execution plan for Listing 4-3

Figure 4-6.  Execution plan for Listing 4-4

Chapter 4 Understanding Execution Plans

54

�How Can the Optimizer Be Led Astray?
But how can we be sure that the plan the optimizer has selected is indeed the best

possible plan? Is it even possible to find the best execution plan? We spent quite a bit

of time explaining that the optimizer does the best possible job if we leave it alone and

don’t interfere. If that’s true, what is the rest of the book about? The reality is that no

optimizer is perfect, even the PostgreSQL query planner.

First, while the optimization algorithm is mathematically correct—it finds the plan

with the best cost estimation—those cost estimates are intrinsically imprecise. The

simple formulas explained in Chapter 3 are valid only for a uniform distribution of

data, but a uniform distribution seldom occurs in real databases. In reality, optimizers

use more complex formulas, but these are also imperfect approximations of reality. As

George Box said, “All models are wrong, but some are useful.”

Second, database systems, including PostgreSQL, maintain detailed statistics of

stored data (usually in histograms). Histograms significantly improve estimates of

selectivity. Unfortunately, histograms cannot be used for intermediate results. Errors

in estimating intermediate results are the primary reason why the optimizer may fail to

produce an optimal plan.

Figure 4-7.  A histogram of value distribution

Chapter 4 Understanding Execution Plans

55

Third, an optimal pan may be cut out with heuristics, or a query might be

too complex for an exact optimization algorithm. In the latter case, approximate

optimization algorithms are used.

In all these cases, some human intervention is required, and that’s what this book is

about! Now that we know what’s going on during optimization, we can fix it if something

doesn’t work quite right.

In spite of these potential hiccups, optimizers work well in the majority of cases.

However, humans observe the behavior of the system and therefore have more

information available than the optimizer and can use this additional knowledge to help

the optimizer do its job even better.

�Summary
This chapter covered execution plans: how they are generated and how to read and

understand them. We also learned about cost-based optimization and factors that

impact the cost of execution plans.

Although cost-based optimizers usually do a good job, sometimes they need

help, and now we are well equipped to provide it. Subsequent chapters will go over

multiple examples of queries that require some human intervention to achieve better

performance.

Chapter 4 Understanding Execution Plans

57
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_5

CHAPTER 5

Short Queries and Indexes
Chapter 4 took a deep dive into understanding execution plans. Now, we turn to what to

do once the EXPLAIN command has been run and an execution plan is returned. Where

do we start, if our goal is to improve the query execution plan?

The first step is to identify whether the query is a short query or a long query. This

chapter focuses on optimizing short queries. You will learn how to identify short queries,

what optimization technique to use with short queries, and why indexes are critically

important for this query type. We also discuss different types of indexes available in

PostgreSQL and when each index type can be used.

Before proceeding with this chapter, let’s create several additional indexes:

SET search_path TO postgres_air;

CREATE INDEX flight_arrival_airport ON flight (arrival_airport);

CREATE INDEX booking_leg_flight_id ON booking_leg (flight_id);

CREATE INDEX flight_actual_departure ON flight (actual_departure);

CREATE INDEX boarding_pass_booking_leg_id ON postgres_air.boarding_

pass (booking_leg_id);

�Which Queries Are Considered Short?
The term short query has come up multiple times, without a formal definition. What is

a short query? First, it has nothing to do with the length of the SQL query. Take a look at

the two queries presented in Listings 5-1 and 5-2, for example. The query in Listing 5-1

contains only four lines of code, but it represents a long query. Listing 5-2 contains many

more lines but is a short query.

https://doi.org/10.1007/978-1-4842-6885-8_5#DOI

58

Listing 5-1.  Long query example

SELECT d.airport_code AS departure_airport,

 a.airport_code AS arrival_airport

FROM airport a,

 airport d

Listing 5-2.  Short query example

SELECT f.flight_no,

 f.scheduled_departure,

 boarding_time,

 p.last_name,

 p.first_name,

 bp.update_ts as pass_issued,

 ff.level

 FROM flight f

 JOIN booking_leg bl ON bl.flight_id = f.flight_id

 JOIN passenger p ON p.booking_id=bl.booking_id

 JOIN account a on a.account_id =p.account_id

 JOIN boarding_pass bp on bp.passenger_id=p.passenger_id

 LEFT OUTER JOIN frequent_flyer ff on ff.frequent_flyer_id=a.frequent_

flyer_id

 WHERE f.departure_airport = 'JFK'

 AND f.arrival_airport = 'ORD'

 AND f.scheduled_departure BETWEEN

 '2020-08-05' AND '2020-08-07'

Second, it is not defined by the size of the result set. The query in Listing 5-3 yields

only one line; however, it is a long query.

Listing 5-3.  Long query that produces one row

SELECT avg(flight_length),

avg (passengers)

FROM (SELECT flight_no,

scheduled_arrival -scheduled_departure AS flight_length,

count(passenger_id) passengers

Chapter 5 Short Queries and Indexes

59

 FROM flight f

 JOIN booking_leg bl ON bl.flight_id = f.flight_id

 JOIN passenger p ON p.booking_id=bl.booking_id

 GROUP BY 1,2) a

So what is a short query?

A query is short when the number of rows needed to compute its output is small,
no matter how large the involved tables are. Short queries may read every row
from small tables but read only a small percentage of rows from large tables.

How small is a “small percentage”? Unsurprisingly, it depends on system parameters,

application specifics, actual table sizes, and possibly other factors. Most of the time,

however, it means less than 10%. Later in this chapter, a case study will show how to

identify this borderline.

By contrast, the output of a long query depends on a significant fraction of rows in a

large table or several large tables.

Our taxonomy of queries is similar to the commonly accepted distinction

between OLTP and OLAP queries. All OLTP queries are short. However, many modern

applications require queries that return hundreds of rows but still are short.

Why is Listing 5-1 a long query? Because all the rows from the airport table are

required to obtain the result. Why is Listing 5-2 a short query? Because data from just

a couple of flights is needed, out of about 200,000. Why isn’t Listing 5-3 short? Because

data from every booking in the system is required to calculate the results.

When we optimize a short query, we know that in the end, we select a relatively

small number of records. This means that the optimization goal is to reduce the size of

the result set as early as possible. If the most restrictive selection criterion is applied in

the first steps of query execution, further sorting, grouping, and even joins will be less

expensive. Looking at the execution plan, there should be no table scans of large tables.

For small tables, a full scan may still work, as shown in Figure 3-2 in Chapter 3.

�Choosing Selection Criteria
It might seem easy to make sure that the most restrictive selection criteria are applied

first; however, this isn’t always straightforward. To acknowledge the obvious, this chapter

is called “Short Queries and Indexes” for a reason: you can't select a subset of records

Chapter 5 Short Queries and Indexes

60

quickly from a table if there is no index supporting the corresponding search. That's why

short queries require indexes for faster execution. If there is no index to support a highly

restrictive query, in all likelihood, one needs to be created.

�Index Selectivity
Chapter 3 introduced the concept of query selectivity. The same concept can be applied

to indexes: the smaller the number of records that correspond to one value of the

index, the lower the index’s selectivity value. We do not want to create indexes with

high selectivity; as we saw in Chapter 3, index-based data retrieval in this case will take

more time than a sequential scan. Since the PostgreSQL optimizer predetermines the

cost of each access method, this index would never be used, so performance wouldn’t

be compromised. However, it is still undesirable to add a database object that requires

storage space and extra time to update but doesn’t provide any benefit.

A database table might have multiple indexes on different columns, each with a

different selectivity. The best performance possible for a short query occurs when the

most restrictive indexes (i.e., indexes with the lowest selectivity) are used.

Let’s look at the query in Listing 5-4. Can you tell which filtering criterion is the most

restrictive?

Listing 5-4.  Index selectivity

SELECT * FROM flight

WHERE departure_airport='LAX'

AND update_ts BETWEEN '2020-08-16' AND '2020-08-18'

AND status='Delayed'

AND scheduled_departure BETWEEN '2020-08-16' AND '2020-08-18'

Delayed status might be the most restrictive, because ideally, on any given day, there

are many more on-time flights than delayed flights.

In our training database, we have a flight schedule for six months, so limiting it by

two days might not be very restrictive. On the other hand, usually the flight schedule is

posted well in advance, and if we are looking for flights where the timestamp of the last

update is relatively close to the scheduled departure, it most likely indicates that these

flights were delayed or canceled.

Chapter 5 Short Queries and Indexes

61

Another factor that may be taken into consideration is the popularity of the airport

in question. LAX is a popular airport, and for Listing 5-1, a restriction on update_ts will

be more restrictive than on departure_airport. However, if we change the filtering on

departure_airport to FUK, the airport criterion will be more restrictive than selection

based on update_ts.

If all the search criteria are indexed, there is no cause for concern; the way multiple

indexes can work together will be covered in a moment. But if the most restrictive

criterion is not indexed, the execution plan may be suboptimal, and likely, an additional

index is needed.

�Unique Indexes and Constraints
The better (lower) the selectivity of an index, the faster the search. Thus, the most

efficient indexes are unique indexes.

An index is unique if for each indexed value there is exactly one matching row in
the table.

There are several different ways to create a unique index. First, PostgreSQL

automatically creates a unique index to support any primary key or unique constraint on

a table.

What is the difference between a primary key and a unique constraint? A common

misconception among SQL developers is that a primary key has to be an incrementing

numeric value and that each table “has” to have a primary key. Although it often helps to

have a numeric incremental primary key (called a surrogate key), a primary key does not

have to be numeric, and moreover, it does not have to be a single-attribute constraint.

It is possible to define a primary key as a combination of several attributes; it just has

to satisfy two conditions: the combination must be UNIQUE and NOT NULL for all of the

participating attributes. In contrast, unique constraints in PostgreSQL allow for NULL

values.

A table can have a single primary key (though a primary key is not required) and

multiple unique constraints. Any non-null unique constraint can be chosen to be

a primary key for a table; thus, there is no programmatic way to determine the best

candidate for a table’s primary key. For example, the table booking has a primary key on

booking_id and a unique key on booking_ref—see Listing 5-5.

Chapter 5 Short Queries and Indexes

62

Listing 5-5.  A primary key and a unique constraint

ALTER TABLE booking

 ADD CONSTRAINT booking_pkey PRIMARY KEY (booking_id);

ALTER TABLE booking

 ADD CONSTRAINT booking_booking_ref_key UNIQUE (booking_ref);

Since booking_ref is a non-null attribute, we could choose either booking_id or

booking_ref to be the primary key.

As shown in the ER diagram in Chapter 1, the column frequent_flyer_id in the

table account is nullable and also unique:

ALTER TABLE account

 ADD CONSTRAINT account_freq_flyer_unq_key UNIQUE (frequent_flyer_id);

It is also possible to create a unique index without formally defining a unique

constraint. All you have to do is to add the keyword unique to the index creation

statement:

CREATE UNIQUE INDEX account_freq_flyer ON

account (frequent_flyer_id);

If we create this index after data was already inserted into this table, CREATE UNIQUE

INDEX will validate the uniqueness of values, and if any duplicates are found, the index

won’t be created. For any subsequent inserts and updates, the uniqueness of new values

will be validated as well.

What about foreign keys? Do they automatically create any indexes? A common

misconception is the belief that the presence of a foreign key necessarily implies the

presence of an index on the parent table. This is not true.

A foreign key is a referential integrity constraint; it guarantees that for each non-
null value in the child table (i.e., the table with the foreign key constraint), there is
a matching unique value in the parent table (i.e., the table it is referencing).

For example, there is a foreign key constraint on the flight table that ensures that

each arrival airport matches an existing airport code:

Chapter 5 Short Queries and Indexes

63

ALTER TABLE flight

 ADD CONSTRAINT arrival_airport_fk FOREIGN KEY (departure_airport)

 REFERENCES airport (airport_code;

This constraint does not automatically create an index; if searches by arrival airport

are slow, the index must be explicitly created:

CREATE INDEX flight_arrival_airport

 ON flight

 (arrival_airport);

Chapter 3 mentioned that unique indexes make nested loops efficient. If you refer to

Figure 3-7, you will realize what happens when an index is present.

The nested loop join algorithm can also be combined with index-based data access

if the table S has an index on attributes used in the join condition. For natural joins, the

inner loop of the index-based nested loop algorithm shrinks to few rows of S for each row

of R. The inner loop can even vanish completely if the index on S is unique, for example,

the join attribute of S is its primary key.

Often, this is misunderstood to mean that nested loops are always efficient when

joining on a primary/foreign key. However, as mentioned earlier, this is true only if the

column in the child table—that is, the foreign key—is indexed.

Is it a best practice to always create an index on a column that has a foreign key

constraint? Not always. An index should only be created if the number of distinct values

is large enough. Remember, indexes with high selectivity are unlikely to be useful. For

example, the flight table has a foreign key constraint on aircraft_code_id:

ALTER TABLE flight

 ADD CONSTRAINT aircraft_code_fk FOREIGN KEY (aircraft_code)

 REFERENCES aircraft (code);

This foreign key constraint is necessary because for each flight, there must be a valid

aircraft assigned. In order to support the foreign key constraint, a primary key constraint

was added to the aircraft table. That table, however, has only 12 rows. Therefore, it is

not necessary to create an index on the aircraft_code column of the flight table. This

column has only 12 distinct values, so an index on that column will not be used.

To illustrate this statement, let’s look at the query in Listing 5-6. This query selects all

fights between the JFK and ORD airports, between August 14 and 16, 2020. For each flight, we

select the flight number, scheduled departure, aircraft model, and number of passengers.

Chapter 5 Short Queries and Indexes

64

Listing 5-6.  A join by a primary/foreign key without an index

SELECT f.flight_no,

 f.scheduled_departure,

 model,

 count(passenger_id) passengers

 FROM flight f

 JOIN booking_leg bl ON bl.flight_id = f.flight_id

 JOIN passenger p ON p.booking_id=bl.booking_id

 JOIN aircraft ac ON ac.code=f.aircraft_code

 WHERE f.departure_airport ='JFK'

 AND f.scheduled_departure BETWEEN

 '2020-08-14' AND '2020-08-16'

GROUP BY 1,2,3

The execution plan for this query is shown in Figure 5-1, and it is massive.

Figure 5-1.  A plan with a sequential scan of a small table

Chapter 5 Short Queries and Indexes

65

The only part of this plan we are interested in now is this:

 Hash (cost=1.12..1.12 rows=12 width=64)

 -> Seq Scan on aircraft ac (cost=0.00..1.12 rows=12

The PostgreSQL optimizer accesses table statistics and is able to detect that the size

of the aircraft table is small and index access won’t be efficient.

�Indexes and Non-equal Conditions
Chapter 3 described the structure of B-tree indexes, how they are built, and how they are

used for searches. What follows is a demonstration of their practical application.

The previous section relates to simple B-tree indexes. As noted in Chapter 3, they

can support searches by equality, greater than, less than, and between conditions: all

the searches that require comparison and ordering. The majority of searches in an OLTP

system fall into this category, but there are also a nontrivial number of cases when search

criteria are more complex.

�Indexes and Column Transformations
What is a column transformation? A column transformation occurs when the search criteria

are on some modifications of the values in a column. For example, lower(last_name)

(converting the last_name value to lowercase) and update_ts::date (casting timestamp

with time zone to date) are column transformations.

How do column transformations affect index use? Quite simply, B-tree indexes

on the attribute cannot be used. Recall from Chapter 3 how a B-tree is built and how a

search on a B-tree is performed: in each node, the value of the attribute is compared

to the value in the node. The transformed value is not recorded anywhere, so there is

nothing to compare it to. Thus, if there is an index on last name

CREATE INDEX account_last_name

 ON account (last_name);

…the following search won’t be able to take advantage of the index:

SELECT * FROM account WHERE lower(last_name)='daniels';

Chapter 5 Short Queries and Indexes

66

How do we solve this problem? A search like this might be needed because

passengers may enter their last names with different cases. If you believe that covering

the most common cases is sufficient, you could modify the search criterion like so:

SELECT * FROM account

WHERE last_name='daniels'

 OR last_name='Daniels'

 OR last_name ='DANIELS'

The execution plan for this query is shown in Figure 5-2.

A better solution would be to create an (additional) functional index:

CREATE INDEX account_last_name_lower

 ON account (lower(last_name));

When a functional index is built, PostgreSQL applies the function to the values of

the column (or columns) and then places these values in the B-tree. Similar to a regular

B-tree index, where the nodes contain the values of the column, in a functional index,

a node contains the value of the function. In our case, the function is lower(). After the

index is created, query #1 in Listing 5-7 won’t use a sequential scan but will be able to

utilize the new index. The corresponding execution plan is shown in Figure 5-3.

Figure 5-2.  An execution plan with “like” operator rewrite

Chapter 5 Short Queries and Indexes

67

Listing 5-7.  Different search conditions use different indexes

---#1

SELECT * FROM account WHERE lower(last_name)='daniels';

---#2

SELECT * FROM account WHERE last_name='Daniels';

---#3

SELECT * FROM account WHERE last_name='daniels';

---#4

SELECT * FROM account WHERE lower(last_name)='Daniels';

Note that an index on the last_name column is still necessary if we want a search

on a case-specific value to be supported by an index (e.g., query #2). Also, it’s worth

mentioning that if the table account contains one record with last_name =’Daniels’ and

another record with last_name=’DANIELS’, query #1 will return both, query #2 will return

only the first record, and queries #3 and #4 won’t return either of them.

Note  Sometimes, an additional index is not needed.

Should a functional index be created every time we need to search using a column

transformation? Not necessarily. However, it is important to recognize a column

transformation, which can be subtle.

For example, let’s look at the following SELECT statement:

SELECT * FROM flight

WHERE scheduled_departure ::date

 BETWEEN '2020-08-17' AND '2020-08-18'

Figure 5-3.  A plan that uses a functional index

Chapter 5 Short Queries and Indexes

68

At first glance, it appears we are using the column scheduled_departure as a

selection criterion, and since there is an index on this column, it should be used.

However, the plan in Figure 5-4 diverts to a sequential scan.

Why doesn’t PostgreSQL use the index? Because when the timestamp is converted to

a date, a column transformation has been performed.

So is an additional functional index on scheduled_departure::date needed? Not

necessarily. What does this selection criterion mean? It means that we want to select

flights that depart on these two specific dates, no matter the time of day. This means that

the flight could depart any time between midnight of August 17, 2020, and midnight of

August 20, 2020. In order to make the existing index work, the selection criteria can be

modified to

SELECT * FROM flight

WHERE scheduled_departure

 BETWEEN '2020-08-17' AND '2020-08-19'

Figure 5-5 shows how the execution plan has changed.

Looking at the execution plan, you can see that the cost estimate for a plan with

index-based access is more than twice less than a sequential scan (13857.42 vs. 30474).

What is more important, the execution time supports this observation: 0.5 seconds for

index-based access vs. 1.5 seconds for a sequential scan.

Figure 5-4.  A plan that does not use the index due to the column transformation

Figure 5-5.  An execution plan that uses the index

Chapter 5 Short Queries and Indexes

69

Pay very close attention to this example. When you read about this example in a

book, the preceding paragraph looks obvious. However, numerous SQL developers and

report writers use similar search conditions over and over again. One frequent use case

is changes made to a table today. Ninety-five percent of the time, this condition is written

as update_ts::date=CURRENT_DATE, which successfully blocks the use of an index on the

update_ts column. To take advantage of the index, this criterion should be written as

update_ts>= CURRENT_DATE

or, if it is possible for values of this timestamp to be in the future, the condition should be

written as

WHERE update_ts>= CURRENT_DATE AND update_ts< CURRENT_DATE +1

Let’s examine another example where column transformation often remains

unnoticed. Let’s say today is August 17, 2020. We are looking for flights that have

departed or are scheduled to depart today. We know that for flights that have not yet

departed, the actual_departure column may be null.

The coalesce() function in PostgreSQL allows us to use a different value when the

first argument is null. Thus, coalesce(actual_departure, scheduled_departure) will

return actual_departure if it is not null and scheduled_departure otherwise. Both

the scheduled_departure and actual_departure columns are indexed, and you might

expect these indexes to be used. For example, look at the execution plan for the following

SQL statement presented in Figure 5-6:

SELECT * FROM flight

WHERE coalesce(actual_departure, scheduled_departure)

 BETWEEN '2020-08-17' AND '2020-08-18'

Why aren’t any indexes utilized? Because coalesce() is a function, which modifies

column values. Should we create another functional index? We can, but it is not really

necessary. Instead, we can rewrite this SQL statement as shown in Listing 5-8, which will

result in the execution plan in Figure 5-7.

Figure 5-6.  A plan with a sequential scan, when indexes are present

Chapter 5 Short Queries and Indexes

70

Listing 5-8.  Query that uses both indexes

SELECT * FROM flight

WHERE (actual_departure

 BETWEEN '2020-08-17' AND '2020-08-18')

 OR (actual_departure IS NULL

 AND scheduled_departure BETWEEN '2020-08-17' AND '2020-08-18')

�Indexes and the like Operator
Another group of search conditions that are not a straightforward comparison of column

value constants are searches using the like operator. For example, the query

SELECT * FROM account

 WHERE lower(last_name) like 'johns%';

will yield all accounts for which the last name begins with “johns”. In the postgres_air

schema, the list of returned last names is

"Johnson"

"Johns"

"johns"

"Johnston"

"JOHNSTON"

"JOHNS"

"JOHNSON"

"johnston"

"johnson"

Figure 5-7.  Execution plan for the query from Listing 5-8

Chapter 5 Short Queries and Indexes

71

The only problem with this query is that it won’t utilize the functional index we

created in the previous section, because B-tree indexes do not support searches with the

“like” operator. Once again, if we check the execution plan for this query, we will see a

sequential scan of the account table.

How can we solve this problem and avoid a scan?

One possible solution is to rewrite the query, replacing like with two conditions:

SELECT * FROM account

 WHERE (lower(last_name) >='johns' and lower(last_name) < 'johnt')

The execution plan for this query is presented in Figure 5-8, and we can see that this

plan uses an existing index.

A better solution would be to create a pattern search index:

CREATE INDEX account_last_name_lower_pattern

 ON account (lower(last_name) text_pattern_ops);

Why is this index necessary? Because comparison of text values depends on the

locale, a set of rules about character ordering, formatting, and similar things that vary

by language and country. Although some may think what we have in US English is the

universal order of things, it is not. The only locale that would allow us to use a B-tree

index is a “C” locale, which is a standards-compliant default locale. Only strict ASCII

characters are valid in this locale.

To see which locale was defined when the database was created, you need to run the

command

SHOW LC_COLLATE;

And if you reside in the United States, there’s a good chance you will see

Figure 5-8.  The plan for a rewritten query that uses an index

Chapter 5 Short Queries and Indexes

72

"en_US.UTF-8"

This newly created index will be utilized by queries that use the like operator. The

new execution plan for our original query is presented in Figure 5-9, and we can see that

it takes advantage of the new index.

�Using Multiple Indexes
In Figure 5-7, we see an execution plan that uses two indexes on the same table—flight.

The discussion of index-based access in Chapter 3 was primarily concerned with the

case of a single index. What happens when there is more than one available? How

exactly does PostgreSQL use them efficiently?

The answer is in the word bitmap, as seen in the execution plan. Creating in-memory

bitmaps allows the optimizer to use multiple indexes on one table to speed up data

access. Let’s look at the query with three filtering criteria for one table, all of which are

supported by indexes.

Listing 5-9.  A query with three filters on one table

SELECT scheduled_departure ,

 scheduled_arrival

FROM flight

WHERE departure_airport='ORD' AND arrival_airport='JFK'

AND scheduled_departure BETWEEN '2020-07-03' AND '2020-07-04';

The execution plan for this query is shown in Figure 5-10.

Figure 5-9.  An execution plan with a pattern index

Chapter 5 Short Queries and Indexes

73

Postgres can use the search results from multiple indexes by creating a bitmap of

blocks with matching records in main memory and then OR-ing or AND-ing them.

After this process is completed, the only blocks left are the blocks that satisfy all search

criteria, and PostgreSQL reads all the records in the remaining blocks to recheck the

search conditions.

The blocks will be scanned in physical order, so the index-based ordering will be lost.

Note that in the execution plan shown in Figure 5-10, only two indexes of the three

available are used. That’s because after a logical AND-ing of the two index search results

is performed, only 64 rows of data are left, and in this case, it is faster to read them and

filter the condition than to perform one more index search, which will retrieve over

12,000 records.

Using a bitmap AND and OR of several index-based searches is a very efficient

mechanism of applying multiple filters, but not the only one. In the next section, we will

discuss another option—creating compound indexes.

�Compound Indexes
So far, the indexes shown have been on individual columns. This section discusses

indexes built on multiple columns and their advantages.

Figure 5-10.  Execution plan with multiple index scans on one table

Chapter 5 Short Queries and Indexes

74

�How Do Compound Indexes Work?
Let’s return to the query in Listing 5-9. The result of three search criteria applied to the

table flight can be computed by using multiple indexes. Another option would be to

create a compound index on all three columns:

CREATE INDEX flight_depart_arr_sched_dep ON

 flight(departure_airport,

 arrival_airport,

 scheduled_departure)

With this index, the execution plan would be as shown in Figure 5-11.

This new compound index will support searches by departure_airport, by

departure_airport and arrival_airport, and by departure_airport, arrival_

airport, and scheduled_departure. It will not support, however, the searches by

arrival_airport or scheduled_departure.

The query

SELECT departure_airport,

 scheduled_arrival,

 scheduled_departure

FROM flight

WHERE arrival_airport='JFK'

AND scheduled_departure BETWEEN '2020-07-03' AND '2020-07-04'

…will produce the execution plan presented in Figure 5-12.

Figure 5-11.  A plan that uses a compound index

Chapter 5 Short Queries and Indexes

75

On the other hand, the query

SELECT scheduled_departure ,

 scheduled_arrival

FROM flight

WHERE departure_airport='ORD' AND arrival_airport='JFK'

AND scheduled_arrival BETWEEN '2020-07-03' AND '2020-07-04';

…will use the compound index, although only for the first two columns, as presented

in Figure 5-13.

In general, an index on (X,Y,Z) will be used for searches on X, XY, and XYZ and even

(X,Z) but not on Y alone and not on YZ. Thus, when a compound index is created, it’s not

enough to decide which columns to include; their order must also be considered.

Figure 5-12.  Compound index is not used

Figure 5-13.  A plan that uses the compound index for the first two columns

Chapter 5 Short Queries and Indexes

76

Why create compound indexes? After all, the previous section demonstrated that

using several indexes together will work just fine. There are two major reasons to create

this type of index: lower selectivity and additional data storage.

�Lower Selectivity
Remember that the lower the selectivity is, the faster the search is, and when we are

optimizing short queries, our goal is to avoid reading a large number of rows at any given

point (even if we will be able to filter them out later). Sometimes, none of the individual

column values are restrictive enough, and only a certain combination makes a query short.

In the example from the previous section, there are 12,922 flights with departure

airport ORD and 10,530 flights that arrive at JFK. However, the number of flights that

originate in ORD and land in JFK is only 184.

�Using Indexes for Data Retrieval
When all the columns from a SELECT statement are included in a compound index,

they may be retrieved without accessing the table. This is called the index-only-scan data

retrieval method.

All of the execution plans in the previous section still needed to read records from

the table after they were located using the index scan, because we still needed the

values from columns that were not included in the index.

Let’s build one more compound index and include one more column:

CREATE INDEX flight_depart_arr_sched_dep_sched_arr

 ON flight

 (departure_airport,

 arrival_airport,

 scheduled_departure,

 scheduled_arrival);

The execution plan of the query will instantaneously convert into an index-only scan

as presented in Figure 5-14.

Chapter 5 Short Queries and Indexes

77

Note that once again the search was on the first three columns of the index. If the

search did not include the first column of the index, for example

SELECT departure_airport,

 scheduled_departure ,

 scheduled_arrival

FROM flight

WHERE arrival_airport='JFK'

AND scheduled_departure BETWEEN '2020-07-03' AND '2020-07-04'

…the execution plan will revert to using several indexes with AND and OR, as shown

in Figure 5-15.

�Covering Indexes
Covering indexes were first introduced in PostgreSQL 11. These indexes can be viewed

as a continuation of efforts to support the index-only-scan access method. A covering

index is specifically designed to include the columns needed by a particular type of

query that you run frequently.

Figure 5-14.  A plan with an index-only scan

Figure 5-15.  When a search does not include the first index column, a compound
index is not used

Chapter 5 Short Queries and Indexes

78

In the previous section, the column scheduled_arrival was added to the index

solely to avoid an extra trip to the table. It was not intended to be used as search criteria.

In this case, a covering index can be used instead:

CREATE INDEX flight_depart_arr_sched_dep_inc_sched_arr

 ON flight

 (departure_airport,

 arrival_airport,

 scheduled_departure)

 INCLUDE (scheduled_arrival);

The execution plan for the query

SELECT departure_airport,

 scheduled_departure ,

 scheduled_arrival

FROM flight

WHERE arrival_airport='JFK' AND departure_airport='ORD'

AND scheduled_departure BETWEEN '2020-07-03' AND '2020-07-04'

will look like the one shown in Figure 5-16.

In cases like this one, there is not much difference between including an extra

column in the index vs. creating a covering index. However, if more (or wider) columns

need to be stored together with the indexed values, a covering index will likely be more

compact.

Figure 5-16.  A plan with an index-only scan of a covering index

Chapter 5 Short Queries and Indexes

79

�Excessive Selection Criteria
Sometimes, when filtering logic is complex and involves attributes from multiple tables,

it is necessary to provide additional, redundant filters to prompt the database engine to

use specific indexes or reduce the size of join arguments. This practice is called using

excessive selection criteria. The intent is to use this additional filter to preselect a small

subset of records from a large table.

For some of these complex criteria, PostgreSQL is able to perform a query rewrite

automatically.

For example, the filtering conditions in the query in Listing 5-10 combine values of

attributes from the tables flight and passenger. In earlier versions of PostgreSQL, the

engine could not start filtering prior to joining all the tables, because the AND is applied

to the columns of different tables.

Listing 5-10.  Query with conditions on two tables

SELECT last_name,

 first_name,

 seat

FROM boarding_pass bp

JOIN booking_leg bl USING (booking_leg_id)

JOIN flight f USING (flight_id)

JOIN booking b USING(booking_id)

JOIN passenger p USING (passenger_id)

WHERE

(departure_airport='JFK'

 AND scheduled_departure BETWEEN

 '2020-07-10' AND '2020-07-11'

 AND last_name ='JOHNSON')

OR

(departure_airport='EDW'

 AND scheduled_departure BETWEEN '2020-07-13' AND '2020-07-14'

 AND last_name ='JOHNSTON')

However, now the optimizer can perform a complex query rewrite, as shown in

Figure 5-17.

Chapter 5 Short Queries and Indexes

80

Note the lines from 8 to 15. PostgreSQL rewrites the logical expression and selects all

records from the table flight that may be needed for both conditions connected with OR.

In cases like this, the only thing to do is to let PostgreSQL do its job.

However, there are some queries that will run forever without human intervention.

Let’s look at the query in Listing 5-11. This query looks for flights that were more than

one hour delayed (of which there should not be many). For all of these delayed flights,

the query selects boarding passes issued after the scheduled departure.

Listing 5-11.  Short query with hard-to-optimize filtering

SELECT bp.update_ts Boarding_pass_issued,

 scheduled_departure,

 actual_departure,

 status

FROM flight f

JOIN booking_leg bl USING (flight_id)

JOIN boarding_pass bp USING (booking_leg_id)

Figure 5-17.  Execution plan with conditions on two tables with query rewrite

Chapter 5 Short Queries and Indexes

81

WHERE bp.update_ts > scheduled_departure + interval '30 minutes'

AND f.update_ts >=scheduled_departure -interval '1 hour'

This might seem like a contrived example, but it is modeled on production exception

reports. Many companies have some sort of exception reporting in place to identify

the abnormal system behavior. Crucially, by definition, the output of execution reports

should be small. Exception reports, to be useful, should report on conditions that occur

relatively rarely—otherwise, they would just be reports on business as usual.

The described situation certainly sounds abnormal, and there should not be many

cases like this. However, the execution plan in Figure 5-18 has full scans of large tables

and hash joins, even though all the appropriate indexes on all the tables involved exist.

So what went wrong?

Let’s go back to the definition of a short query. It seemed very clear in the beginning,

but now it becomes a bit trickier. Recall that a query is short if it needs a small number of

rows to compute results. Indeed, in this case, the number of rows we need is small, but

there is no easy way to find them. So here is the caveat: it is not just that a short query

requires a small number of rows, but also that the number of rows in the result of any

intermediate operation should also be small. If a query with three joins is short and, after

executing the first of the joins, the intermediate result is huge, it means that something is

wrong with the execution plan.

Figure 5-18.  Suboptimal execution plan for a short query

Chapter 5 Short Queries and Indexes

82

As previously discussed, the only way to read a small number of rows from a table is

to use an index. However, we do not have any indexes that would support the filtering

conditions in the query from Listing 5-11. Moreover, it is not possible to build such an

index, because selection criteria from one table depend on values from another table. In

this case, there is no way to make a selection before joining, which results in full scans

and hash joins.

How can this query be improved? The answer to this question is not directly related

to SQL. Chapter 1 stated that database optimization starts from gathering requirements,

and this is a case where gathering precise requirements is the best path toward

optimization.

Notice that, in the original query, the search space is all the flights since the dawn of

time—or at least, for the entire time period captured by the database. However, this is

an exception report, which most likely is reviewed on a regular cadence, and, likely, the

business owner of this report is interested in recent cases since the last review. Earlier

exceptions would have already appeared in previous reports and hopefully have been

addressed. The next step would be to connect with the business owner of this report and

ask whether a report including only the most recent exceptions suits their needs.

If the answer is yes, the excessive selection criterion we just got from business can be

applied to the query. Also, we need one more index:

CREATE INDEX boarding_pass_update_ts ON postgres_air.boarding_

pass (update_ts);

Listing 5-12 shows the modified query, retaining two days of exceptions.

Listing 5-12.  Query with added excessive selection criteria

SELECT bp.update_ts Boarding_pass_issued,

 scheduled_departure,

 actual_departure,

 status

FROM flight f

JOIN booking_leg bl USING (flight_id)

JOIN boarding_pass bp USING (booking_leg_id)

WHERE bp.update_ts > scheduled_departure + interval '30 minutes'

AND f.update_ts >=scheduled_departure -interval '1 hour'

AND bp.update_ts >='2020-08-16' AND bp.update_ts< '2020-08-20'

Chapter 5 Short Queries and Indexes

83

Now, the search by timestamps will be applied first, as seen in the execution plan in

Figure 5-19.

The execution time for this query is less than 200 milliseconds, while the execution

time for the original query was 2 minutes and 44 seconds.

�Partial Indexes
Partial indexes are among the best features of PostgreSQL. As implied by the name, a

partial index is built on a subset of a table, defined by the WHERE clause of the CREATE

INDEX operator.

For example, for flights scheduled in the future, the actual_departure column is

null. To improve search by actual_departure, we can create an index for only flights

with a non-null actual departure value:

CREATE INDEX flight_actual_departure_not_null

 ON flight(actual_departure)

 WHERE actual_departure IS NOT NULL

Figure 5-19.  Execution plan with excessive selection criteria

Chapter 5 Short Queries and Indexes

84

In this particular case, the difference in execution time won’t be dramatic, because

the flight table is not very large and, in the current distribution, only half of the

flights have a null actual departure. However, if the values in a column are distributed

unevenly, using a partial index can provide a great advantage.

For example, the column status in the flight table has only three possible values:

‘On schedule’, ‘Delayed’, and ‘Canceled’. These values are unevenly distributed; there

are significantly more flights with status ‘On schedule’ than the other two. Creating an

index on the column status would be impractical due to the very high selectivity of this

column. However, it would be nice to be able to quickly filter out the canceled flights,

especially because in contrast to real life, there are not that many canceled flights in the

postgres_air schema.

We are going to create an index:

CREATE INDEX flight_canceled ON flight(flight_id)

WHERE status='Canceled';

This index will be used in all queries where we select canceled flights, regardless of

any other filtering conditions, for example:

SELECT * FROM flight WHERE

 scheduled_departure between '2020-08-15' AND '2020-08-18'

 AND status='Canceled'

The execution plan for this query is shown in Figure 5-20.

Using the partial index decreases execution time from 0.72 seconds to 0.16 seconds.

Figure 5-20.  The usage of a partial index

Chapter 5 Short Queries and Indexes

85

�Indexes and Join Order
As mentioned earlier, in short queries, the optimization goal is to avoid large

intermediate results. That means ensuring that the most restrictive selection criteria

are applied first. After that, for each join operation, we should ensure that the result

continues to be small.

The size of join results may be small either because of restrictions on the joined

tables (small number of records in join arguments) or because of a semi-join (one

argument significantly restricts the result size).

Most of the time, the query planner chooses a correct join order, unless the wrong

order is forced.

Let’s start with creation of several more indexes:

CREATE INDEX account_login ON account(login);

CREATE INDEX account_login_lower_pattern ON account (lower(login) text_

pattern_ops);

CREATE INDEX passenger_last_name ON passenger (last_name);

CREATE INDEX boarding_pass_passenger_id ON boarding_pass (passenger_id);

CREATE INDEX passenger_last_name_lower_pattern ON passenger (lower(last_

name) text_pattern_ops);

CREATE INDEX passenger_booking_id ON passenger(booking_id);

CREATE INDEX booking_account_id ON booking(account_id);

Now, consider the example in Listing 5-13.

Listing 5-13.  Order of joins example

SELECT b.account_id,

a.login,

p.last_name,

p.first_name

FROM passenger p

JOIN booking b USING(booking_id)

JOIN account a ON a.account_id=b.account_id

WHERE lower(p.last_name)='smith'

AND lower(login) LIKE 'smith%'

Chapter 5 Short Queries and Indexes

86

The execution plan for this query is shown in Figure 5-21. Note that although the first

table listed is the table passenger and that the first selection criterion is applied to the

same table, the execution starts with the table account.

The reason is that the table account contains significantly fewer records than the

passenger table, and although the selectivity of both filters is approximately the same,

the corresponding index on the account table will yield fewer records.

However, the execution plan changes significantly when the criteria look for

passengers with an uncommon last name—that is, a last name with a very low

selectivity. The execution plan in Figure 5-22 indicates that in this case, starting

processing from the passenger table is more restrictive. In fact, accounts that satisfy the

login selection criterion are selected independently from bookings, and then the results

are joined using the hash join algorithm; this will work faster since both intermediate

result sets are already in main memory.

Figure 5-21.  Order of joins: execution starts from the smaller table, when
selectivity is similar

Chapter 5 Short Queries and Indexes

87

The SELECT statement in Listing 5-14 is similar, but instead of joining with the

passenger table, the join is to the frequent_flyer table, which is approximately half of

the size of the account table. Of course, to be able to search this table, two more indexes

are required:

CREATE INDEX frequent_fl_last_name_lower_pattern ON frequent_

flyer (lower(last_name) text_pattern_ops);

CREATE INDEX frequent_fl_last_name_lower ON frequent_flyer (lower(last_

name));

In this case, execution will start from the table frequent_flyer, as shown in

Figure 5-23.

Listing 5-14.  Query selecting the number of bookings for each frequent flyer

SELECT a.account_id,

 a.login,

 f.last_name,

 f.first_name,

 count(*) AS num_bookings

FROM frequent_flyer f

Figure 5-22.  Different selectivity prompts a different join order

Chapter 5 Short Queries and Indexes

88

JOIN account a USING(frequent_flyer_id)

JOIN booking b USING(account_id)

WHERE lower(f.last_name)='smith'

AND lower(login) LIKE 'smith%'

GROUP BY 1,2,3,4

�When Are Indexes Not Used
So far, this chapter has covered how indexes are used in queries. This section turns to

situations where indexes are not used. Specifically, it discusses two situations: how to

prevent PostgreSQL from using indexes in some circumstances and what to do when an

index isn’t being used and we think it ought to be.

Figure 5-23.  The execution plan for the query in Listing 5-14

Chapter 5 Short Queries and Indexes

89

�Avoiding Index Usage
Why would it be desirable to avoid using an index? Often, database developers believe

that using indexes improves the performance of any query. We can each recall situations

where we were asked “to build some indexes to make this query run faster.” However, an

index is not always needed and in some cases may be counterproductive. Two examples

from earlier in this chapter (Figures 5-1 and 5-6) showed execution plans with sequential

reads that are nevertheless quite efficient.

The two main reasons we may want to avoid using indexes are as follows:

•	 A small table is completely read into main memory.

•	 We need a large proportion of the rows of a table to execute a query.

Is there a way to avoid using existing indexes? Most of the time, the optimizer is

smart enough to figure out when it should or shouldn’t use indexes. But on the rare

occasions when it fails, we can modify selection criteria. Recall from the beginning of

this chapter that column transformations can block the usage of indexes. At that time,

it was framed as a negative impact of column transformation, but it can also be used to

improve performance when the goal is to block index usage.

If a column is of a numeric type, it can be modified by adding zero to its value. For

example, the condition attr1+0=p_value will block the usage of an index on column

attr1. For any data type, the coalesce() function will always block the usage of indexes,

so, assuming attr2 is not nullable, the condition can be modified to something like

coalesce(t1.attr2, '0')=coalesce(t2.attr2, '0').

�Why Does PostgreSQL Ignore My Index?
Occasionally, there are extraordinarily frustrating cases, when the appropriate index exists,

but for some reason, PostgreSQL is not using it. This is the moment when a database

developer with experience with other systems that allow optimizer hints might start really

missing them. However, most of the time, there is no reason for frustration. Having one of

the best optimizers, PostgreSQL does the right thing in most cases. So, most likely, there is

a good reason, and it is possible to find by examining the execution plan.

Let’s consider an example. This example, as well as some examples in subsequent

chapters, uses larger tables, which are not included in the postgres_air distribution due

to their size. These tables are necessary to illustrate cases that occur in real life and that

Chapter 5 Short Queries and Indexes

90

you might come across. Here, the table boarding_pass_large is being used, which has

the same structure as the boarding_pass table, but contains three times as many rows—

over 75,000,000 boarding passes. To create a larger table for experimentation, you can

insert every row of the boarding_pass table three times.

In the postgres_air database, the current date is August 17, 2020. Let’s select a

sample of 100 passengers who checked in during the last week:

SELECT * FROM boarding_pass_large

WHERE update_ts::date BETWEEN '2020-08-10' AND '2020-08-17'

LIMIT 100

Predictably, the execution plan presented in Figure 5-24 shows a sequential scan.

No problem, we’ve covered how to avoid this issue. Instead of converting the

timestamp to date, we use an interval:

SELECT * FROM boarding_pass_large

WHERE update_ts BETWEEN '2020-08-10' AND '2020-08-18'

LIMIT 100

However, when we check the execution plan, we see that it still uses a sequential

scan!

Why didn’t removing the column transformation cause PostgreSQL to use the

index? The answer is in Figure 5-25. It is the result of the combination of relatively high

selectivity of this index on a large table and the presence of the LIMIT operator. The

query planner estimates that the specified selection condition will select over 700,000

rows, which, recall, might require twice as many disk I/O operations. Since only 100 rows

are required and since the order is not specified, it is faster to go ahead with a sequential

scan of the table. There is a higher chance that the hundred records that satisfy this

criterion will be found faster.

Figure 5-24.  Sequential scan due to column transformation

Chapter 5 Short Queries and Indexes

91

The situation would be different if those 100 records needed to be selected in a

particular order. Unless the sort order is on the indexed attribute, PostgreSQL will need

to select all records before it can decide which ones are first.

Let’s change the SELECT statement to include ordering:

SELECT * FROM boarding_pass_large

WHERE update_ts::date BETWEEN '2020-08-10' AND '2020-08-17'

ORDER BY 1

LIMIT 100

Now the execution plan (shown in Figure 5-26) looks dramatically different.

Comparing the execution time for these two queries, the one with a sequential scan

ran for 140 milliseconds, and the one with forced index access ran for 620 milliseconds,

so the sequential scan was indeed more efficient in this case.

Figure 5-25.  Sequential scan due to high index selectivity

Figure 5-26.  Execution plan with sorting

Chapter 5 Short Queries and Indexes

92

�Let PostgreSQL Do Its Job!
In this section, we will use several modifications of the queries from the previous

sections to illustrate how PostgreSQL modifies execution plans based on data statistics.

We hope that by now, a convincing case has been made that the optimizer does its

job right most of the time, and our goal in most cases is just to give it enough flexibility to

make the right choice.

Let’s get back to the query on a large table from the previous section:

SELECT * FROM boarding_pass_large

WHERE update_ts BETWEEN '2020-08-10' AND '2020-08-18'

LIMIT 100

The execution plan for this query is shown in Figure 5-25, and the PostgreSQL

optimizer chose a sequential scan, because the interval of seven days was too large to get

any benefits from index access. Now, let’s reduce the time interval:

SELECT * FROM boarding_pass_large

WHERE update_ts BETWEEN '2020-08-15' AND '2020-08-18'

LIMIT 100

The execution plan for this query in Figure 5-27 shows that index-based access is

used.

Continuing to check different intervals, we will see that eight days is the pivot point

in this case. If the start of the interval is any date after August 10, the execution plan will

show index usage.

Even more interestingly, if LIMIT 100 is removed from the query, the execution

plan will show an index scan, but if we increase the interval by just one more day, the

execution plan will divert to a sequential scan, even without LIMIT 100, as shown in the

corresponding execution plans in Figures 5-28 and 5-29.

Figure 5-27.  A plan changes to index access when the time interval is smaller

Chapter 5 Short Queries and Indexes

93

Let’s see another example—the query in Listing 5-13. We observed that depending

on how selective the last name of the passenger is, the order of joins (and applying

indexes) will change. In fact, experimenting with different last names, it is possible to

identify the selectivity at which the execution plan flips (around 200 occurrences).

Finally, let’s look at one relatively simple SQL statement. Three SELECT statements

in Listing 5-15 are identical except the filtering values for each search criterion. In

the first query, departure airport has high selectivity, and passenger name has low

selectivity. In the second query, both values are highly selective, and in the last query,

departure airport has low selectivity. The plans, presented in Figures 5-30, 5-31, and 5-32,

differ in join algorithms, the order of joins, and the indexes that are used.

Listing 5-15.  SELECT with three different sets of parameters

--#1

SELECT

p.last_name,

p.first_name

FROM passenger p

JOIN boarding_pass bp USING (passenger_id)

JOIN booking_Leg bl USING (booking_leg_id)

JOIN flight USING(flight_id)

WHERE departure_airport='LAX'

Figure 5-28.  Execution plan using an index scan

Figure 5-29.  Execution plan using a sequential scan

Chapter 5 Short Queries and Indexes

94

AND lower(last_name)='clark'

--#2

SELECT

p.last_name,

p.first_name

FROM passenger p

JOIN boarding_pass bp USING (passenger_id)

JOIN booking_Leg bl USING (booking_leg_id)

JOIN flight USING(flight_id)

WHERE departure_airport='LAX'

AND lower(last_name)=' smith'

--#3

SELECT

p.last_name,

p.first_name

FROM passenger p

JOIN boarding_pass bp USING (passenger_id)

JOIN booking_Leg bl USING (booking_leg_id)

JOIN flight USING(flight_id)

WHERE departure_airport='FUK' AND lower(last_name)='smith'

Chapter 5 Short Queries and Indexes

95

Figure 5-30.  An execution plan for query #1

Chapter 5 Short Queries and Indexes

96

Figure 5-31.  An execution plan for query #2

Chapter 5 Short Queries and Indexes

97

�How to Build the Right Index(es)?
At the start of this chapter, a minimal set of indexes was defined in the postgres_air schema.

Almost every time we wanted to improve query performance, we suggested building yet

another index. All of these indexes indeed helped to improve execution time. What was

never discussed was whether additional justification is needed to create a new index.

�To Build or Not to Build
Twenty years ago, we were more cautious when deciding whether to add yet another

index. Two major reasons against creating too many indexes are that indexes take

up extra space in the database and that insert and update operations become slow

when there are too many indexes to update along with the record itself. The prevailing

guidance used to be to drop all indexes on a table before a bulk load and then to create

them again. Some textbooks on databases still offer the same recommendation—not to

drop the indexes, but to be mindful regarding the number of indexes on a table.

Figure 5-32.  An execution plan for query #3

Chapter 5 Short Queries and Indexes

98

Since then, times have changed. With current hard- and software, the situation is

different. Disk storage is cheaper, disks are faster, and, in general, fast response is more

valuable than saving disk space. Twenty years ago, having a table in your database with

the cumulative size of its indexes exceeding the size of the table itself was a red flag.

These days, it’s the norm for OLTP systems. But still, the question remains: when is

enough enough?

�Which Indexes Are Needed?
It is challenging to provide any general recommendations regarding which indexes are

necessary. In OLTP systems, response time is usually critical, and any short query should

be index-supported.

We recommend creating partial and covering indexes whenever it makes sense.

Partial indexes are usually smaller than regular indexes and are more likely to fit in main

memory. Covering indexes save trips to the table, thus allowing the engine to perform

most processing in main memory.

Extra time needed for inserts and updates is usually less critical than fast response.

However, you should always watch this time and evaluate the inventory of indexes if

slowness is detected. The unique/primary key indexes and foreign keys that reference

other unique/primary key fields are usual culprits of slowness, as well as triggers on

insert/update. In each case, you will need to evaluate the importance of data integrity vs.

the speed of updates.

There are a number of queries available online that calculate the total size of indexes

on each table, and most monitoring tools will alert you about excessive growth.

�Which Indexes Are Not Needed?
Even though we are usually not concerned with extra disk space needed for indexes, we

do not want to create database objects that are useless. The PostgreSQL catalog view

pg_stat_all_indexes shows the total number of index uses (scans, reads, and fetches)

since the last statistics reset.

Note that some primary key indexes are never used for data retrieval; however, they

are vital for data integrity and should not be removed.

Chapter 5 Short Queries and Indexes

99

�Indexes and Short Query Scalability
In this section, we will discuss how to optimize short queries so that they will remain

performant when data volumes increase.

In Chapter 1, we mentioned that optimization does not stop when a query goes

to production. We should continue to monitor performance and proactively identify

changes in performance dynamics.

With short queries, such performance monitoring is vital, since query behavior can

change dramatically when data volumes grow, especially when the speed of growth is

different for different tables.

When a query is index-supported, there is at least some assurance that it is scalable,

because the number of accesses to index grows only logarithmically relative to table

growth. But if the size of a table grows fast, the index might grow large enough not to

fit in main memory, or it might be pushed out by indexes for competing queries. If this

happens, execution time may increase sharply.

It is possible that in the beginning a query works fast without any indexes, and we

might not know for sure which indexes will be needed in the future. It is also possible

that a condition for a partial index was very restrictive and index access was very fast,

but later, with more and more records satisfying the condition, the index became less

efficient.

In short, although we strive to make sure short queries are scalable and will perform

well even when data volumes grow, we can’t assume that anything is optimized

“forever.” We should always keep an eye on data volume, value distributions, and other

characteristics that can interfere with performance.

Chapter 5 Short Queries and Indexes

100

�Summary
This chapter covered short queries and what techniques can be used to optimize them.

The primary optimization goal for short queries is to apply the most restrictive search

criteria first and to ensure that all intermediate results remain small. As such, the chapter

discussed the role of indexes for short queries and showed how to determine what

indexes are needed to create to support specific queries.

This chapter also showed various execution plans and how to read them to

understand the order of joins and filtering, as well as discussing various types of indexes

available in PostgreSQL and when they can be useful. More complex index types will be

considered in depth in Chapter 14.

Chapter 5 Short Queries and Indexes

101
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_6

CHAPTER 6

Long Queries and Full
Scans
Chapter 5 discussed short queries and explained how to identify short queries and

what optimization strategies and techniques can be used with them. It also covered

the importance of indexes for short queries and the most commonly used index types

and their applications. Chapter 5 also gave the opportunity to practice execution plan

reading skills and hopefully acquire some confidence in the PostgreSQL optimizer.

This chapter concerns long queries. Some queries just can’t run in a fraction of

a second, no matter how well written. This does not mean they can’t be optimized.

Many practitioners hold that since analytical reports do not have strict response time

requirements, it is not important how fast or slow they run. In extreme cases, report

developers make no effort to make sure that reports are complete in a reasonable time,

giving the excuse that the query only runs once a day or once a week or once a month.

This is a dangerous practice. If report performance is neglected, performance can

easily degrade from minutes to hours or more. We have observed reports that run for

six days before completion! And when the situation becomes that severe, it is not easy

to fix in a limited time frame. Often, when an analytical report is developed, source data

volumes are really small, and everything performs well. It is the job of SQL developers

to examine execution plans even if queries are running fine now and to be proactive to

prevent future performance degradation.

�Which Queries Are Considered Long?
Chapter 5 introduced the formal definition of a short query. It is logical to assume that all

queries that are not short are long. This is true, but a definition based on negation might

not be intuitive to apply in practice.

https://doi.org/10.1007/978-1-4842-6885-8_6#DOI

102

The two examples of long queries from Chapter 5 (Listings 5-1 and 5-3) are copied

here in Listings 6-1 and 6-2, respectively. The first of the two queries is a long query with

massive output; the query returns every possible combination of arrival and departure

airports. The second one produces only one line of output—showing the average length

of flights and number of passengers for all flights in the postgres_air schema—but is still

classified as a long query.

Listing 6-1.  Long query with a large result set

SELECT d.airport_code AS departure_airport

 a.airport_code AS arrival_airport

FROM airport a,

 airport d

WHERE a.airport_code <> d.airport_code

Listing 6-2.  Long query with a one-row result set

SELECT avg(flight_length),

avg (passengers)

FROM (SELECT flight_no,

scheduled_arrival -scheduled_departure AS flight_length,

count(passenger_id) passengers

 FROM flight f

 JOIN booking_leg bl ON bl.flight_id = f.flight_id

 JOIN passenger p ON p.booking_id=bl.booking_id

 GROUP BY 1,2) a

So what is a long query, anyway?

A query is considered long when query selectivity is high for at least one of the
large tables; that is, almost all rows contribute to the output, even when the output
size is small.

Chapter 6 Long Queries and Full Scans

103

What are the optimization goals for long queries? A common misconception

explicitly refuted in this chapter is that if a query is long, there is no way to significantly

improve its performance. However, each of us can share experiences when we were able

to improve the performance of a long query by an order of several hundred times. Such

improvements are made possible when two optimization strategies are applied:

	 1.	 Avoid multiple table scans.

	 2.	 Reduce the size of the result at the earliest possible stage.

The remainder of this chapter explains these techniques in detail and will describe

several methods to achieve this goal.

�Long Queries and Full Scans
Chapter 5 stated that short queries require the presence of indexes on columns included

in search criteria. For long queries, it is the converse: indexes are not needed, and if

tables are indexed, we want to ensure that indexes are not used.

Why are full table scans desirable for long queries? As shown in Figure 3-1, when the

number of rows needed is large enough, index access will require more I/O operations.

What percentage or number of records is “large enough” varies and depends on many

different factors. By now, it should not be a surprise that most of the time, PostgreSQL

estimates this percentage correctly.

Chapter 5 said something very similar about short queries. But “what is large

enough” is more difficult to estimate than “what is small enough.”

The estimate of how many records is too many evolves as better hardware, faster

disks, and more powerful CPUs become available. For this reason, this book tries

to avoid giving specific number thresholds that will necessarily change. To build

representative cases for this chapter, several tables were built with hundreds of millions

of rows of data. These are too large to be included with the postgres_air distribution.

However, it would be unsurprising if some of the examples in this chapter wouldn’t be

representative in a couple of years.

Chapter 6 Long Queries and Full Scans

104

�Long Queries and Hash Joins
In the majority of examples in this chapter, a hash join algorithm is used, and that’s

exactly what we hope to see in the execution plan of a long query. Why is a hash join

preferable in this case? In Chapter 3, we estimated the costs of both nested loop and

hash join algorithms.

For nested loop, the cost of the join of tables R and S is

cost(nl,R,S)=size(R) * size(S)+size(R)*size(S)/size(JA)

For hash join, it is

cost(hash,R,S)=size(R)+size(S)+size(R)*size(S)/size(JA)

where JA represents the number of distinct values of the join attribute. As mentioned

in Chapter 3, the third term, which represents the size of the result set, should be

added to the cost of both algorithms, but for the nested loop algorithm, this value is

significantly less than the cost of the join itself. For long queries, the size of R and S is

large (because they are not significantly restricted), making the cost of nested loops

significantly higher than the cost of a hash join.

If we have table R with 1,000,000 rows and table S with 2,000,000 rows and the

condition JA has 100,000 distinct values, the cost of the nested loop algorithm will be

2,000,020,000,000, and the cost of the hash join algorithm will be 23,000,000.

Hash joins work best when the first argument fits into main memory. The size of

memory available can be tuned with server parameters.

In some cases, a merge join algorithm is used, for example, in Figure 6-10 later in

this chapter. In Chapter 3, we mentioned that a merge join can be more efficient when at

least one of the tables is presorted. In this case, since unique values are being selected,

sorting is indeed performed.

Summarizing Chapter 5 and this chapter, most of the time, index access works well

with the nested loop algorithm (and vice versa), and sequential scans work well with a

hash join.

Since PostgreSQL does not have optimizer hints, is there any way to force a specific

join algorithm? As already mentioned multiple times, the best thing we can do is not to

restrict the optimizer in the manner we write SQL statements.

Chapter 6 Long Queries and Full Scans

105

�Long Queries and the Order of Joins
Join order for small queries was discussed in Chapter 5. For short queries, the desired

join order is the one that would prompt the usage of indexes with lower selectivity first.

Since we do not expect indexes to be used in long queries, does the order of

joins make a difference? Perhaps surprisingly, it does. Large tables can differ in size

significantly. Also, in practice, when selecting “almost all records,” the word “almost” can

mean as little as 30% and as much as 100%. Even when indexes are not used, the order of

joins matters, because it is important to keep interim datasets as small as possible.

The most restrictive joins (i.e., joins that reduce the result set size the most) should
be executed first.

The optimizer will most often choose the correct order; however, it is the

responsibility of the developer to verify that the optimizer has chosen correctly.

�What Is a Semi-join?
Often, the most restrictive join in a query is a semi-join. Let’s pause to offer a formal

definition.

A semi-join between two tables R and S returns rows from table R for which there
is at least one row from table S with matching values in the joining columns.

To clarify, a semi-join is not an extra SQL operation; one wouldn’t write something

like SELECT a.* FROM a SEMI JOIN b. A semi-join is a special kind of join that satisfies

two specific conditions: First, only columns from the first table appear in the result set.

Second, rows from the first table are not duplicated where there is more than one match

in the second table. Most often, a semi-join doesn’t include a JOIN keyword at all. The

first and most common way of defining a semi-join is presented in Listing 6-3. This

query finds all flight information for flights with at least one booking.

Chapter 6 Long Queries and Full Scans

106

Listing 6-3.  Defining a semi-join using the EXISTS keyword

SELECT * FROM flight f WHERE EXISTS

 (SELECT flight_id FROM booking_leg WHERE flight_id=f.flight_id)

This query uses an implicit join with table booking_leg to filter records of table

flight. In other words, instead of supplying values for filtering, we use column values

from another table.

An equivalent query showing another way to specify a semi-join is presented in

Listing 6-4.

Listing 6-4.  Defining a semi-join using the IN keyword

SELECT * FROM flight WHERE flight_id IN

 (SELECT flight_id FROM booking_leg)

How can these queries contain joins when neither uses the JOIN keyword? The

answer is in the execution plan, which is identical for both queries, shown in Figure 6-1.

You can see a SEMI JOIN in this plan, even though the keyword JOIN was not used in

the query itself.

Although these two ways of writing queries with semi-joins are semantically

identical, in PostgreSQL, only the first one guarantees the presence of SEMI JOIN in

the execution plan. The plans are identical for both queries in Listings 6-3 and 6-4, but

in other cases, the optimizer may choose to rewrite it as a regular join. This decision is

based both on the cardinality of the relationship between two tables and filter selectivity.

Figure 6-1.  Execution plan for a semi-join

Chapter 6 Long Queries and Full Scans

107

�Semi-joins and Join Order
Since a semi-join may significantly reduce the size of the result set and, by definition,

will never increase its size, semi-joins are often the most restrictive join in the query, and

as stated earlier, the most restrictive join should be executed first.

Semi-joins never increase the size of the result set; check whether it is beneficial
to apply them first.

Of course, this is possible only when a semi-join condition applies to the columns of

one of the tables. In cases when a semi-join condition references more than one table,

those tables must be joined before the semi-join is applied.

Consider the example in Listing 6-5, which shows bookings departing from airports

located in the United States.

Listing 6-5.  Order of joins when a semi-join is present

SELECT departure_airport,

 booking_id,

 is_returning

 FROM booking_leg bl

 JOIN flight f USING (flight_id)

 WHERE departure_airport

 IN (SELECT airport_code

 FROM airport

 WHERE iso_country='US')

Chapter 6 Long Queries and Full Scans

108

Figure 6-2 shows the execution plan for this query.

This execution plan does not show a semi-join operation, but rather a hash join,

since there are no duplicates to remove. However, it’s still a logical semi-join and

most restrictive, so it’s executed first. It’s also worth taking a brief diversion to note the

sequential scan on the airport table. The sequential scan is used because there is no

index on the iso_country field. Let’s create this index and see whether it will speed

things up.

If this index exists

CREATE INDEX airport_iso_country

ON airport(iso_country);

…the query planner will use it, as shown in Figure 6-3. However, the execution time

in this case will be the same or worse than the time with a sequential scan, because the

index is not selective enough. We are going to drop this index for now.

Figure 6-2.  Execution plan for the query from Listing 6-5

Chapter 6 Long Queries and Full Scans

109

�More on Join Order
Let’s take a look at a more complex example in Listing 6-6, of a long query with more

than one semi-join. This query, like the previous, finds bookings for flights departing

from the United States, but is limited to bookings updated since July 1, 2020. Since we do

not have an index on the update_ts column of the booking table, let’s create it now and

see whether it will be used:

CREATE INDEX booking_update_ts ON booking (update_ts);

Listing 6-6.  Two semi-joins in one long query

SELECT departure_airport, booking_id, is_returning

 FROM booking_leg bl

 JOIN flight f USING (flight_id)

 WHERE departure_airport IN

Figure 6-3.  Execution plan with an index scan

Chapter 6 Long Queries and Full Scans

110

 (SELECT airport_code

 FROM airport WHERE iso_country='US')

 AND bl.booking_id IN

 (SELECT booking_id FROM booking

 WHERE update_ts>'2020-07-01')

The execution plan in Figure 6-4 shows that a semi-join on airport.iso_country

is executed first. Just as in the preceding code, although we use the keyword IN, the

optimizer uses JOIN, not SEMI JOIN, because there is no need to eliminate duplicates.

Three things in this execution plan are worth noting. First, although index-based

access is used to obtain some interim results and we can see that the nested loop join

algorithm is used in this case, the final join is hash based, because a significant portion

of both datasets is used. Second, the semi-join uses a table sequential scan. And even

though this way we are reading all the rows from the airport table, the result set

size is smaller than it would be if we would join flights with booking legs and filter by

the airport location afterward. That’s the benefit of the optimizer choosing the most

restrictive semi-join.

Lastly, although there is an index on the update_ts column of the booking table, this

index is not used, because the condition update_ts>'2020-07-01'covers almost half the

rows in this table.

Figure 6-4.  Execution plan with two semi-joins

Chapter 6 Long Queries and Full Scans

111

However, if we change the filtering criteria in this query (shown in Listing 6-6)

and reduce the interval to update_ts>'2020-08-01', the execution plan will change

drastically—see Figure 6-5. In this new execution plan, we can see that not only is

the filter on update_ts more restrictive but also the optimizer judges that it may be

beneficial to use the index access.

Is index access to the booking table indeed the best option in this case? We can

compare by blocking index access applying a column transformation to the update_ts

column, rewriting the filter the following way: coalesce(update_ts, '2020-08-03')>

'2020-08-02'.

As seen in Figure 6-6, this forces a sequential scan. And, in fact, blocking the index

and forcing the sequential scan performs better than index access on larger time

intervals. As the time interval is reduced further, index access has the advantage. ‘2020-

08-01’ appears to be a tipping point; for all dates starting from ‘2020-08-02’, the index

access will work better.

Figure 6-5.  Execution plan with two semi-joins with a different selectivity

Chapter 6 Long Queries and Full Scans

112

�What Is an Anti-join?
Just like it sounds, an ANTI JOIN is the opposite of a SEMI JOIN. Formally

An anti-join between two tables R and S returns rows from table R for which there
are no rows from table S with a matching value in the joining column.

As in the case of a semi-join, there is no ANTI JOIN operator. Instead, a query with an

anti-join can be written in two different ways, presented in Listings 6-7 and 6-8. These

queries return flights that have no bookings.

Listing 6-7.  Defining an anti-join using the NOT EXISTS keyword

SELECT * FROM flight f WHERE NOT EXISTS

 (SELECT flight_id FROM booking_leg WHERE flight_id=f.flight_id)

Listing 6-8.  Defining an anti-join using NOT IN

SELECT * FROM flight WHERE flight_id NOT IN

 (SELECT flight_id FROM booking_leg)

Figure 6-6.  Forcing a full scan

Chapter 6 Long Queries and Full Scans

113

Just as with semi-joins, although both ways of writing a query with an anti-join

are semantically equivalent, in PostgreSQL, only the NOT EXISTS version guarantees

the anti-join in the execution plan. Figures 6-7 and 6-8 show the execution plan for

Listings 6-7 and 6-8, respectively. In this particular case, both queries will be executed in

approximately the same time, and the plan with an anti-join is only slightly faster. There

are no generic guidelines for which syntax for an anti-join is better. Developers should

try both ways to see which will perform better in their use case.

�Semi- and Anti-joins Using the JOIN Operator
At this point, the astute reader might wonder why we can’t use an explicit join and

specify exactly what we need. Why use the EXISTS and IN operators? The answer is it’s

possible and, in some cases, it might indeed be a better solution than using semi-joins.

But it takes care to construct a logically equivalent query.

The queries in Listings 6-3 and 6-4 are semantically equivalent, but Listing 6-9 is

not. Recall that Listings 6-3 and 6-4 return information for flights that have at least one

booking.

Figure 6-7.  Execution plan with an anti-join

Figure 6-8.  Execution plan without an anti-join

Chapter 6 Long Queries and Full Scans

114

Listing 6-9.  Join returning duplicates

SELECT f.*

FROM flight f

JOIN booking_leg bl USING (flight_id)

By contrast, Listing 6-9 will return as many rows for each flight as the number of

bookings with the corresponding flight_id. To return only one record per flight, like the

original query, it would need to be rewritten as shown in Listing 6-10.

Listing 6-10.  Query with a join returning one row per flight

SELECT *

FROM flight f

JOIN (select distinct flight_id FROM booking_leg) bl USING (flight_id)

The execution plan for this query is presented in Figure 6-9, and it does not contain a

semi-join.

It is not obvious from the execution plan whether this query will be faster or slower

than the query with a semi-join. In practice, it runs more than twice as fast as the query

from Listing 6-3.

If you only need the IDs of the flights that have a booking, it may be enough to run

the query in Listing 6-11.

Figure 6-9.  Execution plan for the query in Listing 6-10

Chapter 6 Long Queries and Full Scans

115

Listing 6-11.  Query with a join returning only flight_id with one row per flight

SELECT flight_id

FROM flight f

JOIN (select distinct flight_id FROM booking_leg) bl USING (flight_id)

The execution plan for this query, shown in Figure 6-10, differs significantly from the

one in Figure 6-9, and the execution is even faster.

What about anti-joins? An anti-join cannot create duplicates, which means that an

OUTER JOIN with subsequent filtering of NULL values can be used. Thus, the query in

Listing 6-7 is equivalent to the query in Listing 6-12.

Listing 6-12.  Outer join with filtering of NULL values

SELECT f.flight_id

FROM flight f

LEFT OUTER JOIN booking_leg bl USING (flight_id)

WHERE bl.flight_id IS NULL

The execution plan for this query includes an anti-join—see Figure 6-11.

Figure 6-10.  Execution plan with a merge join

Figure 6-11.  Execution plan for the query in Listing 6-12

Chapter 6 Long Queries and Full Scans

116

The optimizer recognizes this construct and rewrites it to an anti-join. This optimizer

behavior is stable and can be relied upon.

�When Is It Necessary to Specify Join Order?
So far, the optimizer has chosen the best join order without any intervention from the

SQL developer, but this isn’t always the case.

Long queries are more likely in OLAP systems. In other words, a long query is

most likely an analytical report that most likely joins a number of tables. This number,

as anyone who has worked with OLAP systems can attest, can be massive. When the

number of tables involved in a query becomes too large, the optimizer no longer

attempts to find the best possible join order. Although most system parameters are out of

the scope of this book, there is one worth mentioning: join_collapse_limit.

This parameter caps the number of tables in a join that will be still processed by

the cost-based optimizer. The default value of this parameter is 8. This means that if

the number of tables in a join is eight or fewer, the optimizer will perform a selection of

candidate plans, compare plans, and choose the best one. But if the number of tables

is nine or more, it will simply execute the joins in the order the tables are listed in the

SELECT statement.

Why not set this parameter to the highest possible value? There is no official upper

limit to this parameter, so it can be the maximum integer, which is 2147483647. However,

the higher you set this parameter, the more time will be spent to choose the best plan.

The number of possible plans to consider for a query joining n is n! Thus, when the

value is 8, a maximum of 40,000 plans can be compared. If this value is increased to 10,

the number of plans to consider will increase to three million, and the number rises

predictably from there—when this parameter is set to 20, the total number of plans is

already too big to fit the integer. One of us, the authors, once observed a data scientist

locally changing this parameter to 30, to deal with a query with 30 joins. The results were

excruciating—not only did the execution stall but even the EXPLAIN command couldn’t

return a result.

This is easy to experiment with; this parameter can be set locally on a session level,

so run the command

SET join_collapse_limit = 10

and check the runtime of the EXPLAIN command.

Chapter 6 Long Queries and Full Scans

117

In addition, recall that table statistics are not available for intermediate results,

which may cause the optimizer to choose a suboptimal join order. If the SQL developer

knows a better order of joins, it is possible to force the desired join order by setting join_

collapse_limit to 1. In this case, the optimizer will generate a plan in which the joins

will be executed in the order they appear in the SELECT statement.

Force a specific join order by setting the join_collapse_limit parameter to 1.

For example, if the command in Listing 6-13 is executed (i.e., an EXPLAIN on the

query in Listing 6-6), the execution plan in Figure 6-12 shows that joins are executed

exactly in the order they are listed, and the index on update_ts is not used (which in this

case affects performance negatively).

Listing 6-13.  Disabling cost-based optimization

SET join_collapse_limit=1;

EXPLAIN

 SELECT departure_airport, booking_id, is_returning

 FROM booking_leg bl

 JOIN flight f USING (flight_id)

 WHERE departure_airport IN (SELECT airport_code

 FROM airport WHERE iso_country='US')

 AND bl.booking_id IN (SELECT booking_id FROM booking

 WHERE update_ts>'2020-08-01')

Chapter 6 Long Queries and Full Scans

118

Another way to force a specific join order is using common table expressions, which

will be discussed in Chapter 7.

�Grouping: Filter First, Group Last
In Chapter 5, we mentioned that for short queries, grouping is not time-consuming.

For long queries, the way we approach grouping may have a very significant impact on

performance. Suboptimal decisions regarding the point at which grouping is performed

often become a major source of overall query slowness.

Listing 6-14 shows a query that calculates the average price of a trip and the total

number of passengers for each flight for all flights with any bookings.

Listing 6-14.  Average ticket price and total number of passengers per flight

SELECT bl.flight_id,

 departure_airport,

Figure 6-12.  Execution plan with disabled cost-based optimization

Chapter 6 Long Queries and Full Scans

119

 (avg(price))::numeric (7,2) AS avg_price,

 count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

GROUP BY 1,2

To calculate these numbers for just one flight, a common anti-pattern is the query in

Listing 6-15.

Listing 6-15.  Average ticket price and total number of passengers on a specific

flight

SELECT * FROM

 (SELECT bl.flight_id,

 departure_airport,

 (avg(price))::numeric (7,2) AS avg_price,

 count(DISTINCT passenger_id) AS num_passengers

 FROM booking b

 JOIN booking_leg bl USING (booking_id)

 JOIN flight f USING (flight_id)

 JOIN passenger p USING (booking_id)

 GROUP BY 1,2) a

WHERE flight_id=222183

In this query, we select the data for one flight from an inline SELECT. Earlier versions

of PostgreSQL could not process such constructs efficiently. The database engine

would first execute the inner SELECT with grouping and only then select the line that

corresponds to the specific flight. To make sure the query is executed efficiently, one

would need to write it as shown in Listing 6-16.

Listing 6-16.  Pushing a condition inside the GROUP BY

SELECT bl.flight_id,

 departure_airport,

 (avg(price))::numeric (7,2) AS avg_price,

 count(DISTINCT passenger_id) AS num_passengers

Chapter 6 Long Queries and Full Scans

120

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

WHERE flight_id=222183

GROUP BY 1,2

But now, due to ongoing improvements to the optimizer, both queries will be

executed using the execution plan in Figure 6-13. This plan uses index access, and the

execution time for this query is about 2 seconds.

Figure 6-13.  Execution plan for one flight

Chapter 6 Long Queries and Full Scans

121

For all columns used in the GROUP BY clause, filtering should be pushed inside the
grouping.

For the current version of PostgreSQL, the optimizer takes care of this rewrite, but it

may still be required in older versions.

Let’s look at another example. Listing 6-17 calculates the same numbers (average

price and number of customers) for all flights departing from ORD.

Listing 6-17.  Select for multiple flights

SELECT flight_id,

avg_price,

num_passengers

FROM (SELECT bl.flight_id,

 departure_airport,

 (avg(price))::numeric (7,2) AS avg_price,

 count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

GROUP BY 1,2)a WHERE departure_airport='ORD'

The execution plan for this query is presented in Figure 6-14. This query takes about

1.5 minutes to execute. It is a large query, and most of the joins are executed using the

hash join algorithm. The important part is that the condition on departure_airport is

applied first, before the grouping.

Chapter 6 Long Queries and Full Scans

122

However, more complex filtering conditions can’t be pushed inside grouping.

Listing 6-18 calculates the same statistics, but the list of flight_id is not passed

directly but is selected from the booking_leg table.

Listing 6-18.  Condition can’t be pushed inside the grouping

SELECT a.flight_id,
a.avg_price,
a.num_passengers
FROM (SELECT bl.flight_id,
 departure_airport,
 (avg(price))::numeric (7,2) AS avg_price,
 count(DISTINCT passenger_id) AS num_passengers
FROM booking b
JOIN booking_leg bl USING (booking_id)

Figure 6-14.  Execution plan for Listing 6-17

Chapter 6 Long Queries and Full Scans

123

JOIN flight f USING (flight_id)
JOIN passenger p USING (booking_id)
GROUP BY 1,2) a
WHERE flight_id in
(SELECT flight_id FROM flight WHERE scheduled_departure BETWEEN '07-03-
2020' AND '07-05-2020')

The execution plan (Figure 6-15) shows that grouping is done first and filtering is

applied to the result of grouping. This means that, first, the calculations are performed

for all flights in the system and then the subset is selected. The total execution time for

this query is 10 minutes.

Figure 6-15.  Execution plan

Chapter 6 Long Queries and Full Scans

124

The query in Listing 6-18 is an example of what we call pessimization—using

practices that guarantee slowing down the execution of a query. It’s easy to see why

this query is written the way it is. First, a database developer figures out how to perform

certain calculations or how to select specific values, and then they apply a filter to the

result. Thus, they limit the optimizer to a certain order of operations, which in this case is

not optimal.

Instead, the filtering can be done in the inner WHERE clause. When this change is

made, there’s no longer a need for an inline SELECT—see Listing 6-19.

Listing 6-19.  Condition is pushed inside grouping

SELECT bl.flight_id,

 departure_airport,

 (avg(price))::numeric (7,2) AS avg_price,

 count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

 WHERE scheduled_departure

 BETWEEN '07-03-2020' AND '07-05-2020'

GROUP BY 1,2

The execution time is about one minute, and the execution plan is presented in

Figure 6-16. This can be expressed as the generalization of the technique explained in

the previous example.

Filter rows are not needed for an aggregate prior to grouping.

Even the optimal execution of this query is not instantaneous, but it is the best we

can achieve. Now is a good time to recall that optimization goals should be realistic. A

long query on large data volumes can’t be executed in a fraction of seconds, even when

executed optimally. The key is to use as few rows as necessary, but no fewer.

Chapter 6 Long Queries and Full Scans

125

�Grouping: Group First, Select Last
In some cases, the course of actions should be the opposite: GROUP BY should be

executed as early as possible, followed by other operations. As you might have already

guessed, this order of actions is desirable when grouping will reduce the size of the

intermediate dataset.

The query in Listing 6-20 calculates the number of passengers departing from each

city by month. In this case, it is not possible to reduce the number of rows needed, as all

flights are used in the calculation.

Listing 6-20.  Calculating number of passengers per city per month

SELECT

city,

date_trunc('month', scheduled_departure) AS month,

count(*) passengers

FROM airport a

JOIN flight f ON airport_code = departure_airport

Figure 6-16.  Execution plan with filtering pushed inside grouping

Chapter 6 Long Queries and Full Scans

126

JOIN booking_leg l ON f.flight_id =l.flight_id

JOIN boarding_pass b ON b.booking_leg_id = l.booking_leg_id

GROUP BY 1,2

ORDER BY 3 DESC

The execution time for this query is over 7 minutes, and the execution plan is in

Figure 6-17.

The execution of this query is significantly improved with a nontrivial rewrite, as

shown in Listing 6-21.

Listing 6-21.  Query rewrite that forces grouping be done first

SELECT

city,

date_trunc('month', scheduled_departure),

sum(passengers) passengers

FROM airport a

Figure 6-17.  Execution plan with grouping done last

Chapter 6 Long Queries and Full Scans

127

JOIN flight f ON airport_code = departure_airport

JOIN (

 SELECT flight_id, count(*) passengers

 FROM booking_leg l

 JOIN boarding_pass b USING (booking_leg_id)

 GROUP BY flight_id

) cnt

USING (flight_id)

GROUP BY 1,2

ORDER BY 3 DESC

What is happening here? First, the number of departing passengers is summed

for each flight in the inline view cnt. After, the result is joined with the flight table to

retrieve airport code and then joined with the airport table to find the city where each

airport is located. After this, the flight totals are summed by city. This way, the execution

time is 2.5 minutes. The execution plan is shown in Figure 6-18.

Chapter 6 Long Queries and Full Scans

128

�Using SET operations
We rarely use set theoretical operations in SQL queries. For large queries, however, these

operations may prompt the optimizer to choose more efficient algorithms.

Use set operations to (sometimes) prompt an alternative execution plan and
improve readability.

Figure 6-18.  Execution plan with grouping forced to be first

Chapter 6 Long Queries and Full Scans

129

Often, we can

•	 Use EXCEPT instead of NOT EXISTS and NOT IN.

•	 Use INTERSECT instead of EXISTS and IN.

•	 Use UNION instead of complex selection criteria with OR.

Sometimes, there can be significant performance gains, and sometimes the

execution time changes only slightly, but the code becomes cleaner and easier to

maintain. Listing 6-22 shows a rewrite of the query in Listing 6-8, returning flights with

no bookings.

Listing 6-22.  Using EXCEPT instead of NOT IN

SELECT flight_id FROM flight f

 EXCEPT

 SELECT flight_id FROM booking_leg

Execution time is 1 minute and 3 seconds, which is almost twice as fast as an anti-join.

The execution plan with the EXCEPT operation is presented in Figure 6-19.

Listing 6-23 shows a rewrite of the query in Listing 6-4 using set operations, showing

all flights with a booking.

Figure 6-19.  Execution plan with EXCEPT

Chapter 6 Long Queries and Full Scans

130

Listing 6-23.  Using INTERSECT instead of IN

SELECT flight_id FROM flight f

 INTERSECT

 SELECT flight_id FROM booking_leg

The execution time of this query is 49 seconds. This is less than the version of the

query using the IN keyword and approximately equal to the runtime of the query with an

index-only scan (see Listing 6-10). The execution plan is shown in Figure 6-20.

We rarely need to rewrite complex selection criteria with OR into set theoretical UNION

ALL, because most of the time the PostgreSQL optimizer does a decent job analyzing

such criteria and making use of all suitable indexes. However sometimes rewriting this

way makes code more maintainable, especially when the query contains a large number

of different selection criteria connected with OR. Listing 6-24 is a query that calculates the

number of passengers on delayed flights from FRA using two different sets of selection

criteria. The first group is passengers on flights delayed by more than an hour, with

changes to the boarding pass more than 30 minutes after the scheduled departure. The

second is passengers on flights delayed by more than a half hour but less than an hour.

Listing 6-24.  Query with complex selection criteria with OR

SELECT

CASE

WHEN actual_departure>scheduled_departure + interval '1 hour' THEN 'Late

group 1'

ELSE 'Late group 2'

 END AS grouping,

Figure 6-20.  Execution plan with INTERSECT

Chapter 6 Long Queries and Full Scans

131

flight_id,

count(*) AS num_passengers

 FROM boarding_pass bp

 JOIN booking_leg bl USING (booking_leg_id)

 JOIN booking b USING (booking_id)

 JOIN flight f USING (flight_id)

WHERE departure_airport='FRA'

 AND actual_departure>'2020-07-01' AND ((

 actual_departure>scheduled_departure + interval '30 minute'

 AND actual_departure<=scheduled_departure + interval '1 hour'

)

OR

 (actual_departure>scheduled_departure + interval '1 hour'

 AND bp.update_ts >scheduled_departure + interval '30 minute')

)

 GROUP BY 1,2

The rewrite of this query using UNION ALL is shown in Listing 6-25. The execution

time difference is not significant (about 3 seconds), but the code is more maintainable.

Listing 6-25.  Rewrite of a complex condition with OR using UNION ALL

SELECT

 'Late group 1' AS grouping,

 flight_id,

 count(*) AS num_passengers

 FROM boarding_pass bp

 JOIN booking_leg bl USING (booking_leg_id)

 JOIN booking b USING (booking_id)

 JOIN flight f USING (flight_id)

 WHERE departure_airport='FRA' AND

 actual_departure>scheduled_departure + interval '1 hour' AND

 bp.update_ts > scheduled_departure + interval '30 minutes'

 AND actual_departure>'2020-07-01'

GROUP BY 1,2

UNION ALL

SELECT

Chapter 6 Long Queries and Full Scans

132

 'Late group 2' AS grouping,

 flight_id,

 count(*) AS num_passengers

 FROM boarding_pass bp

 JOIN booking_leg bl USING(booking_leg_id)

 JOIN booking b USING (booking_id)

 JOIN flight f USING (flight_id)

 WHERE departure_airport='FRA' AND

 actual_departure>scheduled_departure + interval '30 minute'

 AND actual_departure<=scheduled_departure + interval '1 hour'

 AND actual_departure>'2020-07-01'

 GROUP BY 1,2

It’s worth noting that with large queries you always need to take into consideration

how much RAM you have available. For both hash joins and set theoretical operations,

if the participating datasets can’t fit into main memory, the execution speed increases

significantly.

�Avoiding Multiple Scans
Another source of slowness in long queries is the presence of multiple table scans. This

common problem is the direct result of imperfect design. Designs can be fixed, at least

theoretically. But since we often find ourselves in situations where we can’t control the

design, we are going to suggest ways to write performant queries even on an imperfect

schema.

The situation that we are modeling in our postgres_air schema is not uncommon

in the real world. The system is already up and running, and all of a sudden, we need to

store some additional information for objects that are already present in the database.

For the past 30 years, the easiest solution in such cases is to use an entity-attribute-

value (EAV) table, which can store arbitrary attributes—those needed now and any that

will eventually be needed. In the postgres_air schema, this pattern is implemented in

the table custom_field. For each passenger, a passport number, a passport expiration

date, and the country that issued the passport are stored. The attributes are accordingly

named 'passport_num', 'passport_exp_date', and 'passport_country'.

Chapter 6 Long Queries and Full Scans

133

This table is not included into the postgres_air distribution. To run the example

locally, execute the following script from the postgres_air GitHub repository:

https://github.com/hettie-d/postgres_air/blob/main/tables/custom_field.sql

Now, imagine a request for a report that lists passenger names and their passport

information. Listing 6-26 is a typical suggested solution: the table custom_field is

scanned three times! In order to avoid failover to the disk, passengers are limited to the

first five million, which allows us to show the true ratio of execution times. The execution

plan in Figure 6-21 confirms three table scans, and the execution time for this query is 5

minutes.

Listing 6-26.  Multiple scans of a large table

SELECT

first_name,

last_name,

pn.custom_field_value AS passport_num,

pe.custom_field_value AS passport_exp_date,

pc.custom_field_value AS passport_country

FROM passenger p

JOIN custom_field pn ON pn.passenger_id=p.passenger_id

AND p.passenger_id<5000000

JOIN custom_field pe ON pe.passenger_id=p.passenger_id

AND pe.custom_field_name='passport_exp_date'

JOIN custom_field pc ON pc.passenger_id=p.passenger_id

AND pc.custom_field_name='passport_country'

WHERE pn.custom_field_name='passport_num'

Chapter 6 Long Queries and Full Scans

https://github.com/hettie-d/postgres_air/blob/main/tables/custom_field.sql

134

Scanning this table three times is like sorting apples, oranges, and lemons from one

black box into three buckets, doing so by first sorting out all the apples, returning all

the oranges and lemons back into the box, then sorting the oranges, and then finally

returning to the box for the lemons. A more effective way to do this job would be to

place all three buckets before you and sort each fruit into the correct bucket when first

removing it from the black box.

When retrieving multiple attributes from an entity-attribute-value table, join to
the table only once and use case statements in the SELECT list to return the
appropriate values in each column.

To replicate this effect on the custom_field table, the query can be rewritten as

shown in Listing 6-27.

Listing 6-27.  One table scan to retrieve multiple attributes

SELECT

last_name,

first_name,

coalesce(max(CASE WHEN custom_field_name ='passport_num'

Figure 6-21.  Execution plan with multiple scans

Chapter 6 Long Queries and Full Scans

135

 THEN custom_field_value ELSE NULL END),'') AS passport_num,

 coalesce(max(CASE WHEN custom_field_name='passport_exp_date'

 THEN custom_field_value ELSE NULL END),'') AS passport_exp_date,

 coalesce(max(CASE WHEN custom_field_name ='passport_country'

 THEN custom_field_value ELSE NULL END),'') AS passport_country

FROM passenger p JOIN custom_field cf

USING (passenger_id)

WHERE cf.passenger_id<5000000

AND p.passenger_id<5000000

GROUP by 1,2

The execution plan for Listing 6-27 is shown in Figure 6-22.

This looks much better—only one table scan—except that when you try to execute it,

it will run significantly longer. A closer look shows why: there may be many passengers

with the same first and last names, so not only does it take longer but the result is also

incorrect. Let’s modify the query one more time—see Listing 6-28.

Figure 6-22.  One table scan

Chapter 6 Long Queries and Full Scans

136

Listing 6-28.  Correction for the query in Listing 6-27

SELECT

last_name,

first_name,

p.passenger_id,

coalesce(max(CASE WHEN custom_field_name ='passport_num'

 THEN custom_field_value ELSE NULL END),'') AS passport_num,

 coalesce(max(CASE WHEN custom_field_name='passport_exp_date'

 THEN custom_field_value ELSE NULL END),'') AS passport_exp_date,

 coalesce(max(CASE WHEN custom_field_name ='passport_country'

 THEN custom_field_value ELSE NULL END),'') AS passport_country

FROM passenger p JOIN custom_field cf

USING (passenger_id)

WHERE cf.passenger_id<5000000

AND p.passenger_id<5000000

GROUP by 3,1,2

The execution plan in Figure 6-23 looks much better—the grouping column is now

passenger_id.

Figure 6-23.  Execution plan for Listing 6-28

Chapter 6 Long Queries and Full Scans

137

There’s one more optimization to make here; attributes from an EAV table are often

joined to other tables, and we can reduce the size of the intermediate result set by

“collapsing” and filtering this table to the needed values before executing other joins.

This is a more specific case of the generalized technique of grouping before joining

earlier.

Pull values from an EAV table into a subquery before joining to other tables.

Doing this for the passport example, we can modify the query one more time, as

shown in Listing 6-29.

Listing 6-29.  Moving grouping to the subquery

SELECT

last_name,

first_name,

passport_num,

passport_exp_date,

passport_country

FROM

passenger p

JOIN

(SELECT cf.passenger_id,

coalesce(max(CASE WHEN custom_field_name ='passport_num'

 THEN custom_field_value ELSE NULL END),'') AS passport_num,

 coalesce(max(CASE WHEN custom_field_name='passport_exp_date'

 THEN custom_field_value ELSE NULL END),'') AS passport_exp_date,

 coalesce(max(CASE WHEN custom_field_name ='passport_country'

 THEN custom_field_value ELSE NULL END),'') AS passport_country

FROM custom_field cf

WHERE cf.passenger_id<5000000

GROUP BY 1) info

USING (passenger_id)

 WHERE p.passenger_id<5000000

The execution plan is presented in Figure 6-24.

Chapter 6 Long Queries and Full Scans

138

�Conclusion
This chapter formally defined long queries and explored optimization techniques for

them.

The first important principle of this chapter is that indexes do not necessarily

make queries run faster and can, in fact, make a long query run slower. A common

misconception is that if no indexes can be built, there is nothing you can do to optimize

a full table scan. Hopefully, this chapter has definitively demonstrated that there are

multiple possibilities to optimize a full table scan.

As with short queries, long queries are optimized by reducing the size of

intermediate results and doing the necessary work on as few rows as possible. In the

case of short queries, this is accomplished by applying indexes on the most restrictive

criteria. In the case of long queries, this is accomplished by being mindful of join order,

applying semi- and anti-joins, and filtering before grouping, grouping before joining,

and applying set operations.

Figure 6-24.  Execution plan with grouping moved to the subquery

Chapter 6 Long Queries and Full Scans

139
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_7

CHAPTER 7

Long Queries: Additional
Techniques
Chapter 6 discussed multiple ways of improving the performance of long queries. Thus

far, all covered techniques relate to rewriting queries without creating any additional

database objects. This chapter addresses additional ways of improving long query

performance, including different ways to materialize intermediate results. Temporary

tables, CTEs (common table expressions), views, and materialized views are discussed—

when each tool can be useful for improving performance and how they can be abused

and lead to performance degradation. Finally, the chapter covers partitioning and

parallel execution.

�Structuring Queries
Those of you familiar with object-oriented programming (OOP) will be familiar with the

concepts of decomposition (factoring) and encapsulation. OOP best practices dictate

that code should be decomposed (or factored) into many smaller classes and objects

responsible for a well-defined subset of system behavior, as well as encapsulated,

restricting direct access to components and thus obscuring their implementation. These

two principles make application code more readable and more manageable and make it

easier to make changes.

Coming from this paradigm, when one is confronted with a single SELECT statement

of 500+ lines, it’s understandably tempting to apply these same principles, factoring the

code into smaller pieces and encapsulating some of the logic.

However, SQL's declarative nature dictates a very different style of factoring SQL

queries from what would be used with application code. In SQL, as in any language,

code should be kept easy to understand and modify, but not at the expense of

performance.

https://doi.org/10.1007/978-1-4842-6885-8_7#DOI

140

We can approach factoring and encapsulation in a variety of ways in SQL, each with

their own advantages and pitfalls. Some are used (with varying effectiveness) to improve

performance and store intermediate results. Others are used to make code reusable.

Others impact the way data is stored. This chapter covers several approaches, and

others, such as functions, will be covered in depth in subsequent chapters.

In any case, any decomposition or encapsulation should correspond to a logical

entity—for example, a report or a daily refresh.

�Temporary Tables and CTEs
In Chapter 6, we mentioned that sometimes the attempt of SQL developers to speed up a

query execution may result in slowing it down. This often happens when they decide to

use temporary tables.

�Temporary Tables
To create a temporary table, one executes a regular create table statement, adding the

keyword temporary, or just temp:

CREATE TEMP TABLE interim_results

Temporary tables are visible to the current session only and are dropped when the

session disconnects if not dropped explicitly before that. Otherwise, they are as good as

regular tables, they can be used in the queries with no limitations, and they can even be

indexed. Temporary tables are often used to store intermediate results of the queries, so

the CREATE statement often looks like

CREATE TEMP TABLE interim_results AS

SELECT ...

All this looks very convenient, so what’s wrong with this approach?

It all works great if you use a temporary table to store results of your query for some

analysis and then discard it when done. But often, when a SQL developer starts to use

temporary tables to store the results of each step, the code starts to look like this:

CREATE TEMP TABLE T1 AS SELECT <...> ;

Chapter 7 Long Queries: Additional Techniques

141

CREATE TEMP TABLE T2 AS SELECT <...>

FROM T1

 INNER JOIN <...>

<...>

The chain of temporary tables can become quite long. Does it cause any problems?

Yes, and there are many of them, including the following:

•	 Indexes – After selected data is stored in a temporary table, we can’t

use indexes that were created on the source table(s). We either need

to continue without indexes or build new ones on temporary tables,

which takes time.

•	 Statistics – Since we created a new table, the optimizer can’t utilize

statistical data on value distribution from the source table(s), so we

need either to go without statistics or run the ANALYZE command on a

temporary table.

•	 Tempdb space – Temporary tables are stored in tempdb, a tablespace,

which is also used for joins, sorting, grouping, and so on, when

intermediate results can’t fit into available main memory. As unlikely

as it may sound, we’ve observed situations where large queries were

competing for space with temporary tables, resulting in queries being

canceled.

•	 Excessive I/O – Temporary tables are still tables, which means they

may be written to disk, and it takes extra time to write to and read

from disk.

The most important negative implication of excessive use of temporary tables is that

this practice blocks the optimizer from doing rewrites.

By saving the results of each join into a temporary table, you prevent the optimizer

from choosing the optimal join order; you “lock” in the order in which you created the

temporary tables.

When we looked at the execution plan of the query in Listing 6-15, we observed that

PostgreSQL was able to push the filtering condition inside grouping. What would happen

if a temp table was created for intermediate results?

Chapter 7 Long Queries: Additional Techniques

142

Listing 7-1.  Inefficient usage of temp tables

CREATE TEMP TABLE flights_totals AS

SELECT bl.flight_id,

 departure_airport,

 (avg(price))::numeric (7,2) AS avg_price,

 count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

GROUP BY 1,2;

SELECT flight_id,

avg_price,

num_passengers

FROM flights_totals

WHERE departure_airport='ORD'

Creating the temporary table took 15 minutes and produced over 500,000 rows, out

of which we needed just 10,000. At the same time, the query in Listing 6-15 took a little

bit over a minute to execute.

�Common Table Expressions (CTEs)
If temporary tables can be so bad, could I use a CTE (a common table expression)

instead? First, what are CTEs?

Common table expressions, or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can
be a SELECT, INSERT, UPDATE, or DELETE; and the WITH clause itself is attached
to a primary statement that can also be a SELECT, INSERT, UPDATE, or DELETE.

Let’s give a CTE a try. In Listing 7-2, the query from Listing 7-1 is modified to use a

CTE instead of a temporary table.

Chapter 7 Long Queries: Additional Techniques

143

Listing 7-2.  Example of a query with a CTE

WITH flights_totals AS(SELECT bl.flight_id,

 departure_airport,

 (avg(price))::numeric (7,2) AS avg_price,

 count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

GROUP BY 1,2)

SELECT flight_id,

avg_price,

num_passengers

FROM flights_totals

WHERE departure_airport=’ORD’

What you will see in the execution plan depends on whether you are running a

PostgreSQL version below 12 or 12 and above. For all versions below 12, a CTE was

processed exactly like a temporary table. The results were materialized in main memory

with possible disk failover. That means that there was no advantage to using a CTE

instead of a temporary table.

To be fair, a CTE’s intended purpose was different. The idea behind the usage of a

CTE was that if you need to use some possibly complex sub-select more than once, you

can define it as a CTE and reference it in a query multiple times. In this case, PostgreSQL

will compute results just once and reuse it as many times as needed.

Because of this intended usage, the optimizer planned the CTE execution separately

from the rest of the query and did not push any join conditions inside the CTE, providing

a so-called optimization fence. This is especially important if WITH is used in INSERT/

DELETE/UPDATE statements where there may be side effects or in recursive CTE calls. In

addition, having the optimization fence means that the tables involved in the CTE are

not counted against join_collapse_limit. Thus, we can effectively use PostgreSQL

optimizer capabilities with queries that join a large number of tables.

For the query in Listing 7-2, in PostgreSQL versions before 12, the CTE flight_

totals would be calculated for all flights, and only after that a subset of flights would be

selected.

Chapter 7 Long Queries: Additional Techniques

144

PostgreSQL 12 brought a drastic change to CTE optimization. For SELECT

statements with no recursion, if a CTE is used in a query only once, it will be inlined into

the outer query (removing the optimization fence). If it is called more than once, the old

behavior will be preserved.

What is more important, the behavior described earlier is a default, but it can be

overwritten by using the keywords MATERIALIZED and NOT MATERIALIZED. (See Listing

7-3.) The first one forces the old behavior, and the second one forces inlining, regardless

of all other considerations.

Listing 7-3.  Usage of the MATERIALIZED keyword

WITH flights_totals AS MATERIALIZED (SELECT bl.flight_id,

 departure_airport,

 (avg(price))::numeric (7,2) AS avg_price,

 count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

GROUP BY 1,2)

SELECT flight_id,

avg_price,

num_passengers

FROM flights_totals

WHERE departure_airport='ORD'

Figure 7-1 presents the execution plan for Listing 7-2, the way it works in PostgreSQL

12. If the keyword MATERIALIZE is added, as shown in Listing 7-3, the old behavior will

be forced, as shown in Figure 7-2.

Chapter 7 Long Queries: Additional Techniques

145

Figure 7-1.  Execution plan for a CTE with inlining

Chapter 7 Long Queries: Additional Techniques

146

Prior to these recent changes, we would discourage SQL developers from using

multiple embedded CTEs, when a SQL statement would look like this:

WITH x AS (SELECT ...)

 WITH y AS (SELECT ... FROM t1 JOIN x...)

 WITH z AS (SELECT...)

SELECT ...

 FROM (SELECT ...

 (SELECT ... FROM c

 JOIN y...) b)a

 JOIN z

...

Figure 7-2.  Forced materialization of a CTE

Chapter 7 Long Queries: Additional Techniques

147

However, with the changes introduced in PostgreSQL 12, such queries are much

more manageable. We would still encourage SQL developers to be mindful not to force

a suboptimal execution plan, but using a chain of CTEs is much better than using a

sequence of temporary tables; in the latter case, the optimizer is helpless.

In conclusion of this section, we want to mention that the situations where storing

intermediate results is beneficial exist. However, almost always there are better ways

than using temporary tables. We will discuss other options later in this chapter.

�Views: To Use or Not to Use
Views are the most controversial database object. They seem to be easy to understand,

and the advantages of creating a view seem so obvious. Why might they cause problems?

Although we are sure that most readers have had a chance to create at least a couple

of views for some project, let’s give a formal definition. The simplest definition is

A view is a database object that stores a query that defines a virtual table.

A view is a virtual table in the sense that syntactically, views may be used in a

SELECT statement in the same way as a table. However, they differ significantly from

tables in that no data is stored; only the query that defines the view is stored in the

database.

Let’s take another look at the query in Listing 6-14. This query calculates the totals

for all flights in the postgres_air schema, but we want to use this query logic to select

the totals for specific flights and/or departure airports. Listing 7-4 creates a view that

encapsulates this logic.

Listing 7-4.  Create a view

CREATE VIEW flight_stats AS

SELECT bl.flight_id,

 departure_airport,

 (avg(price))::numeric (7,2) AS avg_price,

 count(DISTINCT passenger_id) AS num_passengers

 FROM booking b

 JOIN booking_leg bl USING (booking_id)

Chapter 7 Long Queries: Additional Techniques

148

 JOIN flight f USING (flight_id)

 JOIN passenger p USING (booking_id)

GROUP BY 1,2

Now it is easy to select flight statistics for any particular flight:

SELECT * FROM flight_stats

 WHERE flight_id=222183

This query plan looks identical to the plan in Figure 6-13. The reason is that in the

first step of query processing, the query parser transforms views into inline subqueries.

In this case, this works to our advantage, since the filtering condition is pushed inside

the grouping. But if a nonconstant search criterion is used, the results might be

disappointing. In Listing 7-5, flight statistics from the view flight_stats are limited by

the flight’s departure date.

Listing 7-5.  Query using the view

SELECT * FROM flight_stats fs

JOIN (SELECT flight_id FROM flight f

 WHERE actual_departure between '2020-08-01' and '2020-08-16') fl

 ON fl.flight_id=fs.flight_id

The execution plan for this query is shown in Figure 7-3.

Chapter 7 Long Queries: Additional Techniques

149

Looking at this execution plan, we observe that first, the statistics for all flights are

calculated, and only after that are the results joined with selected flights. The execution

time of this query is 10 minutes.

Without using the view, we follow the pattern explained in Chapter 6, filtering the

flights before grouping, as shown in Listing 7-6.

Listing 7-6.  Rewriting the query without the view

SELECT bl.flight_id,

 departure_airport,

 (avg(price))::numeric (7,2) AS avg_price,

 count(DISTINCT passenger_id) AS num_passengers

 FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

Figure 7-3.  Execution plan in which the condition can’t be pushed

Chapter 7 Long Queries: Additional Techniques

150

WHERE actual_departure between '2020-08-01' AND '2020-08-16'

GROUP BY 1,2

The execution plan for this query is shown in Figure 7-4 and shows that the

restrictions on the flight table are applied first. The execution time for this query is 3

minutes.

It is misleading when database textbooks, including those teaching PostgreSQL

basics, state that views can be used “like tables.” In practice, views that were originally

created solely to encapsulate a stand-alone query are often used in other queries, joined

to other tables and views, including joining multiple times to tables already included in

the view, without knowing what’s going on behind the scenes.

Figure 7-4.  Execution plan for Listing 7-6

Chapter 7 Long Queries: Additional Techniques

151

On the one hand, people usually create a view precisely for the purpose of

encapsulation, so that others can use it without needing to figure out selection logic. On

the other hand, this opacity is the cause of poor query performance. This effect becomes

especially pronounced when some columns in a view are the results of transformation.

Consider the view flight_departure in Listing 7-7.

Listing 7-7.  View with column transformation

CREATE VIEW flight_departure as

SELECT bl.flight_id,

 departure_airport,

 coalesce(actual_departure, scheduled_departure)::date

 AS departure_date,

 count(DISTINCT passenger_id) AS num_passengers

 FROM booking b

 JOIN booking_leg bl USING (booking_id)

 JOIN flight f USING (flight_id)

 JOIN passenger p USING (booking_id)

GROUP BY 1,2,3

Executing the query

SELECT flight_id,

 num_passengers

 FROM flight_departure

WHERE flight =22183

…the filter on the flight will be pushed inside the view, and the query will be

executed in under 1 second. A user who isn’t aware that flight_departure is a view might

think that all columns have comparable performance and might be surprised to see the

result when running the following query:

SELECT flight_id,

 num_passengers

 FROM flight_departure

 WHERE departure_date= '2020-08-01'

Chapter 7 Long Queries: Additional Techniques

152

This query takes almost two minutes to execute. The difference is due to the fact

that the departure_date column is a transformation, and as discussed in Chapter 5, no

indexes can be utilized. The execution plan for this query is shown in Figure 7-5.

An even worse case of performance degradation is shown in Listing 7-8.

Unfortunately, this is a real-life case. When a person using a view does not know what

query was used to create it, they might use it to select data that is much easier to obtain

from the underlying tables.

Listing 7-8.  Selection of only one column from the view

SELECT flight_id

 FROM flight_departure

 WHERE departure_airport='ORD'

Figure 7-5.  Execution plan when indexes can’t be utilized

Chapter 7 Long Queries: Additional Techniques

153

This query doesn’t concern itself with the number of passengers on a flight; it

merely selects flights departing from ORD for which any tickets were sold. And yet, the

execution plan for Listing 7-8 is quite complex—see Figure 7-6.

This query runs for 1 minute and 42 seconds. However, a query that selects the same

information without using the view

SELECT flight_id FROM flight where departure_airport='ORD'

AND flight_id IN (SELECT flight_id FROM booking_leg)

…will use available indexes and will run for just 3 seconds.

Figure 7-6.  Execution plan for the query in Listing 7-8

Chapter 7 Long Queries: Additional Techniques

154

�Why Use Views?
Now that we've seen so many examples of the negative effects of using views, is there

anything to say in their defense? Are there any situations in which views can improve

query performance?

Internally in PostgreSQL, any creation of a view includes creation of rules, implicitly,

in most cases. The select rules may restrict access to underlying tables. Rules, triggers,

and automatic updates make views in PostgreSQL extremely sophisticated and provide

functionality very similar to tables.

However, they do not provide any performance benefit. The best, and perhaps only

justified, use of views is as a security layer or to define a reporting entity, to ensure that

all joins and business logic are defined correctly.

�Materialized Views
Most modern database systems allow users to create materialized views, but their

implementations and precise behavior vary.

Let’s begin with a definition.

A materialized view is a database object that combines both a query definition and
a table to store the results of the query at the time it is run.

A materialized view is different from a view, because query results are stored, not just

the view definition. This means that a materialized view reflects the data at the time it

was last refreshed, not current data. It is different from a table, because you can’t modify

data in a materialized view directly, but you can only refresh it using a predefined query.

�Creating and Using Materialized Views
Let’s walk through an example to help illustrate the definition of a materialized view.

Listing 7-9 creates a materialized view.

Chapter 7 Long Queries: Additional Techniques

155

Listing 7-9.  Create a materialized view

CREATE MATERIALIZED VIEW flight_departure_mv AS

SELECT bl.flight_id,

 departure_airport,

 coalesce(actual_departure,

 scheduled_departure)::date departure_date,

 count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

GROUP BY 1,2,3

What happens when this command is run? First, in this particular case, it will take a

very long time to execute. But when it finishes, there will be a new object in the database,

which stores the results of this execution of the query in the database. In addition, the

query itself will be stored along with the data. In contrast to views, when materialized views

are referenced in queries, they behave exactly like tables. The optimizer won’t substitute

them with their defining queries, and they will be accessed as tables. Indexes can also be

created on materialized views, although they cannot have primary and foreign keys:

CREATE UNIQUE INDEX flight_departure_flight_id

ON flight_departure_mv(flight_id);

--

CREATE INDEX flight_departure_dep_date

ON flight_departure_mv(departure_date);

--

CREATE INDEX flight_departure_dep_airport

ON flight_departure_mv(departure_airport);

Executing this query

SELECT flight_id,

 num_passengers

 FROM flight_departure_mv

 WHERE departure_date_= '2020-08-01’

…will take only 400 ms, and the execution plan will show an index scan.

Chapter 7 Long Queries: Additional Techniques

156

�Refreshing Materialized Views
A REFRESH command populates the materialized view with the results of the base query

at the time the refresh is executed. The syntax for the REFRESH command follows:

REFRESH MATERIALIZED VIEW flight_departure_mv

Materialized views in PostgreSQL are less mature than in some other DBMS, like

Oracle. Materialized views cannot be updated incrementally, and the refresh schedule

can’t be specified in the materialized view definition. Each time the REFRESH command

is executed, the underlying table is truncated, and the results of the SELECT statement

are inserted. If an error occurs during refresh, the refresh process is rolled back, and the

materialized view remains unchanged.

During refresh, the materialized view is locked, and its contents are unavailable

to other processes. To make the prior version of a materialized view available during

refresh, the CONCURRENTLY keyword is added:

REFRESH MATRIALIZED VIEW CONCURRENTLY flight_departure_mv

A materialized view can only be refreshed concurrently if it has a unique index. The

concurrent refresh will take longer than regular refresh, but access to the materialized

view won’t be blocked.

�Create a Materialized View or Not?
It is difficult to provide specific, universal conditions in which creating a materialized

view is beneficial, but there follow some guidelines for decision-making. Since

materialized view refreshes take time and selecting from a materialized view is going to

be much faster than from a view, consider the following:

•	 How often does the data in the base tables change?

•	 How critical is it to have the most recent data?

•	 How often do we need to select this data (or rather how many reads

per one refresh are expected)?

•	 How many different queries will use this data?

Chapter 7 Long Queries: Additional Techniques

157

What should the thresholds for “often” and “many” be? It’s subjective, but let’s look

at some examples to illustrate. Listing 7-10 defines a materialized view very similar to the

view in Listing 7-9, except that it selects flights that departed yesterday.

Listing 7-10.  Materialized view for yesterdays’ flights

CREATE MATERIALIZED VIEW flight_departure_prev_day AS

SELECT bl.flight_id,

 departure_airport,

 coalesce(actual_departure,

 scheduled_departure)::date departure_date,

 count(DISTINCT passenger_id) AS num_passengers

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

JOIN passenger p USING (booking_id)

WHERE (actual_departure BETWEEN CURRENT_DATE -1 AND CURRENT_DATE)

 OR (actual_departure IS NULL AND scheduled_departure

 BETWEEN CURRENT_DATE -1 AND CURRENT_DATE)

GROUP BY 1,2,3

Information about flights that departed yesterday is not going to change, so it is safe

to assume that the view will not need to be refreshed until the next day. On the other

hand, this materialized view can be used in several different queries that will all perform

faster if query results are materialized.

Let’s consider another potential candidate for materializing—Listing 6-29. Suppose a

materialized view with the subquery is created, as in Listing 7-11.

Listing 7-11.  Create a materialized view from the subquery

CREATE MATERIALIZED VIEW passenger_passport AS

SELECT cf.passenger_id,

coalesce(max(CASE WHEN custom_field_name ='passport_num'

 THEN custom_field_value ELSE NULL END),'') AS passport_num,

 coalesce(max(CASE WHEN custom_field_name='passport_exp_date'

 THEN custom_field_value ELSE NULL END),'') AS passport_exp_date,

Chapter 7 Long Queries: Additional Techniques

158

 coalesce(max(CASE WHEN custom_field_name ='passport_country'

 THEN custom_field_value ELSE NULL END),'') AS passport_country

FROM custom_field cf

group by 1

This materialized view is going to be very helpful. First, it has been shown already

that this query takes a long time to execute, so time will be saved by pre-calculating the

results. Second, passport information does not change (this information is associated

with booking, and the same person will be assigned a different passenger_id in a

different booking). It looks like a great candidate for a materialized view, if not for a few

potential issues.

First, passengers are not required to submit their passport information during

booking. This means that although once it is entered, this information will remain the

same, for any particular flight, passport information may continue to be entered until

the gate is closed. Hence, this materialized view will need to be constantly refreshed, and

each refresh takes about 10 minutes.

Second, this materialized view will keep growing. Unlike the previous example, when

each day’s refresh will cover data solely from the previous day, data about passengers’

passports will grow, and it will take longer and longer to refresh a materialized view.

Such situations are frequently overlooked in the early stage of a project, when there is

little data in any table and materialized views refresh quickly. Since PostgreSQL does not

allow an incremental materialized view refresh, a possible solution could be to create

another table, with the same structure as the materialized view in Listing 7-11, and

periodically upend new rows when new passport information becomes available.

However, if the latter solution is adopted, it’s unclear why the custom_field table

is needed in the first place, if data is needed in the format specified by the passenger_

passport materialized view. This will be a topic in the next chapter, which discusses the

impact of design on performance.

�Do Materialized Views Need to Be Optimized?
Although the query of a materialized view is executed less frequently than the

materialized view itself is used, we still need to pay attention to its execution time. Even

when a materialized view is a short query (e.g., when it contains data for the previous

day, as in Listing 7-9), it may end up doing full scans of large tables, if proper indexes are

not in place or an execution plan is suboptimal.

Chapter 7 Long Queries: Additional Techniques

159

As mentioned earlier, we don’t accept the excuse that something doesn’t need to be

optimized because it runs infrequently, whether once a month, once a week, or once a

day. No one is happy with reports that run for six hours, no matter how infrequently. In

addition, these periodic reports are often all scheduled at the same time—usually 9 AM

on a Monday—starting the week with more stress than anyone needs. The techniques

discussed in Chapters 5 and 6 can and should be applied to materialized views.

�Dependencies
When views and materialized views are created, a side effect is the creation of

dependencies. Both views and materialized views have queries associated with them, and

when any database object involved in those queries is altered, the dependent views and

materialized views need to be recreated.

Actually, PostgreSQL doesn’t even permit an alter or drop on a table or materialized

views if they have dependent views and materialized views. Making a change requires

adding the CASCADE keyword to the ALTER or DROP command.

Note E ven if the column that is being dropped or altered does not participate in
any dependent object, the dependent objects still must be dropped and recreated.
Even adding a new column to the table will have a similar effect.

If views and materialized views are built on top of other views, adding one column

to one base table may result in recreating several dozen dependent database objects.

Creating a view does not take substantial time, but rebuilding multiple dependent

materialized views does, and all this time the materialized views will be unavailable,

even if they allow concurrent refreshes.

Subsequent chapters discuss functions and stored procedures, which can eliminate

such dependencies.

Chapter 7 Long Queries: Additional Techniques

160

�Partitioning
So far, this chapter has discussed different ways of splitting queries into smaller parts.

Partition is a different sort of division—dividing the data. A partitioned table consists

of several partitions, each of which is defined as a table. Each table row is stored in one of

the partitions according to rules specified when the partitioned table is created.

Partition support is relatively new in PostgreSQL, and beginning with PG 10,

improvements are made in every release, making partitioned tables easier to use.

The most common case is range partitioning, meaning that each partition contains

rows that have values of an attribute in the range assigned to the partition. Ranges

assigned to different partitions cannot intersect, and a row that does not fit into any

partition cannot be inserted.

As an example, let’s create a partitioned version of the boarding_pass table. The

sequence of commands is shown in Listing 7-12.

Listing 7-12.  Create a partitioned table

---create table

CREATE TABLE boarding_pass_part (

boarding_pass_id SERIAL,

passenger_id BIGINT NOT NULL,

booking_leg_id BIGINT NOT NULL,

seat TEXT,

boarding_time TIMESTAMPTZ,

precheck BOOLEAN NOT NULL,

update_ts TIMESTAMPTZ

)

PARTITION BY RANGE (boarding_time);

--create partitions

--

CREATE TABLE boarding_pass_may

PARTITION OF boarding_pass_part

FOR VALUES

FROM ('2020-05-01'::timestamptz)

TO ('2020-06-01'::timestamptz) ;

Chapter 7 Long Queries: Additional Techniques

161

--

CREATE TABLE boarding_pass_june

PARTITION OF boarding_pass_part

FOR VALUES

FROM ('2020-06-01'::timestamptz)

TO ('2020-07-01'::timestamptz);

--

CREATE TABLE boarding_pass_july

PARTITION OF boarding_pass_part

FOR VALUES

FROM ('2020-07-01'::timestamptz)

TO ('2020-08-01'::timestamptz);

--

CREATE TABLE boarding_pass_aug

PARTITION OF boarding_pass_part

FOR VALUES

FROM ('2020-08-01'::timestamptz)

TO ('2020-09-01'::timestamptz);

--

INSERT INTO boarding_pass_part SELECT * from boarding_pass;

Why create a partitioned table?

Partitions can be added to a partitioned table or dropped. The DROP command

is executed significantly faster than bulk DELETE and does not require subsequent

vacuuming. A typical use case is a table partitioned on date ranges (e.g., partition per

month), a new partition is added, and the oldest one is dropped at the end of every

month.

Partitioning may be used to distribute large amounts of data across several database

servers: a partition can be a foreign table.

From a performance perspective, partitioning may reduce the time needed for full

table scans: if a query contains conditions on the partitioning key, the scan is limited to

these partitions only. This makes partitioning especially useful for long queries where

table scans are the best option.

Chapter 7 Long Queries: Additional Techniques

162

How should a partitioning key for a table be selected? Based on the preceding

observation, the partitioning key should be chosen so that it is used by the search

conditions in either a large enough number of queries or in the most critical queries.

Let’s look at an example from Chapter 6, Listing 6-21. If this query is limited to

boarding time between July 15 and July 31

SELECT

city,

date_trunc('month', scheduled_departure),

sum(passengers) passengers

FROM airport a

JOIN flight f ON airport_code = departure_airport

JOIN (

SELECT flight_id, count(*) passengers

FROM booking_leg l

JOIN boarding_pass b USING (booking_leg_id)

 WHERE boarding_time > '07-15-20'

 and boarding_time <'07-31-20'

GROUP BY flight_id

) cnt

USING (flight_id)

GROUP BY 1,2

ORDER BY 3 DESC

…this will be still a long query, which will perform a full table scan of the boarding_

pass table. The execution plan is identical to the one in Figure 6-18.

However, executing the similar query using the partitioned table boarding_pass_

part (see Listing 7-13), this query will take advantage of partitions.

Listing 7-13.  Querying a partitioned table

SELECT

city,

date_trunc('month', scheduled_departure),

sum(passengers) passengers

FROM airport a

JOIN flight f ON airport_code = departure_airport

Chapter 7 Long Queries: Additional Techniques

163

JOIN (

SELECT flight_id, count(*) passengers

FROM booking_leg l

JOIN boarding_pass_part b USING (booking_leg_id)

 WHERE boarding_time > '07-15-20'

 and boarding_time <'07-31-20'

GROUP BY flight_id

) cnt

USING (flight_id)

GROUP BY 1,2

ORDER BY 3 DESC

The execution plan in Figure 7-7 proves that instead of scanning the whole table,

the optimizer chooses to scan only one partition, since the query is filtered on boarding

time. And while query runtime on a non-partitioned table is approximately the same

regardless of filtering by boarding time, for a partitioned table, the execution time is

more than twice as fast, because all the rows are located in one partition.

Chapter 7 Long Queries: Additional Techniques

164

Partitions may have their own indexes that obviously are smaller than an index on

the whole partitioned table. This option might be beneficial for short queries. However,

this might significantly improve performance only if almost all queries extract data from

the same partition. The cost of search in a B-tree is proportional to its depth. An index

on a partition, most likely, will eliminate only one level of the B-tree, while the choice

Figure 7-7.  Execution plan with a partitioned table

Chapter 7 Long Queries: Additional Techniques

165

of needed partition also requires some amount of resources. These resources are likely

comparable with the amount needed for an extra index level. Of course, a query may

refer to a partition instead of the whole partitioned table, hiding the cost of choosing the

partition to the application issuing the query.

Therefore, the benefits of partitioning for short queries should not be overestimated.

�Parallelism
The Introduction of this book stated that it wouldn’t cover parallel execution for two

reasons: First, parallel execution is relatively new to PostgreSQL, having been introduced

in PostgreSQL 10. Second, none of us, the authors, have industrial experience with

parallelism in PostgreSQL and can’t add much to extant documentation. Every new

version of PostgreSQL brings more improvements to parallel execution.

However, parallelism is often presented as the silver bullet to solve all performance

problems, and we feel compelled to warn you about not setting expectations too high

regarding parallelism—this is true in any RDBMS, not just PostgreSQL.

Parallel execution can be viewed as yet another way to split up the query: the amount

of work needed to execute a query is divided between processing units (processors or

cores).

Any parallel algorithm has a certain part that must be executed on a single unit. Also,

additional overheads appear as a cost of synchronizations between parallel processes.

For these reasons, parallel processing is mostly beneficial when bulk amounts of data are

processed. Specifically, parallel execution is beneficial for massive scans and hash joins.

Both scans and hash joins are typical for long queries, for which the speed-up is usually

most significant.

In contrast, the speed-up for short queries is usually negligible. However, parallel

execution of different queries may improve throughput, but this is not related to parallel

execution of a single query.

Sometimes an optimizer may replace index-based access (that would be used within

sequential execution) with a parallel table scan. This may be caused by imprecise cost

estimation. In such cases, parallel execution may be slower than sequential execution.

All execution plans in this book were created with parallelism turned off.

Chapter 7 Long Queries: Additional Techniques

166

In addition, whatever scalability benefits are provided by parallel execution cannot

fix poor design or compensate for inefficient code for a simple mathematical reason:

scalability benefits from parallelism are at best linear, while the cost of nested loops is

quadratic.

�Summary
This chapter covered different ways to break queries into smaller functional parts and

the advantages and disadvantages of each approach. It covered the potential pitfalls of

one often-used optimization tool—temporary tables—and showed how common table

expressions can be used as an alternative that doesn’t stymie the query optimizer. It also

discussed views and materialized views and their impact on performance. Finally, it

briefly addressed partitioning and parallel execution.

Chapter 7 Long Queries: Additional Techniques

167
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_8

CHAPTER 8

Optimizing Data
Modification
Up to this point, the focus has been on optimizing queries, which means that only

data retrieval has been covered. We haven’t touched on anything related to data

manipulation, that is, updating, removing, or adding records in the database. That’s the

subject of this chapter, which discusses how data manipulation affects performance and

what can be improved.

�What Is DML?
Any database system has two languages: DDL (data definition language), used to

create tables and other database objects, and DML (data manipulation language),

which is used to query and modify data in the database. In PostgreSQL, both DDL and

DML are parts of SQL, but some commands are related to DDL (ALTER TABLE, CREATE

MATERIALIZED VIEW, DROP INDEX, etc.), while others are related to DML (INSERT, UPDATE,

DELETE). It is also common to refer to these commands as DDL and DML, respectively,

so a reference to “running DDL” means executing data definition commands, and

“running DML” means executing INSERT, UPDATE, or DELETE.

�Two Ways to Optimize Data Modification
The execution of any DML statement consists of two parts: selecting the records to be

modified and the data modification itself. In the case of INSERT, the first part may be

omitted when constants are being inserted. However, if an INSERT-SELECT construct is

used, the records that are needed for the insert must be found first.

https://doi.org/10.1007/978-1-4842-6885-8_8#DOI

168

For this reason, optimizing a DML statement consists of two parts: optimizing

selection and optimizing data modification.

If the search part is the problem, then it is the SELECT part that should be optimized.

This is well covered in prior chapters. This chapter concerns itself with the second part—

optimizing writing data.

In the overwhelming majority of cases, even OLTP systems execute significantly

fewer DML statements than SELECT statements. This is the primary reason that people

seldom talk about optimizing DML. However, long-running DML may cause problems

not only because the updated data won’t be available in the system in a timely manner

but also because it can create blocking locks, which slow down the execution of other

statements.

�How Does DML Work?
To discuss the optimizations applicable to data modification SQL commands, a bit more

theory is required.

�Low-Level Input/Output
At the end of the day, any SQL operation, no matter how complex, comes down to a

couple low-level operations: reading and writing individual database blocks. The reason

is simple: data contained in the database can only be processed when blocks are fetched

in main memory, and all modifications are first done in main memory and then written

to the disk.

A fundamental difference between reads and writes is that reads from disk must

be completed before the data can be processed; thus, a SELECT statement cannot be

completed before all needed blocks are fetched into memory. In contrast, the changes

inside a block are completed before the write starts; thus, a SQL operation can be

completed without any delays. There is no need to wait until the modified data are

actually written to the disk. This is somewhat counterintuitive: usually one would expect

that an update requires more resources than a read.

Of course, writes do require much more resources than reads: the database must

modify indexes and register updates in the WAL (write-ahead log). Still, this happens

in the main memory as far as single DML statements are concerned. WAL records are

forced to disk only on commits.

Chapter 8 Optimizing Data Modification

169

This sounds great: any INSERT, UPDATE, or DELETE appears to run much faster than a

SELECT. If so, why are optimizations still needed?

There are two major reasons: First, writes are still needed and hence consume some

amount of hardware resources, mostly I/O bandwidth. The cost of writes is amortized

and is not necessarily visible on any single operation, but it still slows down processing

and can even affect the performance of SELECT statements. An additional workload is

produced by background (e.g., modified blocks being written to disk) and maintenance

procedures. Typically, maintenance performs data restructuring, for example, the

VACUUM operation in PostgreSQL. Some restructuring tasks block access to the modified

object for the entire duration of restructuring.

Second, modifications may interfere with other modifications and even with

retrieval. As long as data is not modified, the order of processing is immaterial. Data

can be accessed from different SELECT statements simultaneously. In contrast,

modifications cannot be simultaneous, and the order of operations is crucial. In order

to ensure correctness, some operations must be delayed or even declined. Correctness

is the responsibility of the concurrency control (a.k.a. transaction processing)

subsystem. Transaction processing is not the focus of this book; however, discussion of

modifications cannot avoid some considerations related to the transactional behavior of

the DBMS.

�The Impact of Concurrency Control
To ensure the correct order of operations, transaction dispatchers usually rely on locking.

If a transaction requires a lock and another transaction already has a conflicting lock, the

execution is delayed until the conflicting lock is released. This is called lock waiting. Lock

waiting is the primary cause of delays in modification operations.

Another function of concurrency control is to ensure that updates are not lost.

Any updates performed by a committed transaction must be reliably stored on a hard

drive before commit. The mechanism for this the write-ahead log (WAL). All data

modifications are registered in WAL records on the hard drive before a transaction

can commit. The WAL is written sequentially, and on slow rotating drives, sequential

reads and writes are two orders of magnitude faster than random reads and writes. This

difference is negligible on SSDs. Although there is no need to wait until all changes are

written from the cache to the database, commits still must wait until the WAL is flushed.

As result, committing too frequently can significantly slow down processing. An extreme

Chapter 8 Optimizing Data Modification

170

case is running each DML statement in a separate transaction. This actually happens if

an application does not use transaction control statements and therefore the database

wraps each statement into a separate transaction. On the other hand, transactions that

are too long may cause slowness due to locking.

The preceding considerations apply to any high-performance database. Let’s look at

techniques specific to PostgreSQL.

One of the distinguishing features of PostgreSQL is that it never performs updates

in place. Instead, a new version of an item (e.g., a table row) is inserted and stored in

a free space in the same or a newly allocated block, while the previous version is not

overwritten immediately.

Figure 8-1 shows the structure of a block from Figure 3-1 after a deletion (or update)

of the second row. The space previously occupied by this row cannot be used for another

row; and, in fact, the data is still accessible.

Figure 8-1.  Block layout after deletion of a row

Chapter 8 Optimizing Data Modification

171

This feature may have both positive and negative impacts on performance.

The obsolete versions are not kept forever. A VACUUM operation removes them and

consolidates the free space in a block when old versions are no longer needed for

currently running transactions.

PostgreSQL uses the snapshot isolation (SI) concurrency control protocol to prevent

undesirable interference between transactions. Note that database textbooks usually

explain locking as it is used in a two-phase locking concurrency control protocol and

it significantly differs from the way locks are used in PostgreSQL. Any intuition gained

from textbooks or experiences with other systems might be misleading.

Under SI, a transaction always reads the latest committed version of a row. If

another transaction has updated this row but did not commit before the start of the read

operation, the read operation will return an obsolete version. This is an advantage as the

older version is available and locking is not needed to read it. That is, the multi-version

concurrency control improves throughput as there is no need to delay read operations.

According to SI, concurrent writes of the same data are not allowed: if two

concurrent (i.e., running at the same time) transactions attempt to modify the same

data, one of the two transactions must be aborted. In general, there are two strategies

to enforce this rule. One is called first update wins, and the other is called first commit

wins. It is easier to enforce the first strategy: we know that an update was executed right

away, and the second transaction can be aborted without any wait. However, PostgreSQL

utilizes the second strategy.

To enforce this rule, PostgreSQL uses write locks for any modification operation.

Before a transaction can make any data changes, it has to acquire a lock for updates. If a

lock cannot be obtained because some other transaction is modifying the same data, the

operation is delayed until the termination of the transaction that holds the conflicting

lock. If the lock is released because the holding transaction is aborted, the lock is

granted to the waiting transaction, and a data modification operation can be completed.

Otherwise, if the transaction commits successfully, the subsequent behavior depends on

the transaction isolation level. For READ COMMITTED, which is the default in PostgreSQL,

the waiting transaction will read the modified data, acquire a write lock, and complete

the modification. This behavior is possible because on this isolation level, a read

operation can read a version committed before the start of the SELECT statement, rather

than the start of the transaction. If the isolation level is REPEATABLE READ, the waiting

transaction will be aborted. This implementation results in waits but avoids unneeded

aborts.

Chapter 8 Optimizing Data Modification

172

We do not discuss the SERIALIZABLE level because it is used vanishingly rarely.

Now, let’s take a look at some important special cases.

�Data Modification and Indexes
In Chapter 5, when we talked about creating new indexes, we mentioned that adding

indexes to a table can potentially slow DML operations. How much slower depends

on storage and system characteristics (e.g., disk speed, processors, and memory), but

according to multiple PostgreSQL experts’ observations, adding an extra index results in

only a 1% increase in INSERT/UPDATE time.

You can perform some experiments using the postgres_air schema. For example,

start with a table that has many indexes, such as the flight table.

First, create a copy of the table flight with no indexes:

CREATE TABLE flight_no_index AS

SELECT * FROM flight LIMIT 0;

Then, insert rows from the table flight into the table flight_no_index:

INSERT INTO flight_no_index

SELECT * FROM flight LIMIT 100

After that, truncate the new table, and start building the same indexes built in

Chapter 5 for the table flight on table flight_no_index. Repeat the insert. There is no

difference in execution time for a small number of rows (around a couple hundred rows),

but some slowness is observed when inserting 100,000 rows. For typical operations

performed in the OLTP environment, however, there will be no material difference.

Naturally, creating indexes takes time, and it is worth mentioning that the CREATE

INDEX operation in PostgreSQL puts an exclusive lock on the table, which can affect other

operations. CREATE INDEX CONCURRENTLY takes longer to complete but leaves the table

accessible to other processes.

As we mentioned earlier, PostgreSQL inserts new versions of updated rows. This

has certain negative impacts on performance: in general, new versions are inserted into

different locations, and therefore all indexes on the table must be modified. To reduce

this negative effect, PostgreSQL uses a technique that sometimes is referred to as HOT

(heap-only tuples); an attempt is made to insert the new version into the same block.

If the block has sufficient free space and the update does not involve modifying any

indexed columns, then there is no need to modify any indexes.

Chapter 8 Optimizing Data Modification

173

�Mass Updates and Frequent Updates
As mentioned earlier, PostgreSQL never destroys data immediately. The DELETE

statement marks deleted rows as removed, while UPDATE inserts a new version of a row

and marks the previous version as outdated. As soon as these rows are not needed for

active transactions, they become dead. The presence of dead rows effectively reduces the

number of active rows in a block and thus slows down subsequent heap scans.

The space occupied by dead rows (i.e., deleted tuples) remains unused until it is

reclaimed by a VACUUM operation. Most of the time, even with a relatively high rate of

updates, routine vacuuming initiated by the auto-vacuum daemon addresses the dead

tuples promptly, so that they do not cause any significant delays.

However, if a mass UPDATE/DELETE is performed, that is, any operation that affects

a large fraction of the table, SELECT from that table may become significantly slower,

because the visibility map would force recheck to go to the heap blocks. Also, as

mentioned earlier, the number of active tuples on a page starts to decrease. This will

result in more blocks needing to be read into memory for each select operation. This

ultimately can cause the database to perform its own internal swapping operations.

In this case, aggressive tuning of the auto-vacuum setting or manually running

VACUUM ANALYZE operations is required.

VACUUM can cause a substantial increase in I/O activity that might cause poor

performance for other active sessions. Vacuum can be tuned to spread its impact over

time, which will reduce the amount of drastic I/O spikes. However, as a result, the VACUUM

operation will take longer to complete.

Now, let’s consider a different case: a table experiences frequent updates (although

each of these updates affects a single row or a very small number of rows).

Although the internal structure of a block provides for addressing every single

row, indexes in PostgreSQL contain references to blocks containing indexed rows,

rather than to rows themselves. As discussed earlier, any update of a row creates a

new copy. However, if the new version is stored in the same block and the value of the

indexed column is not changed, then there is no need to update this index, and indeed

PostgreSQL will not touch it.

In order to benefit from the feature outlined, we need to ensure that blocks contain a

sufficient amount of free space.

Chapter 8 Optimizing Data Modification

174

The percentage of free space in table blocks can be set using the fillfactor storage

parameter in the WITH clause of the CREATE TABLE statement. By default, the value of this

parameter is 100, which tells PostgreSQL to fit as many rows as possible and minimize

the size of free space in every block. Thus, usually free space can appear only after

updates or deletions followed by vacuuming.

To reduce the performance overhead on index updates, we can specify smaller

values of fillfactor. PostgreSQL allows values as low as 10, leaving 90% of block space

for updated versions of rows. Of course, small values of the fillfactor parameter result

in an increased number of blocks needed to store table data and hence increase the

number of reads needed for a heap scan of the table. This significantly slows down long

queries but might be less significant for short queries, especially when only one row is

actually selected from a block.

�Referential Integrity and Triggers
The presence of multiple foreign keys in a table can potentially slow DML. This is not to

suggest that referential integrity checks are bad. On the contrary, the ability to maintain

referential integrity is one of the most powerful features of relational systems. The

reason they might slow data manipulation operations is that for each INSERT/UPDATE

operation on a table with integrity constraints, the database engine has to check whether

the new values of the constrained columns are present in the respective parent tables,

thus executing additional implicit SELECT statements. These checks may take virtually

no time, for example, if the parent table is a small lookup containing just a handful of

rows. However, if the parent table size is comparable with the size of the child table, the

overhead may be more noticeable. As in most other cases, the actual delay time depends

on system parameters and hardware characteristics.

The execution times with and without constraints can be compared by creating a

copy of the flight table:

CREATE TABLE flight_no_constr AS

SELECT * FROM flight LIMIT 0;

Chapter 8 Optimizing Data Modification

175

Then, once again, start adding the same constraints as the flight table has to the

flight_no_constr table, and once again, try to perform inserts. You may notice that

adding an integrity check on the aircraft_code attribute does not impact the time

to insert, but adding constraints on departure_airport and arrival_airport would

noticeably slow down inserts.

Note that operations on the parent table are also affected: when a record in the

parent table is updated or deleted, the database engine has to check that there are no

records in each of the child tables that references the updated or deleted value.

Triggers might potentially slow down data modification operations as well, for the

same reason as referential integrity constraints: each trigger invocation may result in

executing multiple additional SQL commands. The extent to which each trigger slows

down execution depends on its complexity.

It’s worth noting that referential integrity constraints in PostgreSQL are implemented

using system triggers, so all observations regarding integrity constraints are applicable

for triggers. The fact that the presence of triggers might impact performance does not

mean that triggers should not be used. On the contrary, if there are some actions or

checks that should be performed for any DML operation on the table, it is beneficial to

implement them using database triggers instead of programming these checks in the

application. The latter approach will be less efficient and would not cover the cases

when the data in the table is modified directly in the database instead of accessing it

through the application.

�Summary
In this chapter, we briefly discussed the implication of data manipulation operations

on system performance. Typically, DML commands are executed at least an order of

magnitude less frequently than SELECT statements. However, if data modification

inefficiencies are not addressed in a timely manner, they may result in blocking locks

and thus affect the performance in all parts of the application.

Chapter 8 Optimizing Data Modification

177
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_9

CHAPTER 9

Design Matters
In the Introduction, we noted that optimization begins during requirements gathering

and design. To be precise, it starts from system design, including the database design,

but it is impossible to come up with the right design unless we invest time in gathering

information about the objects that should be present in the database. In this chapter, we

will discuss a variety of design options and will show how design decisions can impact

performance.

�Design Matters
Chapter 1 explained two different solutions for storing information about phone

numbers, shown in Figures 1-1 and 1-2. Let’s return to this example.

Listing 9-1 shows the table definitions used in the postgres_air schema. The

account table contains information about user accounts, and the phone table contains

information about all phones that are associated with accounts. This relationship is

supported by a foreign key constraint.

Listing 9-2 shows an alternative design, where all phones are stored together with

account information.

Listing 9-1.  Two-table design

/* account table */

CREATE TABLE account

(account_id integer,

 login text,

 first_name text,

 last_name text,

 frequent_flyer_id integer,

 update_ts timestamp with time zone,

https://doi.org/10.1007/978-1-4842-6885-8_9#DOI

178

 CONSTRAINT account_pkey PRIMARY KEY (account_id),

 CONSTRAINT frequent_flyer_id_fk FOREIGN KEY

 (frequent_flyer_id)

 REFERENCES frequent_flyer (frequent_flyer_id)

);

/*phone table */

CREATE TABLE phone

(phone_id integer,

 account_id integer,

 phone text,

 phone_type text,

 primary_phone boolean,

 update_ts timestamp with time zone,

 CONSTRAINT phone_pkey PRIMARY KEY (phone_id),

 CONSTRAINT phone_account_id_fk FOREIGN KEY (account_id)

 REFERENCES account (account_id)

);

Listing 9-2.  One-table design

/* account table */

CREATE TABLE account

(account_id integer,

 login text,

 first_name text,

 last_name text,

 frequent_flyer_id integer,

 home_phone text,

 work_phone text,

 cell_phone text,

 primary_phone text,

 update_ts timestamp with time zone,

Chapter 9 Design Matters

179

 CONSTRAINT account_pkey PRIMARY KEY (account_id),

 CONSTRAINT frequent_flyer_id_fk FOREIGN KEY

 (frequent_flyer_id)

 REFERENCES frequent_flyer (frequent_flyer_id)

);

There are multiple reasons the two-table design was chosen for the postgres_air

schema; as discussed in Chapter 1, many people do not have landlines at home or a

dedicated work phone. Many people have more than one cell phone or a virtual number,

like Google Voice. All these scenarios can be supported with the two-table solution and

can’t fit into the one-table solution, unless we start to add columns to accommodate

each of these cases. Indicating a primary phone in the one-table solution would

require repeating one of the numbers in the primary_phone column, creating room for

inconsistency. From a performance perspective, the two-table solution is also more

beneficial.

In the two-table solution, searching for an account by phone number is a

straightforward SELECT statement:

SELECT DISTINCT account_id

FROM phone WHERE phone=’8471234567’

This query will be executed using an index-only scan.

In the one-table design, a similar query would look like this:

SELECT account_id

FROM account WHERE home_phone=’8471234567’

OR work_phone=’8471234567’

OR cell_phone=’8471234567’

To avoid a full scan, three different indexes must be built.

Does this mean that the one-table design is worse than the two-table design? It

depends on how the data is accessed. If the schema is supporting a system used by

travel agents, the most likely use case is needing to pull a customer account based on the

phone number. When an agent asks a customer for their phone number, the customer is

unlikely to specify the type of phone number.

Chapter 9 Design Matters

180

On the other hand, consider a report on customer accounts that have been updated

in the last 24 hours. This report should include home phone, work phone, and cell phone

in separate columns regardless of if any are empty and should include accounts that

have had any modification in the last 24 hours—including updates to phone numbers.

In this case, the one-table solution, shown in Listing 9-3, is much simpler and more

efficient.

Listing 9-3.  Usage of one-table design

SELECT * FROM account

WHERE update_ts BETWEEN now()- interval '1 day' AND now();

Producing the same result in the two-table design is more involved—see Listing 9-4.

Listing 9-4.  Same query with a two-table design

SELECT a.account_id,

 login,

 first_name,

 last_name,

 frequent_flyer_id,

 home_phone

 work_phone,

 cell_phone,

 primary_phone

 FROM account a

 JOIN (

 SELECT

 account_id,

 max(phone) FILTER (WHERE phone_type='home')

 AS home_phone,

 max(phone) FILTER (WHERE phone_type='work')

 AS work_phone,

 max(phone) FILTER (WHERE phone_type='mobile')

 AS cell_phone,

 max(phone) FILTER (WHERE primary_phone IS true)

 AS primary_phone

Chapter 9 Design Matters

181

FROM phone

WHERE account_id IN (SELECT account_id FROM phone WHERE

 update_ts BETWEEN now()- interval '1 day' AND now()

UNION

 SELECT account_id FROM account WHERE

 update_ts BETWEEN now()- interval '1 day' AND now())

 GROUP BY 1) p

USING (account_id)

These two examples are illustrative for another reason—the query for which the two-

table solution is preferred is more likely to occur in an OLTP system, and the query that

is better served by the one-table solution is more likely in an OLAP system. ETL tools can

be used to transform data from OLTP systems to a format that is better suited to business

intelligence needs.

A similar situation was shown in Chapter 6, where a nonoptimal database design

prompted a nonoptimal query (see Listing 6-26). Even the optimized version of the

query remained relatively slow. These examples illustrate impact of database design on

performance and that sometimes the negative consequences of poor design can’t be

remedied by improving the query or building additional indexes.

Subsequent sections of this chapter address the most common design choices that

may negatively affect performance.

�Why Use a Relational Model?
While all the previous examples are relational, as PostgreSQL is built on a relational

model, we’re aware that many people think of relational databases as outdated or out of

fashion. Public talks with titles like “What comes after relational databases?” are given at

a regular cadence.

This section isn’t a defense of relational databases. Relational databases don’t

need defending, and, so far, no would-be successor has had gained even close to a

comparable level of adoption. Rather, the goal is to explain the limitations of other

models.

Chapter 9 Design Matters

https://doi.org/10.1007/978-1-4842-6885-8_6PC31

182

�Types of Databases
So what alternatives exist to relational models? There are a wide variety of database

systems and data stores currently in use, using a wide variety of data models and storage

techniques. These include traditional relational systems with row-based or column-

based storage, scalable distributed systems, stream processing systems, and much more.

We’ve seen more than one non-relational database system work its way through

the Gartner hype cycle, from the peak of overinflated expectations to the trough of

disillusionment. It is worth noting, however, that the core of the relational model is a

query language based on Boolean logic, rather than any specific way of storing data.

This is likely the reason many systems created as alternatives to the traditional RDBMS

ended up with variations of SQL as a high-level query language and hence the associated

Boolean logic.

While relational databases do not appear close to being dethroned, there are

technologies developed and validated within new systems that have proven useful and

been widely adopted. Three popular approaches are entity-attribute-value, key-value,

and hierarchical systems, the last often called document stores.

�Entity-Attribute-Value Model
In the entity-attribute-value (EAV) model, values are scalar (often text, to accommodate

multiple data types). To review from Chapter 6, this model features a table with three

columns, the first for an identifier for an entity, the second an identifier for an attribute

of that entity, and the third the value of that attribute for the entity. This is done in

the name of “flexibility,” which in reality means imprecise or unknown requirements.

Unsurprisingly, this flexibility comes at the expense of performance. Chapter 6

introduced the custom_field table, noted that this design was not optimal, and showed

how it could negatively affect performance. Even after applying optimization techniques

to avoid multiple table scans, execution was relatively slow.

In addition to performance impacts, this design curtails data quality management.

In the case introduced in Chapter 6, three custom fields contain data of three different

types: passport_num is a number, passport_exp_date is a date, and passport_country

is a text field, which should contain a valid country name. However, in the custom_field

table, they all are stored in the text field custom_field_value, which does not allow

strong type checks or referential integrity constraints.

Chapter 9 Design Matters

183

�Key-Value Model
The key-value model type stores complex objects within a single field, so the structure

is not exposed to the database. Individual attributes of the object then are much more

complex to extract, effectively kneecapping the database engine in doing tasks beyond

returning a single object via a primary key. In the most extreme case, a design may

package all fields other than the primary key into a single JSON object.

Since PostgreSQL introduced JSON support in version 9.2, this approach has

become very popular with database and application developers. JSONB was introduced

in version 9.4, and more enhancements have followed in every subsequent version.

With this support, table columns defined as JSON are commonplace. For example, the

passenger table from the postgres_air schema could be defined as shown in Listing 9-5.

Listing 9-5.  Table with JSON

CREATE TABLE passenger_json (

(passenger_id INT,

passenger_info JSON);

An example of the passenger_info JSON is shown in Listing 9-6.

Listing 9-6.  Example of a JSON value

{"booking_ref" : "8HNB12",

"passenger_no": "1",

"first_name" : "MARIAM",

"last_name" : "WARREN",

"update_ts" : "2020-04-17T19:45:55.022782-05:00",

}

Yes, the suggested design looks universal and does not require any DDL changes no

matter how many new data elements are added in the future. However, the same issues

affect this design as the EAV model. This approach makes it impossible to perform type

checks on scalar values, and referential integrity constraints can’t be defined.

Tools and approaches for working with JSON fields are discussed later in this

chapter.

Chapter 9 Design Matters

184

�Hierarchical Model
Hierarchical structures are easy to understand and use. In fact, hierarchical structures

were first implemented in databases in the 1960s due to their ease of use, as well as

their relatively small memory requirements. Of course, at that time, neither XML nor

JSON was available. These structures work great as long as everything fits into a single

hierarchy. However, using hierarchies becomes both complex and inefficient as soon as

data fits into more than one hierarchy.

Let’s illustrate with examples from the postgres_air schema, shown in Figure 9-1. For

an airport, the list of departing flights is one hierarchy, and the list of arriving flights

is another. Boarding passes may fit into the same hierarchy as departing flights. At

the same time, they can be a part of a completely different hierarchy that starts from

bookings. Note that passengers and booking legs can’t fit into the same hierarchy

without duplication.

The early hierarchical databases (IMS/360) provided several hierarchical views of

data to the client application but supported more complex data structures internally.

Figure 9-1.  Examples of hierarchies in the postgres_air schema

Chapter 9 Design Matters

185

�Combining the Best of Different Worlds
PostgreSQL is not just a relational system. It is object-relational, meaning that column

data types are not necessarily scalar. In fact, columns can store structured types

including arrays, composite types, or objects represented as JSON or XML documents.

Using these features responsibly provides all the potential benefits of several

alternative approaches in combination with more traditional relational features.

“Responsibly” is the operative word here. For example, PostgreSQL allows a

multiple-hierarchy approach mentioned in the previous section. We can build

hierarchical representations for the client application on top of internal relational

structure in the database. Such an approach combines the best of both worlds: data is

extracted efficiently via the power of relational query, and the application can consume

complex objects in a friendly data exchange format. More details on this approach are

provided in Chapter 13.

Although we are not covering distributed systems in this book, it’s worth mentioning

that PostgreSQL has a massive set of extensions (additional libraries not included into

basic distribution) that support distributed querying including DBMSs other than

PostgreSQL. These extensions are called foreign data wrappers (FDWs), and they provide

almost transparent ways of accessing data that can reside in more than 60 types of

DBMSs, both relational and non-relational.

�Flexibility vs. Efficiency and Correctness
A frequent argument for a flexible design is that “the data structure/schema definition

may change.” Then, the argument goes adding a column is a DDL (data definition)

change and adding a row (in the key-value model) is just adding a row.

True, real-life systems evolve, and to adequately reflect these changes, existing

data structures must be modified. This may entail adding or removing some attributes

or changing data types or changing the cardinality of relationships. However, the

inevitability of making changes does not necessitate the use of alternative models, such

as document stores or key-value systems. The cost of making changes to the database

schema must always be weighed against the potential performance and data integrity

pitfalls of these flexible solutions.

Chapter 9 Design Matters

186

The previous section talked about the difficulty of creating any integrity constraints

in a non-relational design. For some reason, there is a widespread belief that NoSQL

databases are “faster” than relational databases. This statement may be true in a very

limited number of scenarios, but in most of cases, the situation is the opposite. There

may be performance gains from horizontal distribution, but they are counterbalanced by

the cost of needing to take additional steps to verify data integrity. Additional potential

performance problems emerge because of the difficulties of creating indexes in EAV and

key-value models.

For example, in the case of the custom_field table, passport_exp_date should be a

date, and it is often compared with other dates, for example, with the date of the flight to

make sure that the passport doesn’t expire prior to the date of departure. However, this

date is stored in a text field, which means that it must be converted to a date to perform

a type-specific compare. Moreover, this conversion can only be applied to rows that

contain date-type values.

PostgreSQL has partial indexes, so it’s possible to create an index on only those rows

that contain a passport expiration date. However, they cannot be indexed as a date that

could be efficiently used as search criteria, because indexes cannot be built with mutable

functions like so:

CREATE INDEX custom_field_exp_date_to_date

ON custom_field(to_date(custom_field_value, 'MM-DD-YYYY'))

WHERE custom_field_name='passport_exp_date'

This is because all date/time conversion functions are mutable, because they

depend on the current session settings. In order to be able to use a conversion function

in an index, one would need to write a custom conversion function. Chapter 10 covers

creating user-defined functions. This function will have to include exception handling,

which means that a value erroneously added in the wrong format won’t be indexed. In

addition, the search itself will be significantly slower than having a date field in the first

place.

What about the case of packaging all the attributes in a JSON column? Similar

problems with indexing occur. It is possible to create an index on JSON; for example, for

the table passenger_json in Listing 9-5, it is possible to create an index on booking_ref

as shown in Listing 9-7.

Chapter 9 Design Matters

187

Listing 9-7.  Indexing a JSON column

CREATE INDEX passenger_j_booking_ref ON passenger_json ((passenger_info ->>

'booking_ref'));

It will work slower than an index on the original passenger table, but it will work

better than a sequential scan. However, for any value that is intended to be numeric or

contain a date, the same conversion as the previous example will follow.

This is not to say there is no justification for any of these non-relational solutions.

For example, a table describing some regulations in the EU had about 500 columns

and a single row added every time the regulations change, approximately one row

every five years. Replacement of this table with a variation of key-value (augmented

with a couple of additional columns characterizing the value) made both database and

application developers happy. There was no issue of efficiency because of the size of the

data.

When considering JSON columns, our recommendation is to use them only in cases

when the data only needs to be used as one whole object, such as when storing external

documents, credit reports, and so on. Even in these cases, if some attributes that will

be used in search criteria can be isolated, it is advisable to parse them into separate

columns in addition to storing them as components of a larger object.

�Must We Normalize?
There is hardly a term in relational theory more misused than “normalization.” It

is commonplace for any number of DBAs, database developers, system architects,

and others to declare that a system should be “normalized,” but few could provide a

description of the outcome they are seeking, let alone a definition for normalization.

This isn’t just snobbery; it’s not necessary for everyone working in the field of

data management to memorize the definitions of every normal form. Relational

normalization algorithms aren’t often used in practice. In this sense, normalization is

“dead” theory, the way that Latin is a dead language. However, scholars still find use in

studying Latin, and just the same, some knowledge of normalization is essential for good

database design.

Chapter 9 Design Matters

188

Informally, a database schema is normalized if all column values depend only on the

table primary key, and data is decomposed into multiple tables to avoid repetition.

One of the ways to create a normalized schema is to start by building the ER model: if

entities are properly defined, the database schema produced from the ER model will be

normalized. We can say that ER design implicitly includes discovery of dependencies. If

it is not normalized, typically this indicates that some entities are missing.

Is it really important to normalize a database schema? Does it help performance? As

is often the case, it depends.

The primary purpose of normalization is not to improve performance. Normalization

creates a clean logical structure and helps ensure data integrity, especially when it is

supported by referential integrity constraints. Normalization is needed for the same

reasons that the relational model is needed: not necessarily to store the data, but to

ensure data integrity and to be able to use relational querying language. The mapping

between logical and storage structures is not necessarily one-to-one. Ideally, a clean

logical structure should be provided for the application based on a storage structure

optimized for performance.

On the other hand, there are many real-world entities, which are denormalized

and where normalization does not provide any benefits. The best-known example is

the postal address. The US postal address consists of the following components: street

address, city, zip code, and state.

It is not normalized, as everybody who ever sent packages at the automated USPS

kiosks knows. The automated check won’t allow you to enter a zip code that does not

match the previously entered address. However, we doubt that anyone would decide to

normalize addresses when they are stored in a database table.

An often-heard argument in support of denormalized data structure is that “joins

take time” and that denormalization is needed if we need queries to execute faster. For

the short queries, as we discussed in Chapter 5, when they are constructed properly, the

extra time for joins is negligible and should not be traded for data accuracy.

However, there are multiple cases when performance can indeed be improved

through normalization, for example, when we need to select distinct values of some

attribute with high selectivity or, in general, any subset of columns that are repetitive in

a non-normalized table. In the postgres_air schema, the status of flights in the flight

table is specified explicitly, which means that to find the list of possible flight statuses,

one can execute the following query:

SELECT DISTINCT status FROM flight

Chapter 9 Design Matters

189

�Use and Misuse of Surrogate Keys
Surrogate keys are unique values generated by the system in order to identify objects

stored in the database. In PostgreSQL, surrogate values may be obtained as values

selected from a sequence. When a row is inserted, a column specified with pseudo-type

serial receives the next value from a sequence associated with the table automatically.

Surrogate keys are widely used. Some companies have internal standards that

require use of surrogate keys for any table. However, surrogates have both advantages

and disadvantages.

The advantage of surrogates is that the values assigned to different objects are

guaranteed to be unique. However, the value of a surrogate is not related to other attributes of

the object and is useless when a stored object needs to be matched to a real-world object.

Uniqueness of surrogates may hide certain errors. A real-world object may be

represented in the database multiple times with different surrogates. For example, if a

single purchase is registered in a system twice, a customer’s card will be charged twice

for a single product, and the issue is difficult to resolve without manual intervention.

That being said, although our recommendation is to use some real-world unique

attribute for a primary key, it is not always possible. In a database that stores all

purchases in the supermarket, there is no way to distinguish between two bottles of

coke, subsequently scanned by the same customer at the self-checkout. These two cases

must be distinguishable in the source system: the purchase of two Coke bottles in one

transaction, as opposed to a duplication of the same transaction to purchase a single

Coke. Similarly, hospital systems may have multiple medical record numbers (MRNs)

associated with one patient; it’s critical to have a surrogate key in this case so all the

patient’s clinical data is stored together.

Sometimes, the presence of a surrogate key in the table is wrongly associated with

normalization. Some companies’ internal standards require a surrogate key for each

table. This is commonly explained as a way to make the database schema normalized.

And, indeed, if there is a unique identifier assigned to each row, everything will be

normalized. But since the unique identifiers would bear no relation to real-world

objects, we may end up with one real-world object mapped to multiple occurrences in

the database. For example, we’ve seen a system in which each time a customer would

enter their address, the system would assign a unique identifier for the city, if this city

was not in the database yet. This way, the system ended up with six different versions

of “Chicago.” Needless to say, this has nothing to do with normalization and may

jeopardize both data accuracy and performance.

Chapter 9 Design Matters

190

The use of surrogates may result in extra joins. The flight table refers to the airport

table using three-character codes that are widely used in the real world. Airport codes

can be extracted from the flight table in this design:

Select departure_airport, arrival_airport, scheduled_departure from flight

...

However, if a surrogate key was used for the airport table, returning airport codes

would necessitate two trips to the airport table:

SELECT d.airport_code,

 a.airport_code,

 f.scheduled_departure

FROM flight f

JOIN airport d ON d.airport_id = f.departure_airport_id

JOIN airport a ON a.airport_id = f.arrival_airport_id

Let’s take a closer look at the use of surrogate keys in the postgres_air schema.

The definition of the airport table in the postgres_air schema is shown in Listing 9-8.

The primary key of that table is airport_code. This column contains three-character

codes that are used to identify airports in all flight booking systems worldwide, and these

codes never change. Hence, they are reliable as unique identifiers, and surrogate keys

are not needed.

Listing 9-8.  Airport table

CREATE TABLE airport

(airport_code char(3)NOT NULL,

 airport_name text NOT NULL,

 city text COLLATE NOT NULL,

 airport_tz text NOT NULL,

 continent text,

 iso_country text,

 iso_region text,

 intnl boolean NOT NULL,

 update_ts timestamptz,

 CONSTRAINT airport_pkey PRIMARY KEY (airport_code)

);

Chapter 9 Design Matters

191

Similarly, aircrafts are identified with three-character codes, and we use these codes

as a primary key for the aircraft table—see Listing 9-9.

Listing 9-9.  The aircraft table

CREATE TABLE aircraft

(model text,

 range numeric NOT NULL,

 class integer NOT NULL,

 velocity numeric NOT NULL,

 code text NOT NULL,

 CONSTRAINT aircraft_pkey PRIMARY KEY (code)

)

For the booking table (see Listing 9-10), the surrogate primary key booking_id is used,

even though bookings have a six-character booking reference that uniquely identifies the

booking and is never changed. The booking reference is also a surrogate, although it is not

derived from a database sequence. We could use the booking reference as a primary key.

Thus, the column booking_id is redundant, though it provides some future-proofing if

there is an anticipated need for bookings to come from more than one booking application.

This also makes the table definition similar to definitions found in many industrial systems.

Listing 9-10.  The booking table

CREATE TABLE booking

(booking_id bigint NOT NULL,

 booking_ref text NOT NULL,

 booking_name text,

 account_id integer,

 email text NOT NULL,

 phone text NOT NULL,

 update_ts timestamptz,

 price numeric(7,2),

 CONSTRAINT booking_pkey PRIMARY KEY (booking_id),

 CONSTRAINT booking_booking_ref_key UNIQUE (booking_ref),

 CONSTRAINT booking_account_id_fk FOREIGN KEY (account_id)

 REFERENCES account (account_id)

);

Chapter 9 Design Matters

192

The booking_leg table (Listing 9-11) links bookings to flights. Therefore, a natural

key for this table would consist of flight_id and booking_id, that is, of two foreign

keys referencing tables flight and booking. This pair of columns would be an excellent

primary key. The decision to create an additional surrogate key booking_leg_id was

driven by the idea to avoid references to the compound key from the dependent table

(the booking_leg table is referenced form the boarding_pass table, which is the largest

table in the database).

Listing 9-11.  The booking_leg table

CREATE TABLE booking_leg

(booking_leg_id SERIAL,

 booking_id integer NOT NULL,

 booking_ref text NOT NULL,

 flight_id integer NOT NULL,

 leg_num integer,

 is_returning boolean,

 update_ts timestamp with time zone,

 CONSTRAINT booking_leg_pkey PRIMARY KEY (booking_leg_id),

 CONSTRAINT booking_id_fk FOREIGN KEY (booking_id)

 REFERENCES booking (booking_id),

 CONSTRAINT flight_id_fk FOREIGN KEY (flight_id)

 REFERENCES flight (flight_id)

)

A surrogate key is needed for the passenger table (see Listing 9-12) because

the same person may be a passenger on multiple bookings and a passenger is not

necessarily registered as a client in the booking system (a flight may be booked by

someone else on behalf of the passenger).

Listing 9-12.  Passenger table

CREATE TABLE passenger

(passenger_id serial,

 booking_id integer NOT NULL,

 booking_ref text,

 passenger_no integer,

Chapter 9 Design Matters

193

 first_name text NOT NULL,

 last_name text NOT NULL,

 account_id integer,

 update_ts timestamptz,

 CONSTRAINT passenger_pkey PRIMARY KEY (passenger_id),

 CONSTRAINT pass_account_id_fk FOREIGN KEY (account_id)

 REFERENCES account (account_id),

 CONSTRAINT pass_booking_id_fk FOREIGN KEY (booking_id)

 REFERENCES booking (booking_id,

 CONSTRAINT pass_frequent_flyer_id_fk FOREIGN KEY (account_id)

 REFERENCES account (account_id)

);

There is no obvious way to identify accounts; therefore, a surrogate key must be used

for the account table, shown in Listing 9-13.

Listing 9-13.  Account table

CREATE TABLE account

(account_id SERIAL,

 login text NOT NULL,

 first_name textNOT NULL,

 last_name text NOT NULL,

 frequent_flyer_id integer,

 update_ts timestamp with time zone,

 CONSTRAINT account_pkey PRIMARY KEY (account_id),

 CONSTRAINT frequent_flyer_id_fk FOREIGN KEY

 (frequent_flyer_id)

 REFERENCES frequent_flyer

 (frequent_flyer_id)

);

Loyalty program customers might be identified by card number. However, a separate

surrogate key frequent_flyer_id enables the option to issue a replacement for a lost or

stolen card without losing all benefits of a loyal customer.

Chapter 9 Design Matters

194

In contrast, the surrogate flight_id in the flight table is needed. The natural

identification of a flight consists of flight_num and scheduled_departure. The flight

number is the same on different days, while departure time may vary on different days

and can be changed slightly (e.g., 5–10 minutes later) when the flight is already partially

booked. The flight_id represents a particular occurrence of the flight with a specific

flight number as shown in Listing 9-14.

Listing 9-14.  Flight table

CREATE TABLE flight

(flight_id serial,

 flight_no text NOT NULL,

 scheduled_departure timestamptz NOT NULL,

 scheduled_arrival timestamptz NOT NULL,

 departure_airport character(3) NOT NULL,

 arrival_airport character(3) NOT NULL,

 status text NOT NULL,

 aircraft_code character(3) NOT NULL,

 actual_departure timestamptz,

 actual_arrival timestamptz,

 update_ts timestamptz,

 CONSTRAINT flight_pkey PRIMARY KEY (flight_id),

 CONSTRAINT aircraft_code_fk FOREIGN KEY (aircraft_code)

 REFERENCES aircraft (code),

 CONSTRAINT arrival_airport_fk FOREIGN KEY (departure_airport)

 REFERENCES airport (airport_code),

 CONSTRAINT departure_airport_fk FOREIGN KEY (departure_airport)

 REFERENCES airport (airport_code)

);

The table boarding_pass (Listing 9-15) has a surrogate key, but it is not referenced

from any other table and is therefore useless. The natural key of this table consists of two

columns: flight_id and passenger_id.

Chapter 9 Design Matters

195

Listing 9-15.  Boarding pass

CREATE TABLE boarding_pass

(pass_id integer NOT NULL,

 passenger_id bigint,

 booking_leg_id bigint,

 seat text,

 boarding_time timestamptz,

 precheck boolean,

 update_ts timestamptz,

 CONSTRAINT boarding_pass_pkey PRIMARY KEY (pass_id),

 CONSTRAINT booking_leg_id_fk FOREIGN KEY (booking_leg_id)

 REFERENCES booking_leg (booking_leg_id),

 CONSTRAINT passenger_id_fk FOREIGN KEY (passenger_id)

 REFERENCES passenger (passenger_id)

);

�Summary
This chapter discussed the impact of design decisions on performance. Discussion

covered both choices within a relational model relating to normalization and surrogate

keys, as well as popular non-relational models. The limitations of these models were

explored, along with examples of alternative approaches.

Chapter 9 Design Matters

197
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_10

CHAPTER 10

Application Development
and Performance
Midway through this book, having covered multiple techniques along the way, it’s time

to step back and address the additional performance aspects that were foreshadowed

in Chapter 1. That chapter stated that the approach of this book is broader than just

optimizing individual queries.

Database queries are parts of applications, and this chapter concerns optimizing

processes rather than individual queries. Although such optimization is not typically

considered "database optimization" in its traditional meaning, not addressing process

deficiencies could easily cancel out any performance gains gleaned from individual

queries. And since both application and database developers tend to ignore this area of

potential improvement, we are going to claim it.

�Response Time Matters
Chapter 1, called “Why Optimize?”, enumerated reasons for poor performance, as well

as covering why query optimization is necessary. What wasn’t covered was why an

application needs to be performant.

Hopefully, having gotten through a good half of this book, you have not yet forgotten

why you started reading it in the first place. Perhaps you faced a situation where the

need to improve overall system performance or performance of a specific part of the

system became inescapably urgent. However, surprising as it may sound, it is still not

uncommon to hear an opinion that slow response time is not such a big deal.

We reject this categorically: it is a big deal, and you do not need to go any further

than your marketing department for confirmation. With today’s consumer expectations,

the saying time is money could not be more apt.

https://doi.org/10.1007/978-1-4842-6885-8_10#DOI

198

Multiple marketing research studies1 have demonstrated that fast response time on a

website or from a mobile app is critical to attract and maintain incoming traffic. In most

cases, acceptable response time is below 1.5 seconds. If response time increases to over

3 seconds, 50% of visitors abandon a site, and more than three quarters of them never

come back.

Specific examples include the numbers reported by Google that demonstrate that

slowing search by 0.4 seconds results in a loss of eight million searches per day. Another

example is Amazon finding that slowing page load time by one second results in $1.6

billion lost sales in a year. In cases like these, what problem must be addressed to

improve the situation?

�World Wide Wait
If you’ve ever talked to an application developer who works on a database application or

if you are one of these developers yourself, the following stance may sound familiar: the

application works perfectly fine until it hits the database!

That statement, which we interpret as “an application often has performance issues

when it interacts with a database,” is often instead interpreted as “databases are slow,”

which is quite frustrating to hear. A DBMS is, after all, a specialized software designed to

provide faster data access, not to slow things down.

In fact, if you ask a DBA overseeing database health on the same project, you would

get a reply that the database is performing perfectly. If that’s the case, why do users

experience the World Wide Wait situation illustrated in Figure 10-1?

1�www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales/;
https://builtvisible.com/improving-site-speed-talk-about-the-business-benefit/

Chapter 10 Application Development and Performance

https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales/
https://builtvisible.com/improving-site-speed-talk-about-the-business-benefit/
https://builtvisible.com/improving-site-speed-talk-about-the-business-benefit/

199

Often, although each database query executed by an application returns results in

less than 0.1 seconds, the application page response time may amount to ten seconds or

more. Thus, the problem is not in the execution speed of each individual query but in the

patterns of interaction between the application and the database.

�Performance Metrics
When Chapter 1 discussed optimization goals, it mentioned that many performance

metrics, such as customer satisfaction, are “external” to the database and can’t be used

by the optimizer. In fact, these metrics are external not only to the database but to the

application in general.

The time needed to perform a given business function is really hard to measure and,

as a consequence, hard to improve. An application developer can force a user to click

ten buttons instead of one, and sometimes this may help to reduce the response time for

each of the ten buttons. This might improve some benchmark results but would hardly

improve user experience and satisfaction.

However, the previous section clearly demonstrates that those are precisely the

metrics the end user is interested in. They do not care about any individual query; they

care about overall experience, meaning they want an application to respond fast and

they do not want to stare at “wait” icons.

Figure 10-1.  World Wide Wait

Chapter 10 Application Development and Performance

200

�Impedance Mismatch
So what are the reasons for poor overall performance?

In very general terms, the reason is incompatibility of database models and

programming language models that can be expressed via the impedance mismatch

metaphor. In electrical engineering, the impedance is a generalization of the resistance

to alternating current presented by a circuit when voltage is applied. The impedance

phase angle for any component is the phase shift between the voltage across that

component and current through that component; if this angle is close to 90 degrees, the

delivered power is close to 0 even if both voltage and current are high.

Similarly, the power of the expressiveness and efficiency of database query

languages does not match the strengths of imperative programming languages—even

though both can have great strength, they might deliver less power than expected.

Both imperative programming languages and declarative query languages work

extremely well to accomplish the tasks they were designed for. The problems start when

we try to make them to work together. Thus, the reason for poor performance is an

incompatibility of database models and programming language models.

Applications and databases are designed to operate with

•	 Objects of different sizes (granularity)—single objects vs. bulk

(sets of) objects

•	 Access pattern (navigation vs. search by attribute values)

•	 Different means of identification—address vs. set of attribute values

In the remaining sections of this chapter, we discuss the consequences of this

incompatibility in more detail.

�The Road Paved with Good Intentions
The preceding sections might sound like blaming application developers for all

performance problems and for their unwillingness to “think like a database.” But

blaming anybody is not a productive way to solve problems, including poor application

performance. A more productive approach would be to try to understand how good

intentions can lead to such excruciating results.

Let’s start from examining application development patterns that application

developers are advised to follow.

Chapter 10 Application Development and Performance

201

�Application Development Patterns
The most common modern software engineering architecture pattern is a layered

architecture. Typically, there are four layers:

•	 End user interface

•	 Business logic

•	 Persistence

•	 Database

Each layer may only communicate with adjacent layers, and encapsulation and

independence are encouraged both within each level and certainly across levels. Thus,

the business object of a “customer” is totally ignorant of the database table “Customer”

and, in fact, could be connected to any arbitrary database so long as the persistence layer

defined a mapping between the data in the database and the objects in the business

layer.

There are a few important reasons for this, chief among them being facilitating

fast development, maintainability, and ease of modification of the application, as well

as making components reusable. It seems facially obvious that a change in the end

user interfaces shouldn’t de facto cause a change in the database schema. This strict

separation also facilitates rapid work in parallel: developers can work on different

parts of the application, and rest assured that the other parts of the application outside

their narrow domains do not depend on the internal structure or implementation

of the objects the developer is touching. And it of course seems useful that multiple

applications can be built on the same foundation of business logic—that the internal

logic of the application does not have to be duplicated for each new built environment.

So far, so good—so what is the problem? Unfortunately, there are many pitfalls,

and the methodology doesn’t quite deliver the promised benefit—at least, as it is

implemented in the wild.

Consider the idea of centralizing business logic. First, the benefits of having all the

logic in one place—the business layer—are somewhat reduced when that “one place”

is several hundred thousand lines of code. In practice, such a large business layer will

result in duplication—or, worse, attempted duplication. When the business logic layer

is bloated, it’s hard to find a function that does exactly what one wants—as a result, we,

the authors, have often observed the same real-world business logic implemented in

different ways in different methods, with different results.

Chapter 10 Application Development and Performance

202

Second, this business logic may be available to additional end user interfaces, but

it is not available to other business uses that interact directly with the database—most

crucially, reporting. Thus, report writers end up duplicating application logic code,

perhaps in a data warehouse or, worse yet, in individual reports, with no guarantee of

equivalence with application logic.

Additionally, with this approach, communication with the persistence layer is

limited to individual objects or even single scalar values effectively disabling the power

of the database engine. The end user interface might know all the different data elements

that it needs, but because it doesn’t communicate directly with the persistence layer,

requests for data are mediated by the business logic layer.

A typical implementation of the persistence layer has data access classes that

correspond one-to-one with business object classes. It is straightforward to write basic

database DDL functions (INSERT, UPDATE, DELETE), but what happens when operations

must be performed on a set of objects of this class? There are two paths: The developer

could create another set of methods that would repeat the same functions for the objects

in a set. However, this would violate the principle of code reuse. Alternately, and more

commonly, the developer simply iterates through the collection, calling the functions

defined to handle an individual object.

Imagine an application interface that listed all passengers who departed from

O’Hare airport. A database developer would assume that to list all passengers who

departed from O’Hare airport, they need to join the table flight with the table

boarding_pass. All the information is returned in one go. For an application developer,

the task might be trickier. They might have a method GetFlightByDepartureAirport()

that takes airport code as a parameter and returns a collection of flights. Then, they can

iterate through the flights, returning all boarding passes for the flight. In effect, they are

implementing a nested loop join algorithm inside the application.

To avoid this, they might use a few different solutions. They could add a departure

airport attribute to the boarding pass object. However, this would open the door to data

integrity problems: what if the flight departure time is updated in the flight record but

not all boarding passes? Alternately, a method could be defined to retrieve boarding

passes given a flight departure airport, but this would violate the precept of objects being

ignorant of one another. In a pure layered approach, the boarding pass object is ignorant

of the flight object, and the flight object is ignorant of the boarding pass. A method that

pulls data for both wouldn’t belong in either object.

Chapter 10 Application Development and Performance

203

�“Shopping List Problem”
Stephane Faroult2 illustrates the situation described earlier as the “shopping list

problem.”

Suppose you have a shopping list for the grocery store. In real life, you would get into

a car, drive to the grocery store, pick up all the items on your list, get them into the car

trunk, drive home, bring them inside, and put them into your fridge. Now imagine that

instead, you would drive to the store, come in, pick just the first item from your shopping

list, drive back home, put this item in the fridge, and head to the store again! And you

would continue repeating the same sequence of actions for each item on your list.

Does this sound ridiculous? Yes, but that’s exactly what many applications do when

it comes to their interaction with databases.

Now imagine that in order to improve the speed of shopping, experts would suggest

that we should increase the width of the isles in the store or build better highways or

equip the car with a more powerful engine.

Some of these suggestions could, indeed, improve the situation. But even if you

could cut down the shopping time by 30%, that improvement can’t be compared with

the gains achieved with one simple process improvement: picking up all groceries

during one single trip.

How can the shopping list problem be translated to application behavior? Most

performance problems are caused by too many queries that are too small. And just as better

highways can't improve the shopping experience if we continue to take an extra trip for each

item on our list, the following popular suggestions do not help application performance:

•	 More powerful computers do not help much, as both the application

and the database are in a wait state for 99% of time.

•	 Higher network bandwidth does not help either. High-bandwidth

networks are efficient for transfer of bulk amounts of data but cannot

significantly improve the time needed for roundtrips. Time depends

on the number of hops and the number of messages but does not

depend significantly on message size. Furthermore, the size of the

packet header does not depend on the message size; hence, the

fraction of bandwidth used for payload becomes small for very short

messages.

2�Stephane Faroult and Peter Robson, The Art of SQL

Chapter 10 Application Development and Performance

204

•	 Distributed servers might improve throughput but not response time

as an application sends requests for data sequentially.

The anti-pattern of “too many too small queries” has been observed for several

decades. Approximately 20 years ago, one of us, the authors, had to analyze an application

that needed 5–7 minutes to generate an HTML form containing about 100 fields. The

application code was perfectly structured into small well-commented methods with nice

formatting. However, the database trace showed that to produce this form, the application

issued about 16,000 queries—more than the characters on the form being generated.

Further analysis showed that a few thousand of the queries were coming from the method

GetObjectIdByName. Each of these calls was followed by a query from the method

GetNameByObjectId that was invoked from another part of the application, probably

written by another developer. The values of name were unique; therefore, the second call

always returned the parameter of the first. A single query extracting all data needed to

build the form returned the output in less than 200 milliseconds.

In spite of these known deficiencies, many companies persist in implementing these

same remedies over and over again, each time with the same result. Even if initially they

are able to achieve some improvement, it does not last long. For a number of years, we

observed the optimization efforts in one company.

Since the PostgreSQL optimizer is always trying to take advantage of available RAM,

this company was increasing their hardware resources, making sure that the whole (or

almost the whole) database could fit into main memory. We observed their migration

from machines with 512 GB of RAM to 1 GB, 2 GB, and then 4 GB main memory, when

the only limiting factor would be the availability of the respective configuration. Each

time, after a short period of relative satisfaction, the problem would reemerge: the

database would grow bigger and stop fitting into main memory.

Another remedy that is often implemented is to use a key-value store instead of a

fully-fledged database. The argument is something like “nothing except access by a

primary key is used in the application, so a query engine is not needed.” Indeed, such

an approach may improve response time for any single data access. However, this

cannot improve the time needed to complete a business function. In one of the extreme

cases observed by us, the authors, a record retrieval using a primary key value would

take about 10 milliseconds on average. At the same time, the number of database calls

performed in one application controller action would total to almost one thousand, with

predictable overall performance impacts.

Chapter 10 Application Development and Performance

205

�Interfaces
Yet another reason for suboptimal interactions between an application and a database

is at the level of interfaces. Typically, applications use a generalized interface such as

ODBC or JDBC. These interfaces provide an oversimplified view of a database as a

set of flat tables. Actually, both the application and the database can operate in terms

of complex structured objects; however, there is no way to transfer such high-level

structures through the interface. Thus, an application cannot benefit from the high-level

model even if it is maintained in the database.

To transfer a complex database object, an application is forced to use separate

queries for each part of a database object or, alternately, to use a custom parsing method

for deserializing the flat representation as returned over the interface into the complex

objects themselves.

The imperfections of dominant development practices are well known to

professionals. Why are these practices so common?

The reasons are not technical. Application developers almost always work under

time pressure. A new product or a new feature has a release deadline, which is often “as

soon as possible.” The financial gain of early delivery is significantly higher than that with

later delivery and better quality.

�Welcome to the World of ORM
The desire to isolate the database language (i.e., SQL) from application developers and

thus simplify their task (and also reduce the need for the database skills) leads to the

introduction of software that converts database functions into object methods.

An object-relational mapper (ORM) stands for a program that maps a database
object to the in-memory application object.

Some ORM developers have claimed that the impedance mismatch problem is

solved. Objects are mapped one-to-one to database tables, and the underlying structure

of the database, as well as the generated SQL used to interact with it, is of no concern

to the application developer. Unfortunately, the cost of this solution is unacceptable

performance degradation.

Chapter 10 Application Development and Performance

206

How does ORM work? The process is shown in Figure 10-2.

	 1.	 The application disassembles an object into undividable (scalar)

parts.

	 2.	 The parts are sent to/from the database separately.

	 3.	 In the database, the complex data structure is present, but all

queries run separately.

Theoretically, an ORM does not prevent the application from running arbitrary

database queries; an ORM usually provides certain means for that. However, in practice,

generated queries are almost always used due to time pressures and the simplicity with

which they are created in the application.

Because the actual database code is obscured from the developer, database

operations on sets of objects end up happening very similarly to the non-ORM solution:

an ORM method returns the list of object IDs from the database, and then each object

is extracted from the database with a separate query (also generated in the ORM). Thus,

to process N objects, an ORM issues N+1 database queries, effectively implementing the

shopping list pattern described in the previous section.

Such mapping solves the problem of abstraction from details of data storage but does

not provide effective means of manipulation with datasets.

In addition, the ORM might hide important implementation details. Take one

example, observed in a production system: an IsActive flag on a Customer object to

denote whether the customer had recent activity. A developer might think that this

was just an attribute stored in the customer table of the database, but in actuality, it

depended on a complex set of criteria based on customer behavior, and this query

was run every time the attribute was invoked. Even worse, this attribute was used and

Figure 10-2.  How ORM works

Chapter 10 Application Development and Performance

207

frequently checked in the code for control flow and visual components that displayed

differently based on the customer’s status. Thus, to render one page, this complex query

was run multiple times.

�In Search of a Better Solution
To summarize the preceding, in the application layer, classes and methods for tables and

sets should be integrated with the database to work effectively (methods should be executed

by the DB engine). However, most architectures do not allow this kind of integration, which

leads to reimplementation of database operations at the application layer.

This particular case of impedance mismatch is called ORIM—object-relational

impedance mismatch.

Consequently, conventional ways of architecting communication between

applications and databases are the most significant source of application slowness.

There is no ill will here: application and database developers are doing the best they can

with the tools they have.

To address this problem, we need to find a way to transfer collections of complex

objects. Note that in fact, we are looking for a solution for two closely related problems.

The first problem is inability to transfer “all the data at once,” that is, to think and

operate in sets. The second problem is inability to transfer complex objects without

disassembling them before the data transfer to and from the application.

In order to illustrate the desired outcome, let’s look at an example of how a web

application may interact with the postgres_air database. When a user logs into the

online booking system, the first thing they will see is most likely their existing bookings.

When they select a specific booking, they will see a screen that looks something like the

screenshot in Figure 10-3.

Chapter 10 Application Development and Performance

208

The information that is displayed on your screen is selected from several different

tables: booking, booking_leg, flight, passenger, and airport. After the check-in, you

will also see the boarding passes.

A web application developed using a traditional approach would access the

database 17 times to display these results: first, to select a booking_id list for the current

user, then select booking details from the booking table, then select details for each

booking leg (four in total), then select flight details for each flight (four more), and then

select airport details (another four) and then passenger details (another three). However,

an application developer knows exactly what object they should build in order to display

booking results. On the database side, a database developer similarly knows how to

select all pieces of information that are needed to build such object. If we would draft the

structure of the object in question, we would come up with something similar to what is

shown in Figure 10-4.

Figure 10-3.  Your reservation screen

Chapter 10 Application Development and Performance

209

If we could package data on the database side in such or similar object and send

it to the application with one command, the number of database calls would decrease

dramatically. And fortunately, PostgreSQL is capable of building such objects. The

following PostgreSQL features make it possible:

•	 PostgreSQL is an object-relational database.

•	 PostgreSQL allows the creation of custom types.

•	 PostgreSQL functions can return sets, including sets of records.

Subsequent chapters will discuss functions that return sets of records and support of

JSON/JSONB data types and custom data types and will show examples of how to create

these functions and use them in applications.

Figure 10-4.  Mapping complex objects

Chapter 10 Application Development and Performance

210

�Summary
This chapter discussed additional performance aspects that typically are not

considered related to database optimization. Although, technically speaking, it is not

about optimizing queries, it presents an approach to optimizing overall application

performance. As we’ve often stated, SQL queries are not executed in a vacuum; they

are parts of an application, and the “in between” area of communication between the

application and database was and still is often omitted from consideration by both

database and application developers.

For that reason, we’ve taken the liberty of claiming ownership of this uncharted

territory and suggesting a path for improvement. Notably, this chapter does not provide

any practical solutions or any examples of “how to do it right.” In subsequent chapters,

we will discuss several techniques that provide developers with a powerful mechanism

to overcome the limitations of traditional ORMs.

Chapter 10 Application Development and Performance

211
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_11

CHAPTER 11

Functions
This chapter focuses on the most underused and misused of PostgreSQL objects—

functions. Since all modern programming languages include user-defined functions,

people often assume that database functions are cut from the same cloth and if you

know how to write functions and when to write functions in an application programming

language, you can apply this knowledge to PostgreSQL. This could not be further from

truth.

This chapter discusses how PostgreSQL functions are different from functions in

other programming languages, when functions should be created and when they should

not, how the usage of functions can improve performance, and how it can lead to a

major performance degradation.

Before proceeding, let’s address the widespread belief that usage of functions

decreases portability. This is true as it goes, but consider the following:

•	 Both SQL statements and ORMs are not 100% portable; some

hopefully minor work will be required.

•	 Swapping databases for an existing production system is always

a major project and is never done on the fly. Some changes to

the application itself are unavoidable. Converting functions adds

relatively small overhead to the project.

�Function Creation
PostgreSQL has both built-in (internal) functions and user-defined functions. In this

respect, it is not different from other programming languages.

https://doi.org/10.1007/978-1-4842-6885-8_11#DOI

212

�Internal Functions
Internal functions are written in the C language and are integrated with the PostgreSQL

server. For each data type supported by PostgreSQL, there are a number of functions

that perform different operations with variables or column values of that type. Similar

to imperative languages, there are functions for mathematical operations, functions to

operate on strings, functions to operate on date/time, and many others. Moreover, the

list of available functions and supported types expands with each new release.

Some examples of built-in functions are shown in Listing 11-1.

Listing 11-1.  Examples of built-in functions

sin(x);

substr(first_name,1,1);

now();

�User-Defined Functions
User-defined functions are functions that you, the user, create. PostgreSQL supports

three kinds of user-defined functions:

•	 Query language functions, that is, functions written in SQL

•	 C functions (written in C or C-like languages, like C++)

•	 Procedural language functions, written in one of the supported

procedural languages (referred to as PL)

A CREATE FUNCTION command is presented in Listing 11-2.

Listing 11-2.  CREATE FUNCTION command

CREATE FUNCTION function_name (par_name1 par_type1, ...)

RETURNS return_type

AS

<function body>

LANGUAGE function plpgsql;

From the PostgreSQL perspective, the database engine captures only the function

signature—the name of the function, the list of parameters (which may be empty),

and the type of return value (which may be void)—and some specifications, such as

Chapter 11 Functions

213

the language in which it is written. The function body is packaged into a string literal,

which is passed to a special handler that knows the details of the language. The handler

could either do all the work of parsing, syntax analysis, execution, and so on itself, or

it could serve as the “glue” between PostgreSQL and an existing implementation of a

programming language. The standard PostgreSQL distribution supports four procedural

languages: PL/pgSQL, PL/Tcl, PL/Perl, and PL/Python. In this book, we will discuss only

functions written in PL/pgSQL.

�Introducing Procedural Language
Since we’re covering functions, it seems like a good idea to formally introduce the

language (or languages) in which these functions can be written.

So far in this book, the only language that has been used is SQL, and the only

operator you could see in code snippets, other than various CREATE operators, was

SELECT. Now, it is time to introduce procedural languages. In this book, we discuss only

the PostgreSQL native procedural language PL/pgSQL.

A function written in PL/pgSQL can include any SQL operators (possibly with some

modifications) and control structures (IF THEN ELSE, CASE, LOOP) and calls to other

functions.

Listing 11-3 presents an example of a function written in PL/pgSQL that converts

a text string to numeric, if possible, and returns null if the string does not represent a

number.

Listing 11-3.  Function converting text to numeric

CREATE OR REPLACE FUNCTION text_to_numeric(input_text text)

 RETURNS integer AS

$BODY$

BEGIN

 RETURN replace(input_text, ',', '')::numeric;

EXCEPTION WHEN OTHERS THEN

 RETURN null::numeric;

END;

$BODY$

 LANGUAGE plpgsql;

Chapter 11 Functions

214

Using the information in Listing 11-2, we can identify the parts common to all

user-defined functions. The function name is text_to_numeric, and it has only one

parameter, input_text, of type text.

The RETURNS clause defines the type of value the function returns (numeric), and the

LANGUAGE clause specifies the language in which the function is written, plpgsql.

Now, let’s take a closer look at the function body.

�Dollar Quoting
In the previous section, we stated that a function body is represented as a string literal;

however, instead of quotes, it starts and ends with $BODY$. This notation in PostgreSQL

is called dollar quoting, and it is especially useful when you create a function. Indeed,

if you have a relatively large text of a function, chances are you will need to use single

quotes or backslashes, and then you will need to double them at each occurrence. With

dollar quoting, you can use two dollar signs, possibly with some tag between them to

define a string literal.

Tagging makes this way of defining string constants especially convenient, because

you can nest strings with different tags. For example, the beginning of a function body

can look like Listing 11-4.

Listing 11-4.  The usage of nested dollar quoting

$function$

DECLARE

V_error_message text:='Error:';

V_record_id integer;

BEGIN

...

v_error_message:=v_error_message||emRecord can't be updated,

#em||quote_literal(v_record_id);

...

END;

$function$

Chapter 11 Functions

215

Here, we use dollar quoting with the tag function for a function body. Note that

there are no rules limiting which tag you can use for a function body, including the

empty tag; the only requirement is that the string literal is finished with the same tag as

the tag that started it. The examples here will use different tags as a reminder that tags

are not predefined.

The function body starts with a DECLARE clause, which is optional in case no variables

are needed. BEGIN (without a semicolon) denotes the start of the statements section, and

the END keyword should be the last statement of the function body.

Please note this section is not a comprehensive guide to function creation. Please
refer to PostgreSQL documentation for more details.

More details are discussed as they are introduced in future examples.

�Function Parameters and Function Output: Void Functions
Most often, a function will have one or multiple parameters, but it might have none. For

example, the internal function now(), which returns the current timestamp, does not

have any parameters. We can assign default values to any function parameter, to be used

if no specific value is explicitly passed.

In addition, there are multiple ways to define function parameters. In the example in

Listing 11-3, parameters are named, but they can also be positioned ($1, $2, etc.). Some

parameters may be defined as OUT or INOUT, instead of specifying a return type. Again,

this chapter doesn’t intend to cover every possible specification, because function

performance does not depend on all these specification variations.

The last thing to mention in this section is that it is possible for a function to return

no value; in this case, a function is specified as RETURNS VOID. These exist because

previously, PostgreSQL did not have support for stored procedures, so the only way to

package multiple statements together was inside a function.

Chapter 11 Functions

216

�Function Overloading
Similar to other programming languages, functions in PostgreSQL can be polymorphic,

that is, multiple functions can use the same name with a different signature. This feature

is called function overloading. As mentioned earlier, a function is defined by its name

and its input parameter set; the return type may be different for different sets of input

parameters, but for obvious reasons, two functions cannot share both the same name

and same set of input parameters.

Let’s take a look at the examples in Listing 11-5. In case #1, a function that calculates

the number of passengers on a specific flight is created. In case #2, a function with the

same name, which calculates the number of passengers departing on a specific date

from a specific airport, is created.

However, if you try to run snippet #4 to create a function that calculates the number

of passengers on a specific flight number on a specific date, you will get an error:

ERROR: cannot change name of input parameter "p_airport_code".

You can create a function with the same name and with a different set of parameters

and a different return type; thereby, you can create another function with the same

name, as shown in case #4. However, if you try to create a function with the same name

and with a different return type but same parameters (case #5), you will also get an error

message:

ERROR: cannot change return type of existing function

Listing 11-5.  Function overloading

#1

CREATE OR REPLACE FUNCTION num_passengers(p_flight_id int) RETURNS integer;

#2

CREATE OR REPLACE FUNCTION num_passengers(p_airport_code text, p_departure

date) RETURNS integer;

#3

CREATE OR REPLACE FUNCTION num_passengers(p_flight_no text, p_departure

date) RETURNS integer;

Chapter 11 Functions

217

#4

CREATE OR REPLACE FUNCTION num_passengers(p_flight_no text) RETURNS

numeric;

#5

CREATE OR REPLACE FUNCTION num_passengers(p_flight_id int) RETURNS numeric;

Note that the source code of these functions differs significantly. Listing 11-6 shows

the source code of the num_passengers(integer) function, and Listing 11-7 shows the

code of the num_passengers(text,date) function.

Listing 11-6.  Source code of num_passengers(int)

CREATE OR REPLACE FUNCTION num_passengers(p_flight_id int) RETURNS integer

AS

$$BEGIN

RETURN (

 SELECT count(*) FROM booking_leg bl

 JOIN booking b USING (booking_id)

 JOIN passenger p

 USING (booking_id)

WHERE flight_id=p_flight_id);

END;

$$ LANGUAGE plpgsql;

Listing 11-7.  Source code of num_passengers(text, date)

CREATE OR REPLACE FUNCTION num_passengers(p_airport_code text, p_departure

date) RETURNS integer

AS

$$BEGIN

RETURN (

 SELECT count(*) FROM booking_leg bl

 JOIN booking b USING (booking_id)

 JOIN passenger p USING (booking_id)

 JOIN flight f USING (flight_id)

Chapter 11 Functions

218

WHERE departure_airport=p_airport_code

AND scheduled_departure BETWEEN p_departure AND p_departure +1)

;

END;

$$ LANGUAGE plpgsql;

�Function Execution
To execute a function, we use the SELECT operator. Listing 11-8 demonstrates two

possible ways to execute the function num_passengers with the flight_id parameter set

to 13.

Listing 11-8.  Function execution

SELECT num_passengers(13);

SELECT * FROM num_passengers(13);

For functions that return scalar values, either syntax will produce identical results.

Complex types are covered later in this chapter.

It is also worth noting that user-defined scalar functions can be used in SELECT statements,

just like internal functions. Recall the function text_to_numeric in Listing 11-3. You

might wonder why somebody would need to create a user-defined conversion function

when PostgreSQL already has three different ways to convert a string to an integer. For

the record, these three ways are

•	 CAST (text_value AS numeric)

•	 text_value::numeric (this is alternative syntax for CAST)

•	 to_number(text_value, '999999999999')—using an internal

function

Why is a custom conversion function needed? For any of the methods listed in

the preceding list, if the input text string contains symbols other than numerals, the

attempted conversion results in an error.

Chapter 11 Functions

219

To make sure that the conversion function does not fail, we include the exception

processing section in the function body. The section starts with the EXCEPTION keyword;

the WHEN keyword may identify specific exception types. In this chapter, we will use

it only in the form WHEN OTHERS, which means all exception types not included in

previous WHEN conditions. If, as in Listing 11-3, WHEN OTHERS is used by itself, it means all

exceptions should be processed in the same way.

In Listing 11-3, this means that any conversion error (or, actually, any error) should

not fail the function, but instead return NULL. Why is it so critical for a function not to fail

when a “bad” parameter is passed? Because this function is being used in a SELECT list.

In Chapter 7, we created the materialized view passenger_passport (see Listing 7-11).

Different columns of this materialized view should contain different data types, but since

in the source data, all these fields are text fields, there is not much we can do. Now, if you

want to select the passport_num as a numeric type, your SELECT might look like this:

SELECT passenger_id,

 passport_num::numeric AS passport_number

FROM passenger_passport

If, in even one instance, the passport_num column contains a non-numeric value

(e.g., a blank or an empty string), then the whole SELECT statement will fail. Instead, we

can use the custom function text_to_integer:

SELECT passenger_id,

 text_to_numeric(passport_num) AS passport_number

FROM passenger_passport

Let’s create one more user-defined function, text_to_date, which will transform a

string that contains a date to type date—see Listing 11-9.

Listing 11-9.  Function converting text to date

CREATE OR REPLACE FUNCTION text_to_date(input_text text)

 RETURNS date AS

$BODY$

BEGIN

Chapter 11 Functions

220

 RETURN input_text::date;

EXCEPTION WHEN OTHERS THEN

 RETURN null::date;

END;

$BODY$

 LANGUAGE plpgsql;

Now, we can use both functions in Listing 11-10.

Listing 11-10.  Using functions in a SELECT list

SELECT passenger_id,

 text_to_integer(passport_num) AS passport_num,

 text_to_date(passport_exp_date) AS passport_exp_date

FROM passenger_passport

Although this example seems like a perfect use case for functions in PostgreSQL, in

reality it represents a far from ideal solution when it comes to performance, and we will

find out why very soon!

�Function Execution Internals
This section explains some specifics of function execution that are unique to

PostgreSQL. If you have previous experience with a DBMS like Oracle or MS SQL

Server, you might assume a thing or two about function execution that are not true in

PostgreSQL.

The first surprise might come when you execute a CREATE FUNCTION statement and

receive a completion message that looks something like this:

CREATE FUNCTION

Query returned successfully in 127 msec.

Reading this, you might assume your function does not contain any errors. To

illustrate what may go wrong afterward, let’s compile the code in Listing 11-11. If you

copy and execute this statement, you will receive a successful creation message.

Chapter 11 Functions

221

Listing 11-11.  Create a function that will complete with no errors

CREATE OR REPLACE FUNCTION num_passengers(p_airport_code text, p_departure

date) RETURNS integer

As $$

BEGIN

RETURN (

 SELECT count(*) FROM booking_leg bl

 JOIN booking b USING (booking_id)

 JOIN passenger p USING (booking_id)

 JOIN flight f USING (flight_id)

WHERE airport_code=p_airport_code

AND scheduled_departure BETWEEN p_date AND p_date +1);

END;

$$ LANGUAGE plpgsql;

However, when you try to execute this function

SELECT num_passengers('ORD', '2020-07-05')

…you will receive an error message:

ERROR: column "airport_code" does not exist

What went wrong? The function uses airport_code instead of departure_airport.

This is an easy mistake to make, but you might not expect that PostgreSQL would never

inform you that you made this mistake in the first place, when you created the function.

Now, if you correct this mistake and run a new CREATE FUNCTION statement (see

Listing 11-12), you will receive yet another error:

ERROR: column "p_date" does not exist

Listing 11-12.  Create a function: one error corrected, one more still there

CREATE OR REPLACE FUNCTION num_passengers(p_airport_code text, p_departure

date) RETURNS integer

As $$

BEGIN

RETURN (

Chapter 11 Functions

222

 SELECT count(*) FROM booking_leg bl

 JOIN booking b USING (booking_id)

 JOIN passenger p USING (booking_id)

 JOIN flight f USING (flight_id)

WHERE departure_airport =p_airport_code

AND scheduled_departure BETWEEN p_date AND p_date +1);

END;

$$ LANGUAGE plpgsql;

And PostgreSQL is right, since the name of the parameter is p_departure_date, not

p_date. Still, why wasn’t this error reported earlier?

During function creation, PostgreSQL performs only an initial parsing pass, during

which only trivial syntax errors will be detected. Anything deeper will not be detected

until execution. If you are fresh from Oracle and assume that when you create a function,

it is compiled by the database engine and stored compiled, this is bad news. Not only are

functions stored in the form of source code but moreover, in contrast to other DBMSs,

functions are interpreted, not compiled.

The PL/pgSQL interpreter parses the function's source text and produces an

(internal) instruction tree the first time the function is called within each session. Even

then, individual SQL expressions and commands used in the function are not translated

immediately. Only when the execution path reaches a specific command is it analyzed

and a prepared statement is created. It will be reused if the same function is executed

again in the same session. One of the implications of this is that if your function contains

some conditional code (i.e., IF THEN ELSE or CASE statements), you may not even

discover the syntax errors in your code, if this portion was not reached during execution.

We’ve seen these kinds of unpleasant discoveries made long after the function went into

production. To summarize, when you create a PL/pgSQL function

	 1.	 No execution plan is saved.

	 2.	 No checks for existence of tables, columns, or other functions are

performed.

	 3.	 You do not know whether your function works or not, until you

execute it (often more than one time, if there are multiple code

paths).

Chapter 11 Functions

223

Another important thing to know about PostgreSQL functions, which can be

concluded from the preceding explanation, is that functions are “atomic” in several

different ways. First (to the dismay of Oracle users), you can’t initiate transactions inside

PostgreSQL functions, so in the case of DML statements, it’s always “all or nothing.”

Second, the PostgreSQL optimizer knows nothing about function execution when it

optimizes an execution plan, which includes invocations of user-defined functions. For

example, if you execute

EXPLAIN SELECT num_passengers(13)

…the execution plan will look something like this:

"Result (cost=0.00..0.26 rows=1 width=4)"

If you need to find out what execution plans are used to execute the SELECT

statements inside the function, you will need to supply some actual values in place of

parameters and run the EXPLAIN command for each of them.

One of the keywords in the CREATE FUNCTION operator (remember, we didn’t list all

of them!) is COST. It allows a developer to explicitly set the cost of function execution to

be used by the optimizer. The default value is 100, and we do not recommend changing

it, unless you have a really compelling reason to do so.

�Functions and Performance
With that brief introduction out of the way, it’s time to address this book’s central

concern. How do functions affect performance? Chapter 7 addressed the topic of

code factoring and outlined the different implications of code factoring in imperative

languages and in SQL. Several possible techniques were covered, and functions were

mentioned as deserving a more detailed discussion, which follows.

Why create functions in PostgreSQL? In imperative languages, using functions

is the obvious choice: functions increase code readability, facilitate code reuse, and

have no negative impact on performance. By contrast, functions in PostgreSQL may

increase code readability, but may also decrease code readability and may significantly

worsen performance. Note the word “may”; the rest of the chapter concerns ways to use

user-defined functions wisely, so that they provide performance benefits rather than

performance disaster.

Chapter 11 Functions

224

�How Using Functions Can Worsen Performance
In a previous section, we created the function num_passengers(int), which calculates

the number of passengers on a flight specified by a function parameter. This function

works great for a single flight, returning a result within 150 ms.

Let’s take a look at what happens if this function is included in a SELECT list. Listing 11-13

selects all flights that departed from ORD between July 5 and July 13 and, for each of these

flights, calculates a total number of passengers.

Listing 11-13.  Using a function in the SELECT list decreases performance

SELECT flight_id,

 num_passengers(flight_id) AS num_pass

FROM flight f

 WHERE departure_airport='ORD'

 AND scheduled_departure BETWEEN '2020-07-05' AND '2020-07-13'

The execution time for this statement is 3.5 seconds. Now, if instead of using a

function, a SQL statement performing the exact same calculations is used (Listing 11-14),

the execution time will be around 900 ms.

Listing 11-14.  The same results without using a function

SELECT f.flight_id,

count(*) AS num_pass

FROM booking_leg bl

 JOIN booking b USING (booking_id)

 JOIN n passenger p

 USING (booking_id)

 JOIN flight f USING (flight_id)

WHERE departure_airport='ORD'

AND scheduled_departure BETWEEN '2020-07-05' AND '2020-07-13'

GROUP BY 1

Why such a big difference? In Chapter 7, we explained how views and CTEs can work

as an optimization fence. The effect is even more pronounced with functions. Since

a function is a true black box for the surrounding SQL statement, the only option for

PostgreSQL is to execute each function as many times as many rows are selected.

Chapter 11 Functions

225

To be precise, some time is saved because for the subsequent function calls from the

same session, PostgreSQL uses a prepared statement, but that fact can both speed up

and slow down the execution, because the execution plan won’t take into account the

differences in statistics between function calls.

The difference in the execution time between 0.9 seconds and 3.5 seconds might not

seem so big, and one might argue that a moderate slowdown can be tolerated for ease of

code maintenance, but note that between 0.9 seconds and 3.5 seconds, we are crossing

a threshold of how long a user is willing to wait. And here, the SQL inside the function is

pretty light and takes milliseconds to be executed.

Fine, we understand that it is not the greatest idea to execute SELECT statements

embedded into the SELECT list of another statement. But what about functions, which

perform simple data transformations? Like the ones we created for type conversion? In

this case, the difference may not be so dramatic until the output size becomes really big,

but it is still visible.

Let’s compare the execution time for the statement from Listing 11-10 with the

execution time for the statement in Listing 11-15.

Listing 11-15.  Selecting passport information without type conversion

SELECT passenger_id,

 passport_num,

 passport_exp_date

FROM passenger_passport

Both of them select data from one single table and do not apply any filters, so the

only time overhead will be the one incurred from executing the functions in the SELECT

list. The passenger_passport materialized view contains over 16 million rows. The

execution time for the statement in Listing 11-15 is 41 seconds. If we apply type casting

without calling the function (Listing 11-16)

Listing 11-16.  Selecting passport information with type casting

SELECT passenger_id,

 passport_num::numeric,

 passport_exp_date::date

FROM passenger_passport

Chapter 11 Functions

226

…the execution time will be two minutes. Running the statement in Listing 11-10, the

execution time will be more than nine minutes!

In this particular case, not much can be done to improve performance, except to

come up with a better design in the first place, but later in this book, we will review other

examples, where some performance improvements are possible.

�Any Chance Functions Can Improve Performance?
Having reviewed so many examples where functions affected performance negatively,

one might wonder whether there are ever conditions under which functions can

improve performance. As in many other cases, it depends.

If we are talking about improving an individual SQL statement’s performance,

wrapping it in a function can’t make it run faster. However, functions can be extremely

helpful when what is being optimized is a process.

�Functions and User-Defined Types
In all of the function examples so far, the functions we built returned scalar values.

Now, let’s see what are some additional benefits, provided by functions that return

user-defined data types.

�User-Defined Data Types
In addition to its own rich collection of data types, PostgreSQL allows the creation of a

virtually unlimited number of user-defined data types.

User-defined types can be simple or composite. Simple user-defined types include

the following categories: domain, enum, and range.

The following are examples of simple type creation:

CREATE DOMAIN timeperiod AS tstzrange;

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy’);

CREATE TYPE mood_range AS RANGE...

CREATE TYPE <base type>

Chapter 11 Functions

227

Just as we can define arrays of base types, we can define arrays of user-defined types:

DECLARE

v_moods_set mood[];

Even more options are available when we create a composite type.

A composite type represents a row, or a record. A type definition consists of the

sequence of field names and their respective data types. For example, Listing 11-17

defines the type boarding_pass_record.

Listing 11-17.  Type boarding_pass_record

CREATE TYPE boarding_pass_record AS (

boarding_pass_id int,

booking_leg_id int,

flight_no text,

departure_airport text,

arrival_airport text,

last_name text,

first_name text,

seat text,

boarding_time timestamptz)

Now that the type boarding_pass_record is defined, we can declare variables of this

type, the same as we can declare variables of base types:

DECLARE

v_new_boarding_pass_record boarding_pass_record;

And moreover, we can create functions, which return sets of composite types.

�Functions Returning Composite Types
Why is the fact that functions can return sets of composite types so crucial? Why would

we want to do it? Recall from Chapter 9 that we need to be able to retrieve the whole

object from the database, not just one component after another. Now, everything

previously discussed can be put together.

Let’s build an example. In Listing 11-18, we present a function that returns all

boarding passes for a specified flight.

Chapter 11 Functions

228

Listing 11-18.  Function returning all boarding passes for the flight

CREATE OR REPLACE FUNCTION boarding_passes_flight (p_flight_id int)

RETURNS SETOF boarding_pass_record

AS

$body$

BEGIN

RETURN QUERY

SELECT pass_id,

bp.booking_leg_id,

flight_no,

departure_airport::text ,

arrival_airport ::text,

last_name ,

first_name ,

seat,

boarding_time

FROM flight f

JOIN booking_leg bl USING (flight_id)

JOIN boarding_pass bp USING(booking_leg_id)

JOIN passenger USING (passenger_id)

WHERE bl.flight_id=p_flight_id;

END;

$body$

LANGUAGE plpgsql;

To execute this function, run the following:

SELECT * FROM boarding_passes_flight(13);

The result of this SELECT is presented in Figure 11-1.

Figure 11-1.  Result of the execution of the function boarding_passes_flight

Chapter 11 Functions

229

Now, let’s create another function, which will select just one boarding pass by the

pass_id. Note that since both functions accept a single integer parameter, overloading

won’t be possible in this case. The new function is shown in Listing 11-19.

Listing 11-19.  Function that returns one boarding pass

CREATE OR REPLACE FUNCTION boarding_passes_pass (p_pass_id int)

RETURNS SETOF boarding_pass_record

AS

$body$

BEGIN

RETURN QUERY

SELECT pass_id,

bp.booking_leg_id,

flight_no,

departure_airport::text ,

arrival_airport ::text,

last_name ,

first_name ,

seat,

boarding_time

FROM flight f

JOIN booking_leg bl USING (flight_id)

JOIN boarding_pass bp USING(booking_leg_id)

JOIN passenger USING (passenger_id)

WHERE pass_id=p_pass_id;

END;

$body$

LANGUAGE plpgsql;

When we execute this function

SELECT * FROM boarding_passes_pass(215158);

…the result will be a set that consists of only one row, but its structure will be the

same (see Figure 11-2).

Chapter 11 Functions

230

Why would using these functions improve performance? As we discussed in Chapter 10,

applications rarely execute SQL statements directly; instead, they often use SQL statements

generated behind the scenes by ORMs. In this case, there is a high likelihood that boarding

passes, passengers, and flights are accessible using different methods. That means that

most likely, to select the same data returned by the function boarding_passes_flight, we

will need one method to select departure airport, arrival airport, and scheduled departure

for a flight, which is passed as a parameter to this function, another method to select

all booking legs for that flight, another method for boarding passes, and yet another for

passenger information. If the application developers can be convinced, consolidating this

into a single function will be a huge performance improvement.

Selecting all boarding passes for a flight that has 600 passengers with the boarding pass

function takes 220 ms, running SELECT * FROM boarding_passes_flight(13650). On

the other hand, any individual SELECT from any table takes around 150 ms. Since each

process returns data to the application, making a roundtrip, the execution time is summed

up—using multiple calls will very quickly exceed the execution time of the function.

Previously, we learned that for scalar functions there is no difference between the

syntaxes SELECT * FROM function_name and SELECT function name. But when a

function returns a composite type, there is a difference.

Figure 11-1 shows the results when running

SELECT * FROM boarding_passes_flight(13)

Figure 11-3 shows the results of

SELECT boarding_passes_flight(13)

Figure 11-2.  Result of the execution of the function boarding_passes_pass

Figure 11-3.  Function results as a set of records

Chapter 11 Functions

231

�Using Composite Types with Nested Structure
Can we use composite types as elements of other composite types? Yes, PostgreSQL

allows it.

In Figure 10-4, we presented the structure of a complex object booking_record. One

of its components is a complex object booking_leg_record. To build the representation

of this object as a composite type, begin by creating a flight_record type and a

boarding_pass_record type, and then proceed with creating a booking_leg_record

type, as shown in Listing 11-20.

Listing 11-20.  More record type definitions

CREATE TYPE flight_record AS(

flight_id int,

flight_no text,

departure_airport_code text,

departure_airport_name text,

arrival_airport_code text,

arrival_airport_name text,

scheduled_departure timestamptz,

scheduled_arrival timestamptz)

CREATE TYPE booking_leg_record AS(

booking_leg_id int,

leg_num int,

booking_id int,

flight flight_record,

boarding_passes boarding_pass_record[]);

The booking_leg_record type contains as one of its elements a composite type

flight_record and as another component the array of boarding_pass_record

elements.

Looks like we solved the problem stated in Chapter 10: we can create composite

types with nested structure and create functions that return such objects. However, there

are still plenty of problems to solve.

Chapter 11 Functions

232

To illustrate the remaining problems, let’s create a function that will return the

whole object booking_leg_record using booking_leg_id. The code for this function is

presented in Listing 11-21.

Listing 11-21.  Function returning a complex object with nested structure

CREATE OR REPLACE FUNCTION booking_leg_select (p_booking_leg_id int)

RETURNS SETOF booking_leg_record

AS

$body$

BEGIN

RETURN QUERY

SELECT

bl.booking_leg_id,

leg_num,

bl.booking_id,

(SELECT row(flight_id,

flight_no,

departure_airport,

da.airport_name,

arrival_airport,

aa.airport_name ,

scheduled_departure,

scheduled_arrival)::flight_record

FROM flight f

 JOIN airport da on da.airport_code=departure_airport

 JOIN airport aa on aa.airport_code=arrival_airport

 WHERE flight_id=bl.flight_id

),

(SELECT array_agg (row(

pass_id,

bp.booking_leg_id,

flight_no,

departure_airport ,

arrival_airport,

last_name ,

Chapter 11 Functions

233

first_name ,

seat,

boarding_time)::boarding_pass_record)

FROM flight f1

JOIN boarding_pass bp ON f1.flight_id=bl.flight_id

 AND bp.booking_leg_id=bl.booking_leg_id

JOIN passenger p ON p.passenger_id=bp.passenger_id)

FROM booking_leg bl

WHERE bl.booking_leg_id=p_booking_leg_id

;

END;

$body$ language plpgsql;

Don’t be put off by the preceding massive function—it is long, but not too complex.

Let’s take a closer look.

The main SELECT extracts data from the booking_leg table, using the value of the

function parameter as a search criterion. The first three elements of the record—booking_

leg_id, leg_num, booking_id—come directly from the table booking_leg. The next

element of the record is flight_record, where flight_id is the flight_id from the selected

booking leg. This condition is set in the WHERE clause of the inner SELECT:

WHERE flight_id=bl.flight_id

We select the information about the flight, which is referenced in the selected

booking leg.

The internal function row() builds the row from the set of elements, and this row is

cast to the type flight_record, which is the type expected in the booking_leg_record.

The last element of the booking_leg_record is an array of boarding passes—as many

passes as there are passengers in this reservation. Let’s take a closer look at this inner

SELECT:

(SELECT array_agg (row(

pass_id,

bp.booking_leg_id,

flight_no,

departure_airport ,

arrival_airport,

Chapter 11 Functions

234

last_name ,

first_name ,

seat,

boarding_time)::boarding_pass_record)

FROM flight f1

JOIN boarding_pass bp ON f1.flight_id=bl.flight_id

 AND bp.booking_leg_id=bl.booking_leg_id

JOIN passenger p ON p.passenger_id=bp.passenger_id)

The first thing you notice about this select is that it is essentially the same select as

we used in the boarding_pass_flight function. The differences are the following:

•	 There is no need to join with the booking_leg table, since it was

already selected in the outer SELECT. We still need information from

the flight table, but we can use the flight_id from the selected

booking leg. This way, there is a Cartesian product with one line from

the table flight.

•	 Similarly, for the boarding pass, there is no join with the booking_leg

table; we just use the booking_leg_id, which is already there.

Finally, we use the internal function array_agg() to create a single set of records that

is expected as the last element of the booking_leg_record.

Note T he preceding is only one of multiple ways to build an object with nested
structure. In subsequent chapters, we will present alternative ways, which might
be more useful in other circumstances.

And now, here is the bad news. We put in so much effort to create this function, and

now, when we execute it, the results are somewhat disappointing. Execute

SELECT * FROM booking_leg_select (17564910)

The result is shown in Figure 11-4.

Figure 11-4.  Returned complex object with nested structure

Chapter 11 Functions

235

The result set looks exactly as we wanted it to look, but notice one important

detail. For the scalar elements, PostgreSQL retains the element names (same as if we

would select from a table), but when it comes to the elements that are complex objects

themselves, their structure is not revealed. Note that, internally, PostgreSQL still retains

the notion of what is the structure of the inner type, but it does not communicate it to the

upper level.

Why is this a problem? Chapter 10 covered ORM pitfalls and sketched out a

hypothetical solution in Figure 10-4. At that time, we did not discuss any specifics of

how this goal could be achieved, but with functions that can return complex types, a

solution seems to be reachable. However, when neither an element name nor its type

can be identified by the application, the function output becomes useless, at least for the

purpose of being called from an application directly.

The solution is in Chapter 13, but for now, let’s focus on functions that return records

without nested structure.

�Functions and Type Dependencies
Chapter 7 mentioned dependencies in the context of views and materialized views. For

both views and materialized views, the definition cannot be altered without dropping the

object first. This, in turn, means all dependent objects must be dropped and recreated,

even if the names and the number of columns in the view or materialized view didn’t

change. If these dependent objects are, in turn, used in other views or materialized

views, their dependent objects have to be dropped as well.

This may result in some highly undesirable consequences. We’ve observed

situations in production systems where one change resulted in a cascade drop of over 60

dependent objects, which had to be rebuilt following a particular order.

Fortunately, we do not have this problem with functions. Since SQL statements in

the function body are not parsed during function creation, there are no dependencies

on tables, views or materialized views, or other functions and stored procedures, which

are used in the function body. For this reason, functions need only be recreated when

needed as the result of an actual change, not simply due to a cascade drop.

However, functions create a new type of dependencies: functions depend on their

returned types, including user-defined types. Just as with materialized views, user-

defined data types cannot be modified without being dropped first. To drop a type, all

other user-defined types that include it as an element and all functions that depend

Chapter 11 Functions

236

on that type must be dropped. This might sound like an even worse problem, but

actually, it is exactly the right problem to have. If a user-defined type is modified, some

of its elements must have been added, removed, or changed. That, in turn, means that

SELECT statements that return that type of record must be revised, so the functions

should be dropped.

In addition, unlike the creation of a materialized view, which may take some time,

creating a function is nearly instantaneous.

�Data Manipulation with Functions
So far, this chapter has only considered functions that select data. But PL/pgSQL

functions allow any SQL command, including DML functions.

Listing 11-22 is a function that issues a new boarding pass to a passenger.

Listing 11-22.  Create a new boarding pass

CREATE OR REPLACE FUNCTION issue_boarding_pass

(p_booking_leg_id int,

_p_passenger_id int,

 p_seat text,

 p_boarding_time timestamptz)

RETURNS SETOF boarding_pass_record

AS

$body$

DECLARE

v_pass_id int;

BEGIN

INSERT INTO boarding_pass

(passenger_id,

 booking_leg_id,

 seat,

 boarding_time,

 update_ts)

 VALUES (

p_passenger_id,

p_booking_leg_id,

Chapter 11 Functions

237

p_seat,

p_boarding_time,

now()) RETURNING pass_id INTO v_pass_id;

RETURN QUERY

SELECT * FROM boarding_passes_pass(v_pass_id);

END;

$body$

LANGUAGE plpgsql;

Note the call to the function boarding_passes_pass in this function body. This

function was created earlier, but even if it didn’t exist, the CREATE FUNCTION operator

wouldn’t signal an error until this function is executed. There are pros and cons to

this behavior. It gives more flexibility during development, but it can also create issues

because the fact that the embedded function was removed or is not working properly

might go unnoticed. Executing this function is the same as other functions:

SELECT * FROM issue_boarding_pass(175820,462972, '22C', '2020-06-16

21:45'::timestamptz)

Note that this execution does not make much sense because the flight departed

in the past, so it is present here for illustrative purposes only. Figure 11-5 presents the

result of this execution—the data has the same format as for other functions that return

boarding passes.

When creating this function, we made some assumptions that we would not hold

up in real life. For example, the function doesn’t check whether a boarding pass for that

passenger and that flight was already issued, doesn’t check seat availability against the

seat chart, and does not capture possible errors on INSERT. In a production environment,

this function would be much more complex.

Figure 11-5.  DML function returning a user-defined type

Chapter 11 Functions

238

�Functions and Security
In this book, we do not cover data access control/permissions in PostgreSQL, mostly

because this topic is not related to performance. However, we will cover a little bit about

setting up security for PostgreSQL functions and a surprising link between function

security settings and performance.

One of the parameters in the CREATE FUNCTION operator that was not covered

earlier is SECURITY. This parameter has only two allowed values: INVOKER and DEFINER.

The latter is a default value; it indicates that the function will be executed using the set

of privileges of the user who calls the function. That means that in order to be able to

execute a function, a user should have relevant access to all the database objects that are

used in the function body. If we explicitly specify SECURITY DEFINER, a function will be

executed with the permissions of the user who created the function. Note that in contrast

to other database object permissions, the execution privilege for any function is granted

by default to PUBLIC.

Many of you (as well as us, your authors) have been in a situation where a power

business user needs to have access to some critical data, but you do not want to give

them READ ALL access, because you are not entirely sure about their SQL skills and

whether their queries might bring the whole system down.

In this case, a compromise might be in order—you would create a function that

pulls all the necessary data using a performant query, create this function with the

SECURITY DEFINER parameter, and then give this power user the execution permission,

first removing execution permission from everybody else. The sequence of actions is

presented in Listing 11-23.

Listing 11-23.  Usage of the SECURITY DEFINER function

CREATE FUNCTION critical_function (par1 ...)

RETURNING SETOF...

AS $FUNC$

...

END:

$FUNC$

LANGUAGR plpgsql

SECURITY DEFINER;

--

Chapter 11 Functions

239

REVOKE EXECUTE ON critical_function (par1 ...)

FROM public;

GRANT EXECUTE ON critical_function (par1 ...)

TO powerbusinessuser;

�What About Business Logic?
In cases when you can convince your application developers to use functions to

communicate with the database, the performance gains are dramatic. The sheer fact

of eliminating multiple roundtrips can easily improve application performance tens or

even hundreds of times, when we measure the application response time rather than the

database response time.

One of the most serious blockers on this road to success is the concept of business

logic. One of the definitions (from Investopedia.com) reads like this:

Business logic is the custom rules or algorithms that handle the exchange
of information between a database and user interface. Business logic is
essentially the part of a computer program that contains the information
(in the form of business rules) that defines or constrains how a business
operates.

Business logic is often considered a separate application layer, and when we put

“too much logic” into database functions, it makes application developers unhappy.

We spent a considerable amount of time trying to find common ground with business

and application developers alike. The result of these discussions can be summarized as

follows:

•	 We need some business logic to execute joins and selects.

•	 Selected result transformations and manipulations do not have to be

executed on the database side.

In practice, this means that when deciding what can go to the database and what has

to stay in the application, a decisive factor is whether bringing the dependencies into the

database would improve performance (facilitate joins or enable the use of indexes). If

so, the logic is moved into a function and considered “database logic”; otherwise, data is

returned to the application for further processing of business logic.

Chapter 11 Functions

http://investopedia.com

240

For example, for the airline reservation application, a function can be created

to return available trips, that is, potential bookings. The parameters of this function

include the departure city, the destination, the trip start date, and the return date. To be

able to retrieve all possible trips efficiently, the function needs to know how the tables

airport and flight can be joined and how to calculate the duration of the flight. All this

information belongs to database logic.

However, we do not want the function to make a final decision regarding which trip

to select. Final selection criteria may vary and are processed by the application; they

belong to business logic.

Applying this criterion consistently can be quickly incorporated into the regular

development cycle and encourages developing applications “right right away.”

�Functions in OLAP Systems
By this time, we hope that we convinced you that using PostgreSQL functions in OLTP

systems is beneficial. What about OLAP?

Unless you’ve tried it, you might not know that many reporting tools, including

Cognos, Business Objects, and Looker, can present the results of a function. In fact,

executing a function that returns a set of records is similar to performing SELECT * FROM

<some table>.

However, the fact that software can do something doesn’t means that it should. So

what’s the benefit of using functions in an OLAP environment?

�Parameterizing
A view or materialized view can’t be parameterized. This might not pose any problem if

we want to run a report for the most recent date, for yesterday, for last week, and so on,

because we can utilize such internal functions as CURRENT_DATE or CURRENT_TIMESTEMP,

but if we need to rerun any report for any of the past time intervals, it won’t be an easy

task without making some changes to the view. For example, if a view includes condition

WHERE scheduled_departure BETWEEN CURRENT_DATE-7

AND CURRENT_DATE

…you will need to recompile the view to run it for different dates. But if this SELECT

is packaged into the function recent_flights (p_period_start date), you can simply

execute it with different parameters:

Chapter 11 Functions

241

SELECT * FROM recent_flights(CURRENT_DAY)

SELECT * FROM recent_flights(‘2020-08-01’)

�No Explicit Dependency on Tables and Views
If a report is executed as a call to a function, it can be optimized without the necessity to

drop and recreate it. Moreover, the underlying tables can be modified, or we can end up

using completely different tables, all invisible to the end user.

�Ability to Execute Dynamic SQL
This is another exceptionally powerful feature of PostgreSQL, which is often underused

and which is discussed in more detail in Chapter 12.

�Stored Procedures
In contrast to other DBMSs, PostgreSQL didn’t have stored procedures for some time,

much to the disappointment of early adopters coming from commercial systems.

As for us, your authors, we were especially frustrated with the atomic nature of

functions, which does not allow any transaction management, including committing of

intermediate results.

�Functions with No Results
For a while, PostgreSQL developers had no option rather than to use functions in place

of store procedures. You could do it using functions that return VOID, like

CREATE OR REPLACE function cancel_flight (p_filght_id int) RETURNS VOID AS <...>

Also, there is an alternative way to execute functions:PERFORM issue_boarding_

pass(175820,462972, '22C', '2020-06-16 21:45'::timestamptz)

The preceding way will execute the function and create a boarding pass, but it won’t

return the result.

Chapter 11 Functions

242

�Functions and Stored Procedures
The difference between functions and stored procedures is that procedures do not return

any values; thereby, we do not specify a return type. Listing 11-24 presents the CREATE

PROCEDURE command, which is very similar to the CREATE FUNCTION command.

Listing 11-24.  CREATE PROCEDURE command

CREATE PROCEDURE procedure_name (par_name1 par_type1, ...)

AS

<procedure body>

LANGUAGE procedure language;

The syntax of the procedure body is the same as that of the function, except there is

not a need for a RETURN type. Also, all the preceding sections on function internals apply

to stored procedures, as well. To execute a stored procedure, the CALL command is used:

CALL cancel_flight(13);

�Transaction Management
The most important difference between how functions and stored procedures are

executed is that you can commit or roll back a transaction within a procedure body.

At the start of the procedure execution, a new transaction starts, and any COMMIT

or ROLLBACK command within a function body will terminate the current transaction

and start a new one. One of the use cases is the bulk data load. We find it beneficial to

commit changes in reasonably sized portions, for example, every 50,000 records. The

structure of the stored procedure might look like Listing 11-25.

Listing 11-25.  Example of a stored procedure with transactions

CREATE PROCEDURE load_with_transform()

AS $load$

DECLARE

v_cnt int;

v_record record;

BEGIN

FOR v_record IN (SELECT * FROM data_source) LOOP

Chapter 11 Functions

243

 PERFORM transform (v_rec.id);

 CALL insert_data (v_rec.*);

 v_cnt:=v_cnt+1;

IF v_cnt>=50000 THEN

 COMMIT;

 v_cnt:=0;

END IF;

END LOOP;

COMMIT;

END;

$load$ LANGUAGE plpgsql;

In this example, data is processed before loading and COMMIT when we process

50,000 records. An additional commit upon exiting the loop is necessary for the

remaining records, processed after the last in-loop commit.

Note that no commands were issued inside this procedure and all the operations

would be processed as a part of the outer transaction, that is, the transaction that

initiated the execution.

�Exception Processing
Same as with functions, you can include instructions on what to do if certain processing

exceptions occur. In Listing 11-3, we provided an example of exception processing in a

function. Similar exception processing can be performed in procedures.

In addition, it is possible to create inner blocks inside of a function or procedure

body and to have a different exception processing in each of them. The procedure body

structure for this case is shown in Listing 11-26.

Listing 11-26.  Nested blocks in the procedure body

CREATE PROCEDURE multiple_blocks AS

$mult$

BEGIN

---case #1

 BEGIN

 <...>

 EXCEPTION WHEN OTHERS THEN

Chapter 11 Functions

244

 RAISE NOTICE 'CASE#1";

 END; --case #1

BEGIN

 ---case #2

 BEGIN

 <...>

 EXCEPTION WHEN OTHERS THEN

 RAISE NOTICE 'CASE#2";

 END; --case #2

BEGIN

---case #3

 BEGIN

 <...>

 EXCEPTION WHEN OTHERS THEN

 RAISE NOTICE 'CASE#3";

 END; --case #3

END; ---proc

$mult$ LANGUAGE plpbsql;

Note that BEGIN in the procedure body is different from the BEGIN command that

starts a transaction.

�Summary
Functions and stored procedures in PostgreSQL are exceptionally powerful tools that

are all but ignored by many database developers. They can both drastically improve and

drastically worsen performance and can be successfully used in both OLTP and OLAP

environments.

This chapter serves as a sneak peek of various ways functions can be used. Consult

PostgreSQL documentation for more details on how to define and use functions and

stored procedures.

Chapter 11 Functions

245
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_12

CHAPTER 12

Dynamic SQL

�What Is Dynamic SQL
Dynamic SQL is any SQL statement that is first built as a text string and then executed

using the EXECUTE command. An example of dynamic SQL is shown in Listing 12-1.

Possibilities that are opened by using dynamic SQL are underused in most of RDBMSs,

but even more so in PostgreSQL. The recommendations provided in this chapter go

against the grain of what many database textbooks say, but just as in previous cases, all

suggestions are based strictly on our practical experience.

Listing 12-1.  Dynamic SQL

DECLARE

v_sql text;

cnt int;

BEGIN

v_sql:=$$SELECT count(*) FROM booking

 WHERE booking_ref='0Y7W22'$$;

EXECUTE v_sql into cnt;

�Why It Works Better in Postgres
So you may wonder what is so special about PostgreSQL relative to other DBMSs that

the recommendations here would stray so far from conventional wisdom. Consider the

following points.

First, in PostgreSQL, execution plans are not cached even for prepared queries (i.e.,

queries that are preparsed, analyzed, and rewritten using the PREPARE command). That

means that optimization always happens immediately before execution.

https://doi.org/10.1007/978-1-4842-6885-8_12#DOI

246

Second, the optimization step in PostgreSQL happens later than in other systems.

For example, in Oracle, the execution plan for a parameterized query is always prepared

for a generic query, even if the specific values are there. Moreover, a plan with binding

variables is cached for future usage if the same query with different values is executed.

The optimizer takes the table and index statistics into account but does not take into

account the specific values of parameters. PostgreSQL does the opposite. The execution

plan is generated for specific values.

As mentioned earlier, dynamic queries are unfairly neglected in other DBMSs as

well. That’s primarily because for long-running queries (dozens of seconds or more), the

overhead mostly is negligible.

�What About SQL Injection?
Often, if you suggest to a team of developers to use dynamic SQL for better performance,

the response would be alarmed looks: what about SQL injection? Indeed, everyone has

heard stories about stolen passwords and deleted data, because somebody was smart

enough to inject a dangerous command instead of date of birth in a registration form.

True, there are multiple ways for hackers to get access to data they should not get access

to. However, when we are considering dynamic SQL, there are some simple rules that

help minimize possible risks.

In cases when parameter values for a function call are obtained from the database

directly (i.e., referencing IDs), they can’t contain any SQL injection. Values obtained

from user input must be protected with PostgreSQL functions (quote_literal, quote_

indent, etc., or format). Their use will be demonstrated later in this chapter.

�How to Use Dynamic SQL in OLTP Systems
Often, it may be beneficial to build dynamic SQL inside a function and then to execute

it rather than to pass parameter values as binding variables. We outlined the reasons

for better performance in such situations in the previous chapters, so let’s proceed with

examples.

Recall the query in Listing 6-6, which has two selection criteria: by departure airport

country and by the last time the booking was updated. In Chapter 6, we demonstrated

how PostgreSQL modifies the execution plan depending on specific values of these

parameters.

Chapter 12 Dynamic SQL

247

In this chapter, we see what happens with this query if it is executed inside a

function.

Let’s start by creating a return type in Listing 12-2.

Listing 12-2.  Create a return type

DROP TYPE IF EXISTS booking_leg_part ;

CREATE TYPE booking_leg_part AS(

departure_airport char (3),

booking_id int,

is_returning boolean)

;

Now, let’s create a function with two parameters: ISO country code and the

timestamp of the last update. This function is shown in Listing 12-3.

Listing 12-3.  SQL from Listing 6-6, packaged in a function

CREATE OR REPLACE FUNCTION select_booking_leg_country (

p_country text,

p_updated timestamptz)

RETURNS SETOF booking_leg_part

AS

$body$

BEGIN

RETURN QUERY

SELECT departure_airport, booking_id, is_returning

 FROM booking_leg bl

 JOIN flight f USING (flight_id)

 WHERE departure_airport IN

 (SELECT airport_code

 FROM airport WHERE iso_country=p_country)

 AND bl.booking_id IN

 (SELECT booking_id FROM booking

 WHERE update_ts>p_updated);

 END;

LANGUAGE plpgsql;

Chapter 12 Dynamic SQL

248

Chapter 6 demonstrated how PostgreSQL chooses different execution plans

depending on the values for country and timestamp search parameters, and this

influences execution time.

Since functions in PostgreSQL (just as in other systems) are atomic, we can’t run the

EXPLAIN command to see the execution plan for the function (to be precise, the EXPLAIN

will be executed, but the only thing it will show will be the execution itself), but since the

expected response time for the query is known, we can get a good idea what’s going on

under the hood.

Recall that previously, executing the statement in Listing 12-4 resulted in an

execution time of about 40 seconds (two hash joins are executed).

Listing 12-4.  SELECT with two hash joins

SELECT departure_airport, booking_id, is_returning

 FROM booking_leg bl

 JOIN flight f USING (flight_id)

 WHERE departure_airport IN

 (SELECT airport_code

 FROM airport WHERE iso_country='US')

 AND bl.booking_id IN

 (SELECT booking_id FROM booking

 WHERE update_ts>'2020-07-01')

Recall also that by moving the bound on update_ts closer to the dataset’s “current

date” of August 17, initially, execution time doesn’t change significantly. Execution time

with update_ts>'2020-08-01 will still be about 35 seconds, with a reduction attributable

to a smaller intermediate dataset. The execution plan for that case is shown in Figure 12-1.

Chapter 12 Dynamic SQL

249

Eventually, as the value of update_ts keeps getting closer to August 17, PostgreSQL

will choose index access, and for the query in Listing 12-5, the execution time is 12

seconds.

Listing 12-5.  One hash join is replaced with a nested loop

SELECT departure_airport, booking_id, is_returning

 FROM booking_leg bl

 JOIN flight f USING (flight_id)

 WHERE departure_airport IN

 (SELECT airport_code

 FROM airport WHERE iso_country='US')

 AND bl.booking_id IN

 (SELECT booking_id FROM booking

 WHERE update_ts>'2020-08-15')

The execution plan for this case is presented in Figure 12-2.

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Figure 12-1.  Execution plan with two hash joins

Chapter 12 Dynamic SQL

250

With these figures as a reference, let’s examine how the function version of the query

performs.

Let’s try to replicate the same behavior as we observed in Chapter 6 for a long query

with different search conditions and execute the statements shown in Listing 12-6.

Listing 12-6.  Examples of function calls

#1

SELECT * FROM select_booking_leg_country('US', '2020-07-01');

#2

SELECT * FROM select_booking_leg_country('US', '2020-08-01');

#3

SELECT * FROM select_booking_leg_country('US', '2020-08-15');

#4

SELECT * FROM select_booking_leg_country('CZ', '2020-08-01');

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Figure 12-2.  Execution plan with one hash join and one nested loop

Chapter 12 Dynamic SQL

251

The execution times observed will differ depending on what parameters are passed

to the function during the first call. As a result, the execution time for statement #3,

which should take around 10 seconds, may vary from 10 seconds up to 1 minute,

depending on the sequence of calls and the time you pause between calls. You can even

open two or three connections to your local PostgreSQL and try to execute these calls in

different order.

Why is the behavior of the function so inconsistent? Recall Chapter 11, where we

stated that PostgreSQL may save the execution plan of the prepared statement and when

a function is called for the first time in a session, each SQL statement that it reaches

during the execution will be evaluated and the execution plan will be optimized and

then it may be cached for subsequent executions.

We are purposely not describing a specific behavior with each sequence of calls,

because it is not guaranteed. And while “not guaranteed” may be acceptable for a

training database, it is definitely not acceptable in a production environment, especially

when an OLTP system implements a policy that caps maximum wait time and aborts

transactions when the wait time exceeds that limit.

In order to guarantee that each time a function is executed the execution plan will

be evaluated and optimized for specific values, we create functions that execute dynamic

SQL.

Listing 12-7 shows the function select_booking_leg_country_dynamic that

executes exactly the same SQL as the select_booking_leg_country function. The only

difference is that the former function constructs a SELECT statement inside the function

and then executes it.

Listing 12-7.  A function that executes dynamic SQL

CREATE OR REPLACE FUNCTION select_booking_leg_country_dynamic (p_country

text,

p_updated timestamptz)

RETURNS setof booking_leg_part

AS

$body$

BEGIN

RETURN QUERY

EXECUTE $$

SELECT departure_airport, booking_id, is_returning

Chapter 12 Dynamic SQL

252

 FROM booking_leg bl

 JOIN flight f USING (flight_id)

 WHERE departure_airport IN

 (SELECT airport_code

 �FROM airport WHERE iso_country=$$|| quote_literal(

p_country) ||

 $$ AND bl.booking_id IN

 (SELECT booking_id FROM booking

 WHERE update_ts>$$|| quote_literal(p_updated)||$$)$$;

END;

$body$ LANGUAGE plpgsql;

This function accepts the same set of parameters as select_booking_leg_country

and returns the same result. But observe that its execution time for each set of

parameters is consistent, which is exactly what we want in production systems.

Why did this behavior change? Since the SQL is built immediately prior to execution,

the optimizer does not use a cached plan. Instead, it evaluates the execution plan for

each execution. It may seem that this would take extra time, but in reality the opposite

happens. The planning time is under 100 ms, and it pays off with a better execution plan,

which saves significantly more time.

Also note that this function uses the quote_literal() function to protect from SQL

injections.

This is the first but not the only reason why using dynamic SQL in functions is

beneficial. We will cover more cases in support of this statement later in this chapter.

�How to Use Dynamic SQL in OLAP Systems
The title of this section may be misleading. The technique that we are about to

demonstrate can be used in any system; however, the most impressive results can be

achieved when the result set is large. The larger the result set is, the more pronounced

the benefits.

Let’s imagine that for statistical analysis, we need to sort passengers by age.

A function to define age categories is presented in Listing 12-8.

Chapter 12 Dynamic SQL

253

Listing 12-8.  A function that assigns the age category

CREATE OR REPLACE FUNCTION age_category (p_age int)

RETURNS TEXT language plpgsql AS

$body$

BEGIN

 RETURN (case

 WHEN p_age <= 2 then 'Infant'

 WHEN p_age <=12 then 'Child'

 WHEN p_age < 65 then 'Adult'

 ELSE 'Senior' END);

END; $body$;

If this function is used for statistical reports, we might need to calculate age category

for all passengers. In Chapter 11, we mentioned that executing functions in the SELECT

list may slow things down, but the functions were more complex. The age_category

function performs a very simple substitute. Still, function invocation takes time. Thus,

SELECT passenger_id, age_category(age) FROM passenger

LIMIT 5000000

takes 25 seconds to execute, while

SELECT passenger_id,

 CASE

 WHEN age <= 2 then 'Infant'

 WHEN age <=12 then 'Child'

 WHEN age < 65 then 'Adult'

 ELSE 'Senior'

 END from passenger LIMIT 5000000

takes only 6 seconds.

In this particular case, using a function is not really an imperative, because we need

it only once, and even one of our biggest tables, passenger, has only 16 million rows.

In real analytical queries, the number of rows we need to process might be hundreds of

millions of rows, and multiple category-assigning functions need to be used. In one real-

life scenario, execution time with functions was 4 hours, while execution time with just

one function substituted by a direct CASE operator was less than 1.5 hours.

Chapter 12 Dynamic SQL

254

Does this mean we want to avoid using functions in the SELECT list at all cost? There

may be a reason our analytics team wants to package the age category assignment in the

function. Most likely, they are going to use this function in multiple selections and with

different tables, and in case their category assignment will change, they do not want to

go over all their SELECT statements and correct each of them.

A more performant solution that retains the maintainability of the function is to

create a different function, which contains part of the code as text—see Listing 12-9.

Listing 12-9.  A function that builds a part of dynamic SQL

CREATE OR REPLACE FUNCTION age_category_dyn (p_age text)

RETURNS text language plpgsql AS

$body$

BEGIN

 RETURN ($$CASE

 WHEN $$||p_age ||$$ <= 2 THEN 'Infant'

 WHEN $$||p_age ||$$<= 12 THEN 'Child'

 WHEN $$||p_age ||$$< 65 THEN 'Adult'

 ELSE 'Senior'

END$$);

END; $body$;

Notice the difference: when we execute

SELECT age_category(25)

…it will return the value ‘Adult’.

If you execute

SELECT age_category_dyn('age')

…it will return a text line that contains the part of code

CASE

 WHEN age <= 2 THEN 'Infant'

 WHEN age<= 12 THEN 'Child'

 WHEN age< 65 THEN 'Adult'

 ELSE 'Senior'

END

Chapter 12 Dynamic SQL

255

To use this function, you will need to package the SELECT statement into a function,

but we already know how to do that—see Listing 12-10.

Listing 12-10.  Using a new age_category_dyn function to build dynamic SQL

query

CREATE TYPE passenger_age_cat_record AS (

passenger_id int,

age_category text

);

CREATE OR REPLACE FUNCTION passenger_age_category_select (p_limit int)

RETURNS setof passenger_age_cat_record

AS

$body$

BEGIN

RETURN QUERY

EXECUTE $$SELECT

 passenger_id,

 $$||age_category_dyn('age')||$$ AS age_category

FROM passenger LIMIT $$ ||p_limit::text

;

END;

$body$ LANGUAGE plpgsql;

Now, we can execute the following statement:

SELECT * FROM passenger_age_category_select (5000000)

This will take about 11 seconds to execute, which is more than a statement without

any function calls, but still less than when we choose to execute the original version of

the age_category function. And once again, when we are dealing with real analytical

queries, the effect will be more visible.

Some might argue that going to the trouble of creating functions that generate code

is not worth the performance gains. To reiterate, there is no universal principle for

whether or not creating functions is beneficial—either for performance, code factoring,

or portability. Chapter 11 mentioned that code factoring does not work for PG/PL SQL

functions the way it works for object-oriented programming languages and promised

Chapter 12 Dynamic SQL

256

to provide some examples. This section gives one of those examples. Here, the function

age_category_dyn helps code factoring, because updates to the age category assignment

must be made in only one place. At the same time, it has less impact on performance

than a more traditional function with parameters. Most of the time, building a function

that executes dynamic SQL takes some time in the beginning, because debugging is

more difficult. However, when the function is already in place, it takes little time to make

changes. Deciding which time is more critical—the initial development time or average

execution time—can only be done by application and/or database developers.

�Using Dynamic SQL for Flexibility
The technique described in this section is most commonly used in OLTP systems,

although once again, it’s not strictly limited to one type of environment.

Often, systems allow a user to select an arbitrary list of search criteria, perhaps using

some drop-down lists or other graphical ways to construct a query.

The user does not (and should not) know anything about the way the data is stored

in the database. However, the search fields may be located in different tables, search

criteria may have a different selectivity, and, in general, the SELECT statement may look

very different depending on the selection criteria.

Let’s look at an example. Suppose a function is needed to search for a booking using

any combination of the following values:

•	 Email (or the beginning portion of email)

•	 Departure airport

•	 Arrival airport

•	 Departure date

•	 Flight ID

Is there any way to implement this function efficiently without defaulting to elastic

search?!

Most often, when a developer needs to create a function with this kind of

functionality, they would come up with something similar to what is presented in

Listing 12-11.

Chapter 12 Dynamic SQL

257

Listing 12-11.  Function that allows search using different combinations of

parameters

CREATE TYPE booking_record_basic AS

(booking_id bigint,

 booking_ref text,

 booking_name text ,

 account_id integer,

 email text);

CREATE OR REPLACE FUNCTION select_booking (p_email text,

p_dep_airport text,

p_arr_airport text,

p_dep_date date,

p_flight_id int)

RETURNS SETOF booking_record_basic

AS

$func$

BEGIN

RETURN QUERY

SELECT DISTINCT b.booking_id, b.booking_ref,

booking_name, account_id, email

FROM booking b JOIN

 booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

WHERE (p_email IS NULL OR lower(email) LIKE p_email||'%')

AND (p_dep_airport IS NULL OR departure_airport=p_dep_airport)

AND (p_arr_airport IS NULL OR arrival_airport=p_arr_airport)

AND (p_flight_id IS NULL OR bl.flight_id=p_flight_id);

END;

$func$ LANGUAGE plpgsql;

This function will always return the correct result, but from a performance

standpoint, its behavior will be, at minimum, difficult to predict. Note that when

searching by email address, the joins to the booking_leg and flight tables are not

needed, but they will be still present.

Chapter 12 Dynamic SQL

258

Let’s compare execution times for a few examples.

#1. Search on email.

SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name, b.email FROM

booking b

WHERE lower(email) like 'lawton52%'

As a SELECT, this takes 4.5 seconds.

SELECT * FROM select_booking ('lawton52',

NULL,

NULL,

NULL,

NULL

)

A comparable function execution takes 13 seconds.

#2. Filter on email and flight_id.

SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name, b.email FROM

booking b

JOIN booking_leg bl USIGN (booking_id)

WHERE lower(email) like 'lawton52%'

AND flight_id= 27191

The SELECT takes 150 ms.

SELECT * FROM select_booking ('lawton52',

NULL,

'NULL,

NULL,

27191

)

Meanwhile, function execution takes 102 ms.

#3. Criteria on email, departure airport, and arrival airport.

SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name, b.email FROM

booking b

JOIN booking_leg bl USIGN (booking_id)

Chapter 12 Dynamic SQL

259

JOIN flight f USING (flight_id)

WHERE lower(email) like 'lawton52%'

AND departure_airport='ORD'

AND arrival_airport='JFK'

The SELECT takes 200 ms.

SELECT * FROM select_booking ('lawton52',

'ORD',

'JFK',

NULL,

NULL

)

Function execution with the same parameters takes 910 ms.

#4. Criteria on email, departure airport, arrival airport, and scheduled departure.

SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name, b.email FROM

booking b

JOIN booking_leg bl USIGN (booking_id)

JOIN flight f USING (flight_id)

WHERE lower(email) like 'lawton52%'

AND departure_airport='ORD'

AND arrival_airport='JFK'

AND scheduled_departure BETWEEN '07-30-2020' AND '07-31-2020'

SELECT takes 95 ms.

SELECT * FROM select_booking ('lawton52',

'ORD',

'JFK',

'2020-07-30',

NULL

)

Function execution takes 1 second.

#5. Search on email and scheduled departure.

Chapter 12 Dynamic SQL

260

SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name, b.email FROM

booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

WHERE lower(email) like 'lawton52%'

AND scheduled_departure BETWEEN '07-30-2020' AND '07-31-2020'

SELECT takes 10 seconds.

SELECT * FROM select_booking ('lawton52',

NULL,

NULL,

'2020-07-30',

NULL

)

Function execution takes 13 seconds.

#6. Search on flight_id.

SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name, b.email FROM

booking b

JOIN booking_leg bl USIGN (booking_id)

WHERE flight_id= 27191

SELECT takes 130 ms.

SELECT * FROM select_booking (NULL,

NULL,

'NULL,

NULL,

27191

)

Function execution takes 133 ms.

In reality, as we discussed previously, execution times for different function

invocations could be even longer if the first function execution in the current

session produces an execution plan that is suboptimal for subsequent executions.

While experimenting with this function, we managed to find a sequence of function

invocations that made the last example run for 3 minutes.

Chapter 12 Dynamic SQL

261

How to solve this problem? Similar to the prior example, it’s possible to write a

function that builds a SELECT dynamically depending on which parameters are passed.

In addition, it will benefit from being analyzed before each execution.

The source code for the new function is presented in Listing 12-12.

Listing 12-12.  A function that builds dynamic SQL to search by different criteria

CREATE OR REPLACE FUNCTION select_booking_dyn (p_email text,

p_dep_airport text,

p_arr_airport text,

p_dep_date date,

p_flight_id int)

returns setof booking_record_basic

as

$func$

DECLARE

v_sql text:='SELECT DISTINCT b.booking_id, b.booking_ref, booking_name,

account_id, email

FROM booking b ';

v_where_booking text;

v_where_booking_leg text;

v_where_flight text;

BEGIN

IF p_email IS NOT NULL then v_where_booking :=$$ lower(email) like $$

||quote_literal(p_email||'%'); END IF;

IF p_flight_id IS NOT NULL then v_where_booking_leg:= $$ flight_id=$$||p_

flight_id::text;

END IF;

IF p_dep_airport IS NOT NULL

THEN v_where_flight:=concat_ws($$ AND $$, v_where_flight, $$departure_

airport=$$||

quote_literal(p_dep_airport));

END IF;

IF p_arr_airport IS NOT NULL

THEN v_where_flight:=concat_ws($$ AND $$,v_where_flight,

$$arrival_airport=$$||quote_literal(p_arr_airport));

Chapter 12 Dynamic SQL

262

END IF;

IF p_dep_date IS NOT NULL

THEN v_where_flight:=concat_ws($$ AND $$,v_where_flight,

$$scheduled_departure BETWEEN $$||

 quote_literal(p_dep_date)||$$::date AND $$||quote_literal(p_dep_

date)||$$::date+1$$);

END IF;

IF v_where_flight IS NOT NULL OR v_where_booking_leg IS NOT NULL

THEN v_sql:=v_sql||$$ JOIN booking_leg bl USING (booking_id) $$;

END IF;

IF v_where_flight IS NOT NULL THEN

v_sql:=v_sql ||$$ JOIN flight f USING (flight_id) $$;

END IF;

v_sql:=v_sql ||$$ WHERE $$||

concat_ws($$ AND $$,v_where_booking, v_where_booking_leg, v_where_flight);

--raise notice 'sql:%', v_sql;

return query EXECUTE (v_sql);

END;

$func$ LANGUAGE plpgsql;

This is a lot of code to read! Let’s walk through it and review what, exactly, is going on

here.

The parameters of the new function are exactly the same as those of the old function,

and the result type is also the same, but the function body is completely different. At a

high level, this function builds a statement to be executed later in the v_sql text variable.

Building the query dynamically means that we have the option to only include those

joins that are needed. The booking table is always needed, which is why the initial value

of v_sql is assigned as

'SELECT DISTINCT b.booking_id, b.booking_ref, booking_name, account_id,

email

FROM booking b ';

Then, depending on which other parameters are passed as NOT NULL, the function

determines which other tables are needed. It may only be the table booking_leg, if the

p_flight_id parameter is not null—flight-related parameters are not used—or it could

be both tables: booking_leg and flight.

Chapter 12 Dynamic SQL

263

After adding all necessary tables, the full search criteria are built by concatenating

all conditions with the separator 'AND'. With the search criteria, the v_sql statement

is finalized and executed. To see what the final query is for different invocations of the

function, uncomment the RAISE NOTICE statements.

So is this too much work for a performance improvement? Try to compile this

function and execute it with the same parameters from the preceding examples. It’ll

become clear quickly that the select_booking_dyn() function execution times do

not exceed the execution times of the corresponding SQL statements for every set of

parameters. Moreover, the execution time is predictable and does not depend on the first

execution in the current session.

Once again, dynamic functions are not easy to debug, and you may need to include

a lot of debugging printouts, but if performance in your production system is critical, the

results are well worth the effort.

�Using Dynamic SQL to Aid the Optimizer
Since the whole chapter is dedicated to the way to improve query performance by using

dynamic SQL, this section header might be puzzling. However, this section concerns

a different case of performance issues. In these examples, dynamic SQL is not used to

construct case-specific SQL, but to nudge the optimizer to choose a better execution plan.

Looking closely at all the examples in the previous section, one combination of the

search criteria is performing notably poorly, even though the result set is small: the case

when the search is on the email on the booking and the departure airport. Even in cases

when email is restrictive enough, the optimizer fails to use the index on booking_id in

the second join. If we execute the query in Listing 12-13, the execution plan shows hash

joins—see Figure 12-3.

Listing 12-13.  Selecting booking by email and departure airport

SELECT DISTINCT b.booking_id, b.booking_ref,

b.booking_name, b.email

FROM booking b

JOIN booking_leg bl USING (booking_id)

JOIN flight f USING (flight_id)

WHERE lower(email) like 'lawton510%'

AND departure_airport='JFK'

Chapter 12 Dynamic SQL

264

The execution time for this query is about 7 seconds, and the result contains only 224

rows, so this is a small query, and the execution time should be faster.

The reason for this suboptimal plan has been mentioned before—the PostgreSQL

optimizer does not estimate the size of intermediate result sets correctly. The actual

number of rows filtered by the pattern index is 3941, while the estimate in the plan is 28219.

The technique to optimize this query is literally to help the optimizer do its job and

remove the need to estimate the size of the result set. How? First, find the booking IDs

that correspond to the email address that is being searched for, and then pass the list of

booking_ids to the main SELECT statement. Note: The function that we use to illustrate

this case is very case-specific and used for illustrative purposes only (Listing 12-14).

A function with a more generalized approach closer to what would be used in a

production system would be massive.

Figure 12-3.  Execution plan for Listing 12-13 with hash joins

Chapter 12 Dynamic SQL

265

Listing 12-14.  Dynamic SQL to improve the code from Listing 12-13

CREATE OR REPLACE FUNCTION select_booking_email_departure(p_email text,

p_dep_airport text)

RETURNS SETOF booking_record_basic AS

$body$

DECLARE

v_sql text;

v_booking_ids text;

BEGIN

EXECUTE $$SELECT array_to_string(array_agg(booking_id), ',')

FROM booking

WHERE lower(email) like $$||quote_literal(p_email||'%')

INTO v_booking_ids;

v_sql=$$SELECT DISTINCT b.booking_id, b.booking_ref, b.booking_name,

b.email

FROM booking b

JOIN booking_leg bl USING(booking_id)

JOIN flight f USING (flight_id)

WHERE b.booking_id IN ($$||v_booking_ids||$$)

AND departure_airport=$$||quote_literal(p_dep_airport);

RETURN QUERY EXECUTE v_sql;

END;

$body$ LANGUAGE plpgsql;

Why does this work? We know that the search by email is going to be relatively

restrictive, because what is passed is nearly the whole email address or, at least, the

essential part of it. So, in the first step, the relatively small number of bookings with this

email is preselected and saved in the text variable v_booking_ids. Then, the SELECT is

constructed with an explicit list of booking_ids.

Executing this new function

SELECT * FROM select_booking_email_departure('lawton510','JFK')

…the execution time will be between 0.5 and 0.6 seconds. Examining the EXPLAIN

command output for the generated SQL, you will see the execution plan as it appears in

Figure 12-4.

Chapter 12 Dynamic SQL

266

Even with several thousand IDs, the index-based access proves to be more efficient.

�FDWs and Dynamic SQL
As mentioned in the Introduction, detailed discussion of distributed queries is out of the

scope of this book. However, since dynamic SQL is covered, this is a good opportunity to

make a few remarks about working with foreign data wrappers (FDWs).

A foreign data wrapper is a library that can communicate with an external data
source (i.e., data that resides outside your PostgreSQL server), hiding the details of
connecting to the data source and obtaining data from it.

FDW is a very powerful tool, and more and more foreign data wrappers for

different types of databases are becoming available. PostgreSQL does an outstanding

job optimizing queries that include foreign tables, that is, mappings of the tables from

the external systems. However, since the access to external statistics may be limited,

especially when the external systems are not PostgreSQL based, the optimization may

be not so precise. We have found it very helpful to use the techniques described in the

previous section.

Figure 12-4.  Execution plan for dynamic SQL with the list of booking_ids

Chapter 12 Dynamic SQL

267

The first way to optimize would be to run the local part of the query identifying

which records are needed from the remote sever and then access a remote table. An

alternative way is to send a query with constant-defined conditions (e.g., WHERE update_

ts> CURRENT_DATE -3) to the remote site, pull the remote data to the local site, and

then execute the rest of the query. Using one of these two techniques helps to minimize

inconsistencies in the execution time.

�Summary
Dynamic SQL is an exceptionally powerful tool in PostgreSQL, which is not utilized

enough by database developers. Using dynamic SQL can improve performance in

situations where all other optimization techniques fail.

Dynamic SQL works best within functions; a SQL statement is generated based on

function input parameters and then executed. It can be used both in OLTP and OLAP

environments.

If you choose to use dynamic SQL for your project, be ready for extensive and time-

consuming debugging. It might feel discouraging in the beginning, but the performance

improvements are well worth it.

Chapter 12 Dynamic SQL

269
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_13

CHAPTER 13

Avoiding the Pitfalls
of Object-Relational
Mapping
Chapter 10 discussed a typical interaction between an application and a database

and explained ORIM (object-relational impedance mismatch) and how it affects

performance. It also stated that any potential solution should allow operating with large

objects (i.e., datasets) and should support the exchange of complex objects. This chapter

introduces an approach developed by us and successfully utilized in a production

environment. This approach is called NORM (No-ORM).

We are by no means pioneers in the quest to overcome object-relational impedance

mismatch, nor are we the first to propose an alternative to ORM. NORM is only one of

many possible solutions. However, one feature that makes NORM stand out among other

tools is the ease of use by application developers.

The NORM GitHub repo (https://github.com/hettie-d/NORM) contains some

documentation on the approach and an example of the code built according to the

NORM methodology.

�Why Application Developers Like NORM
Often, new development methodologies require application developers to make

significant changes to the development process, which inevitably leads to lower

productivity. It is not unusual for potential performance gains to fail to justify the

increase in development time. After all, developer time is the most expensive resource in

any project.

https://doi.org/10.1007/978-1-4842-6885-8_13#DOI
https://github.com/hettie-d/NORM

270

In Chapter 11, the benefits of using functions were preceded by the caveat “if you can

convince application developers.” And often, you can’t convince them, because of the

difficulties of adapting to a new programming style. That is not the case with NORM. In

the following sections, we will explain the appeal of this approach for both application

developers and database developers.

�ORM vs. NORM
Chapter 10 discussed a bottleneck in data exchange created by ORM. Figure 13-1

is a copy of Figure 10-2 from Chapter 10, and it represents the dataflow between an

application and a database.

The major problem is that complex objects from the application model are

disassembled into atomic objects before communicating with the database, generating

too many small queries, which bring down system performance.

The approach proposed by NORM is presented in Figure 13-2.

Figure 13-1.  How ORM works

Figure 13-2.  How NORM works

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

271

In this figure, A-Model is an application model, D-Model is a database model, and

T-Model is a transfer model. The presence of the T-Model is a unique feature of the

NORM approach, which makes the mapping symmetrical. We are not trying to build

a database model based on an application model, nor we are insisting on creating

database objects first. Instead, we call for a contract to be established between the

application layer and the database, similar to the way you would see a contract over

a RESTful web service. The contract, or a T-Model, comes in a form of a JSON object.

Through this contract, it is possible to simplify the persistence of objects by serializing

the objects into JSON payloads that the database can consume.

This results in one database call to persist an object regardless of its structure or

complexity.

Likewise, when retrieving objects, the application can deserialize the result coming

back from the database to a model in a single database call. It can also pass additional

parameters as a part of the contract to tell the database that it needs additional pieces of

the model, similar to an ODATA web service request.

Application developers love the simplified implementation of the data access layer

on the application side. The fact that NORM uses a contract to determine the inputs

and outputs of every call to the database allows application developers to code to the

contract and easily mock out any dependencies when testing, as the calls to and from the

database will abide by the contract. Thus, after a contract is established, database and

application developers can do their part simultaneously and independently from each

other. Moreover, different groups of application developers can use the same contract for

different projects.

On the application side, all modern object-oriented languages have libraries for

serializing and deserializing objects. As each new database interaction occurs, it is

possible to reuse the same pattern for implementation.

This allows application developers to spend more time designing the JSON payload

to ensure it meets the current and future needs of the business. Reusing the same pattern

of interactions also reduces implementation time, minimizes the likelihood of defects,

and allows minimal code changes to impact the entire database access implementation.

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

272

�NORM Explained
To illustrate how NORM works, let’s get back to the example in Chapter 10.

Figure 13-3 represents a subset of the postgres_air Entity-Relationship diagram

used to build the example.

In Chapter 10, discussing the interaction between the application and the database,

we drafted an object (which we can now call a T-object) that represented all the

information related to a booking. From the airline passenger perspective, a booking

represents their travel itinerary. In an attempt to keep the code sample readable, we

eliminated one level of nesting and opted to present just a booking leg, that is, one of the

flights of an itinerary. Thus, for the purpose of this case study, our T-object is a booking

leg object. The ERD in Figure 13-3 presents all tables and relationships needed to build

the mapping from a database object to a transfer object. The corresponding transfer

object is presented in Figure 13-4.

Figure 13-3.  ERD for the case study

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

273

Note that this object represents the contract, that is, the object structure that the

application is expecting to receive. It differs significantly from how the data is stored

in the database, and the most important part is that the database implementation has

no impact on how the application interacts with the database, as long as the database

response remains in accordance to the contract.

An example JSON object following this contract is shown in Figure 13-5.

In short, the interaction between the application and the database can be

summarized as follows:

Figure 13-4.  The matching transport object (contract)

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

274

	 1.	 The application serializes data into JSON format, then converts it

into an array of text strings, and sends it to the database by calling

a corresponding database function.

	 2.	 A database function parses the JSON that was passed as a

parameter and executes whatever the function is supposed to do:

either a search or data transformation.

	 3.	 The result set is converted to JSON (or rather an array of strings,

which represents an array of JSON objects) and passed to the

application, where it is deserialized and is ready to be consumed

by the application.

Figure 13-5.  Transfer object as JSON

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

275

On the application side, the Java classes presented in Listings 13-1, 13-2, and 13-3 are

mapped to the same transfer object.

Listing 13-1.  FlightEntity class

package com.xxx.adapter.repository.entity.tls;

import com.fasterxml.jackson.annotation.JsonProperty;

import java.time.ZonedDateTime;

public class FlightEntity {

 @JsonProperty("flight_id")

 private int flightId;

 @JsonProperty("flight_no")

 private String flightNumber;

 @JsonProperty("departure_airport_code")

 private String departureAirportCode;

 @JsonProperty("departure_airport_name")

 private String departureAirportName;

 @JsonProperty("arrival_airport_code")

 private String arrivalAirportCode;

 @JsonProperty("arrival_airport_name")

 private String arrivalAirportName;

 @JsonProperty("scheduled_departure")

 private ZonedDateTime scheduledDeparture;

 @JsonProperty("scheduled_arrival")

 private ZonedDateTime scheduledArrival;

}

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

276

Listing 13-2.  BoardingPass Class

package com.xxx.adapter.repository.entity.tls;

import com.fasterxml.jackson.annotation.JsonProperty;

import java.time.ZonedDateTime;

public class BoardingPassEntity {

 @JsonProperty("boarding_pass_id")

 private int boardingPassId;

 @JsonProperty("booking_leg_id")

 private int bookingLegId;

 @JsonProperty("last_name")

 private String lastName;

 @JsonProperty("first_name")

 private String firstName;

 @JsonProperty("seat")

 private String seatNumber;

 @JsonProperty("boarding_time")

 private ZonedDateTime boardingTime;

}

Listing 13-3.  BookingLegEntity Class

package com.braviant.adapter.repository.entity.tls;

import com.fasterxml.jackson.annotation.JsonProperty;

import java.util.List;

public class BookingLegEntity {

 @JsonProperty("booking_leg_id")

 private int bookingLegId;

 @JsonProperty("leg_num")

 private int legNumber;

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

277

 @JsonProperty("booking_id")

 private String booking_id;

 @JsonProperty("flight")

 private FlightEntity flight;

 @JsonProperty("boardingPass")

 private List<BoardingPassEntity> boardingPasses;

}

It is worth mentioning that we can build completely different transfer objects

using the same set of tables. For example, before any flight departs, a document that is

called manifest has to be produced. This document lists all the passengers on the fight

along with their seat assignments. The transfer object for the manifest is presented in

Figure 13-6.

The matching JSON is presented in Figure 13-7.

Figure 13-6.  Transfer object for the flight manifest

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

278

�Implementation Details
Now, let’s get more specific and show how to achieve this goal.

Listing 13-4 combines type definitions from Listings 11-17 and 11-20. We define

types boarding_pass_record and flight_record and then booking_leg_record, which

has these types as components.

Listing 13-4.  Booking_leg type definitions

CREATE TYPE boarding_pass_record AS (

boarding_pass_id int,

booking_leg_id int,

Figure 13-7.  Manifest object as JSON

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

279

flight_no text,

departure_airport text,

arrival_airport text,

last_name text,

first_name text,

seat text,

boarding_time timestamptz)

CREATE TYPE flight_record AS(

flight_id int,

flight_no text,

departure_airport_code text,

departure_airport_name text,

arrival_airport_code text,

arrival_airport_name text,

scheduled_departure timestamptz,

scheduled_arrival timestamptz)

CREATE TYPE booking_leg_record AS(

booking_leg_id int,

leg_num int,

booking_id int,

flight flight_record,

boarding_passes boarding_pass_record[]);

Looking at these type definitions, it is clear they do indeed represent the transport

object booking_leg from Figure 13-4. The next step is to build this transport object

using the booking_leg_id. This was done in Chapter 11, in Listing 11-21. However, to

make this function usable by the application, it needs a few changes. Specifically, it

should return not a set of records, but a JSON object. This task is done in two steps.

First, use the slightly modified function booking_leg_select_json, shown in Listing 13-5.

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

280

Listing 13-5.  Function returning the booking_leg transport object

CREATE OR REPLACE FUNCTION booking_leg_select_json (p_booking_leg_id int)

RETURNS booking_leg_record[]

AS

$body$

DECLARE

v_result booking_leg_record[];

v_sql text;

BEGIN

SELECT array_agg(single_item)

 FROM

 (SELECT

row(bl.booking_leg_id,

leg_num,

bl.booking_id,

(SELECT row(flight_id,

flight_no,

departure_airport,

da.airport_name,

arrival_airport,

aa.airport_name ,

scheduled_departure,

scheduled_arrival)::flight_record

FROM flight f

 JOIN airport da on da.airport_code=departure_airport

 JOIN airport aa on aa.airport_code=arrival_airport

 WHERE flight_id=bl.flight_id

),

(SELECT array_agg (row(

pass_id,

bp.booking_leg_id,

flight_no,

departure_airport ,

arrival_airport,

last_name ,

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

281

first_name ,

seat,

boarding_time)::boarding_pass_record)

FROM flight f1

JOIN boarding_pass bp ON f1.flight_id=bl.flight_id

 AND bp.booking_leg_id=bl.booking_leg_id

JOIN passenger p ON p.passenger_id=bp.passenger_id)

)::booking_leg_record as single_item

FROM booking_leg bl

WHERE bl.booking_leg_id=p_booking_leg_id)s

INTO v_result;

 RETURN (v_result);

END;

$body$ LANGUAGE plpgsql;

$body$ language plpgsql;

The difference between the two functions is minimal: The first one returns a set of

records, aggregating only the set of boarding passes. The second one aggregates the

whole result set into an array of records.

At this point, this change is insufficient to resolve the problem in Chapter 11:

the presence of multiple special characters that make the return object hard for the

application to use. In fact, executing

SELECT * FROM booking_leg_select_json(17564910)

results in a line of hard-to-interpret symbols (Figure 13-8).

To bypass this problem, we wrote a function core to the proposed framework. This

function is presented in Listing 13-6, and it is also a part of the NORM GitHub repo.

Figure 13-8.  Result of the execution

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

282

Listing 13-6.  ARRAY_TRANSPORT function

CREATE OR REPLACE

FUNCTION array_transport (all_items anyarray) RETURNS SETOF text

 RETURNS NULL ON NULL INPUT

LANGUAGE plpgsql AS

$body$

DECLARE

 item record;

BEGIN

FOREACH item IN array all_items

LOOP

 RETURN NEXT(to_json(item)::text);

 END LOOP;

END;

$body$;

This function takes as a parameter any array; in this case, this means that it can be

used to process the result set of any function that returns an array of user-defined types,

regardless of its complexity and the nesting level.

Using the standard to_json() PostgreSQL function, it builds JSON for any record in

just one pass.

After the JSON array is built, each element is converted to a text string so that it can

be transported through JDBC. Referring back to Figure 13-2, you will see that we have

now implemented the desired data exchange process, at least in one direction. Now,

executing the following

SELECT * FROM array_transport(booking_leg_select_json(17564910))

…the result is much more readable (see Figure 13-9).

Figure 13-9.  Text representation of JSON

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

283

Astute readers may notice that this result was already shown in Figure 13-5 as a

transport object and might wonder why break this process into two steps and why not

just return the set of text strings in the first place.

The reason is that we need to preserve strong type dependencies. This development is

driven by the contract; therefore, there is a commitment to return objects of the specified

type. JSON is typeless; any text string that contains grammatically correct JSON objects

is valid. If the return type is modified because requirements change, we will need to

drop the type, which won’t happen unless all dependent objects are cascade dropped—

including all the functions that return the type. In effect, it ensures the database is

honoring the contract.

Finally, it’s prudent to note that the use of nested queries in the SELECT list, as

demonstrated in Listing 13-3, works well when result sets are small, containing just a

handful of records. If a larger number of returned objects are expected or the objects

themselves are more complex, slightly different techniques may be necessary. The

NORM GitHub repo has some relevant examples; see https://github.com/hettie-d/

NORM/blob/master/sql/account_pkg.sql.

�Complex Searches
The function in Listing 13-2 allows only one filtering criterion—booking_leg_id.

However, NORM allows us to utilize the full search power of the relational database

engine and perform queries of any complexity while still delivering the results in the

format that can be easily consumed by the application.

By now, the next step should be obvious. We combine the dynamic query that we

built in Chapter 12 (Listing 12-12) with the way we format the function output as shown

in Listing 13-5. The result is presented in Listing 13-7. There, we show a simplified

version of the function.

Listing 13-7.  Search by complex criteria

CREATE OR REPLACE FUNCTION search_booking_leg(p_json json)

RETURNS booking_leg_record[]

as

$func$

DECLARE

v_search_condition text:=null;

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

https://github.com/hettie-d/NORM/blob/master/sql/account_pkg.sql
https://github.com/hettie-d/NORM/blob/master/sql/account_pkg.sql

284

v_rec record;

v_result booking_leg_record[];

v_sql text:=$$SELECT array_agg(single_item)

 FROM

 (SELECT

row(bl.booking_leg_id,

leg_num,

bl.booking_id,

(SELECT row(flight_id,

flight_no,

departure_airport,

da.airport_name,

arrival_airport,

aa.airport_name ,

scheduled_departure,

scheduled_arrival)::flight_record

FROM flight f

 JOIN airport da on da.airport_code=departure_airport

 JOIN airport aa on aa.airport_code=arrival_airport

 WHERE flight_id=bl.flight_id

),

(SELECT array_agg (row(

pass_id,

bp.booking_leg_id,

flight_no,

departure_airport ,

arrival_airport,

last_name ,

first_name ,

seat,

boarding_time)::boarding_pass_record)

FROM flight f1

JOIN boarding_pass bp ON f1.flight_id=bl.flight_id

 AND bp.booking_leg_id=bl.booking_leg_id

JOIN passenger p ON p.passenger_id=bp.passenger_id)

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

285

)::booking_leg_record as single_item

FROM booking_leg bl

 $$;

v_where_booking_leg text;

v_where_flight text;

BEGIN

FOR v_rec in

 (SELECT * FROM json_each_text(p_json))

 LOOP

 CASE WHEN v_rec.key IN ('departure_airport','arrival_airport')

 THEN IF v_where_flight IS NULL

 �THEN v_where_flight := v_rec.key||'='||quote_literal

(v_rec.value);

 ELSE v_where_flight:=v_where_flight ||' AND '

 ||v_rec.key||'='||quote_literal(v_rec.value);

 END IF;

 WHEN v_rec.key ='scheduled_departure' THEN

 IF v_where_flight IS NULL

 �THEN v_where_flight := v_rec.key||$$ BETWEEN $$|| quote_

literal(v_rec.value)||$$::date AND $$||quote_literal(v_

rec.value)||$$::date+1$$;

 ELSE v_where_flight:=v_where_flight ||' AND '

 �||v_rec.key||$$ BETWEEN $$|| quote_literal(v_rec.

value)||$$::date AND $$||quote_literal(v_rec.

value)||$$::date+1$$;

 END IF;

 WHEN v_rec.key = 'flight_id' THEN

 v_where_booking_leg :='bl.flight_id= '|| v_rec.value ;

 ELSE NULL;

 END CASE;

 END LOOP;

IF v_where_flight IS NULL THEN

v_search_condition:=

 $$ WHERE $$||v_where_booking_leg;

 ELSE v_search_condition:=

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

286

$$ JOIN flight f1 ON f1.flight_id=bl.flight_id

 WHERE $$ ||concat_ws(' AND ',

 v_where_flight, v_where_booking_leg);

 END IF;

v_sql:=v_sql ||v_search_condition||')s';

EXECUTE v_sql INTO v_result;

RETURN (v_result);

END;

$func$ LANGUAGE plpgsql;

Once again, that’s a lot of code, but different parts of it already appeared in the book

in Chapter 12 and in the beginning of this chapter. The dynamic search criteria are built

similarly to the example presented in Listing 12-12, and the SELECT list is the same as in

Listing 13-5.

We feel compelled to give you a working example. You can compile this code in your

local copy of postgres_air and try to run with different parameters.

As we already mentioned multiple times, constructing a function with dynamic SQL

is not an easy task, especially in the beginning, and debugging will take extra time. When

to invest this time into the development process is up to you to decide. The reason we

encourage you to experiment with these functions is that we want to demonstrate their

efficiency and the persistent execution time.

Also, when you develop one set of functions for one of your application object

classes, you will see that it will be much easier to build the similar sets of functions for all

of the object classes, using the same development pattern.

Finally, we would like to mention that there are other ways to construct dynamic SQL

for arbitrary search criteria. Refer to the NORM GitHub repo for an alternative example.

�Updates
NORM can handle any data manipulation operation, that is, INSERT, UPDATE, and

DELETE, which are collectively called update requests.

An update request is sent from the application as a complex object and, on the

database level, may result in multiple update operations applied to different tables.

Once again, the database development is contract-driven. A database function receives

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

287

a JSON object from the application, parses the object, and interprets the actions that are

required on the database level.

�Insert
Since the boarding pass is never issued at the moment when the reservation is created,

the function that inserts a booking leg into the database is trivial; it needs to insert into

one table only—see Listing 13-8.

Listing 13-8.  Booking_leg_insert function

CREATE OR REPLACE FUNCTION booking_leg_insert (p_object json)

RETURNS SETOF text

AS

$body$

DECLARE

v_result booking_leg_record[];

v_sql text;

v_rec record;

v_booking_id int;

v_flight_id int;

v_leg_num int;

v_is_returning boolean;

v_booking_leg_id int;

BEGIN

FOR v_rec IN

 (SELECT * FROM json_each_text(p_object))

 LOOP

 CASE

 WHEN v_rec.key ='booking_id' THEN v_booking_id:=v_rec.value;

 WHEN v_rec.key ='flight_id' THEN v_flight_id:=v_rec.value;

 WHEN v_rec.key ='leg_num' THEN v_leg_num:=v_rec.value;

 WHEN v_rec.key ='is_returning' THEN v_is_returning:=v_rec.value;

 ELSE NULL;

END CASE;

END LOOP;

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

288

INSERT INTO booking_leg (booking_id, flight_id, leg_num, is_returning,

update_ts)

 VALUES (v_booking_id, v_flight_id, v_leg_num, v_is_returning, now())

 RETURNING booking_leg_id into v_booking_leg_id;
 RETURN QUERY (
 SELECT * FROM array_transport(booking_leg_select_json(v_booking_leg_id)));
 END;
$body$ LANGUAGE plpgsql;

�Update
Although a booking leg is represented by a complex object, updates that can be

performed on it are limited. In cases when rebooking is allowed, we can change the

flight number on the booking leg, but we can’t change the flight itself—there are other

functions to change flights. Also, the boarding passes are always issued separately. Thus,

the update in this case is limited to changing the flight number, issuing boarding passes,

or removing boarding passes (passes can’t be updated).

For the sake of keeping the amount of the code in this chapter within reasonable

limits, Listing 13-9 shows an update function with limited functionality.

Listing 13-9.  Booking_leg update function

CREATE OR REPLACE FUNCTION booking_leg_update
(p_booking_leg_id int,
p_object json)
RETURNS SETOF text
AS
$body$
DECLARE
v_result booking_leg_record[];
v_sql text;
v_rec record;
v_flight_id int;
v_flight_each record;
v_booking_leg_update text;
BEGIN
FOR v_rec IN
 (SELECT * FROM json_each_text(p_object))

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

289

 LOOP

 CASE

 WHEN v_rec.key ='flight' THEN

 FOR v_flight_each IN (SELECT * FROM json_each_text(v_rec.value::json))

 LOOP

 CASE

 �WHEN v_flight_each.key='flight_id' THEN v_flight_id:=v_flight_

each.value;

 �v_booking_leg_update:=concat_ws(', ', v_booking_leg_update,

'flight_id='||quote_literal(v_flight_each.value)) ;

 ELSE NULL;

 END CASE;

 END LOOP;

 WHEN v_rec.key IN ('leg_num', 'is_returning')

 �THEN v_booking_leg_update:=concat_ws(', ', v_booking_leg_update,

v_rec.key||'='||quote_literal(v_rec.value)) ;

 ELSE NULL;

END CASE;

END LOOP;

 IF v_booking_leg_update IS NOT NULL THEN

 EXECUTE ($$UPDATE ¨booking_leg SET $$|| v_booking_leg_update||$$

 WHERE booking_leg_id=$$||p_booking_leg_id::text);

 END IF;

 RETURN QUERY (SELECT * FROM array_transport

 (booking_leg_select_json(p_booking_leg_id)));

 END;

$body$ lANGUAGE plpgsql;

The first parameter of this function is a booking_leg_id of the record that is

being updated. The second parameter is a JSON hash that the function interprets to

determine which tables and fields should be updated. Note that no matter how many

and which keys are passed in the p_object parameter, the function ignores all except

those for which we have specified a processing algorithm. For example, although we

may receive all the values for the flight record, we only process the flight_id, which we

use to update the booking_leg table. Although a flight is a nested object in the booking

leg, it is not updatable (we need a separate function to update flights), and then the

flight will be updated in all of the dependent bookings.

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

290

For example, call the insert function:

SELECT * FROM booking_leg_insert

($${"leg_num":3,"booking_id":232346,"flight_id":13650,"is_

returning":"false"}$$::json)

The result will be a new booking leg:

Then, this new booking leg is updated:

SELECT * FROM booking_leg_update (17893568, $${"flight":{"flight_

id":13651,"flight_no":"1240"}, "is_returning":"true"}

$$)

The result will show the updated booking leg:

Note that although the flight_no in the flight record is passed, this value is ignored.

This command is not modifying a record in the flight table; it is only changing the

flight_id in the booking_leg table.

We can also create a function to insert, similar to the one created in Chapter 11, but

returning the new booking_leg_record type.

�Delete
To delete a component from a complex object, the special key “command” is used,

which has only one valid value: “delete.” For example, boarding passes can’t be updated.

If needed, an old boarding pass is deleted and a new one issued.

A call to remove a boarding pass can look like this:

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

291

SELECT * FROM booking_leg_update (17893568,

$${"boarding_passes":[{"boarding_pass_id":1247796,

"command":"delete" }]}

$$)

To learn more about complex object updates in NORM, please refer to the NORM

GitHub repo at https://github.com/hettie-d/NORM.

�Why Not Store JSON?!
At this point, many of you may ask: why to go into such complexities when PostgreSQL

supports the JSON type? Why not to store JSON “as is”?

Some reasons were discussed in Chapter 9. In particular, it discussed key-value and

hierarchical models and explained their limitations. If a booking leg, as defined in this

chapter, was stored as a JSON, flight information would be duplicated, because it belongs

to a different hierarchy. Another reason is that JSON is typeless and therefore unreliable

in terms of providing a consistent interface to develop against.

In addition, although we can build indexes to facilitate search on specific JSON keys,

their performance is worse than with B-tree indexes on regular columns. Indexing JSON

and related performance concerns are covered in Chapter 14.

�Performance Gains
What is the effect of using NORM on performance? As discussed in Chapter 10, this

kind of performance difference is difficult to benchmark. We need to measure overall

application performance, rather than comparing the speed of separate operations, and

the applications themselves in this case are written in very different programming styles.

We are not providing any examples of the application code in this chapter since it is out

of scope of this book.

However, based on our industrial experience, this approach used in place of

traditional ORM can improve the performance of application controllers by 10–50

times. Moreover, application performance appears to be more consistent, since it

avoids the N+1 problem (i.e., when the code needs to load the children of a parent-child

relationship: most ORMs have lazy-loading enabled by default, so queries are issued for

the parent record and then one query for each child record).

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

https://github.com/hettie-d/NORM

292

�Working Together with Application Developers
As discussed many times already, overall system performance is not limited to database

performance, and optimization starts with gathering requirements. NORM is a very good

illustration for this statement.

With NORM, development starts from defining a contract, which allows application

and database developers to work in parallel on their tasks. In addition, this contract

means that future performance improvements on the database side can be made

without making any changes to the application.

�Summary
NORM is an approach to application design and development, which allows

seamless data exchange between a back end and a data layer eliminating the need for

ORM. Applied consistently, it helps to produce performant systems while simplifying

application development.

NORM is one of several potential solutions; however, it has a proven record of

success and can be used as a template for those who want to avoid potential ORM

pitfalls.

Chapter 13 Avoiding the Pitfalls of Object-Relational Mapping

293
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_14

CHAPTER 14

More Complex Filtering
and Search
Previous chapters discussed several ways to support filtering and search with indexes in

PostgreSQL. Why are more needed, and why haven’t these types of index been covered

yet? Prior discussion of this topic focused on the most common indexes, those that are

needed in nearly any application. However, there are data types that cannot be efficiently

supported with indexes such as B-trees.

�Full Text Search
Everything discussed in the previous chapters is applicable to structured data, and all the

queries considered so far are Boolean. That is, a row is either needed for computation

of the result or not, and a computed row either belongs to the output or not. Nothing

resides in between. SQL is a powerful language for structured data and lends itself well

to this sort of analysis.

In this section, we consider unstructured data. The most common example of

unstructured data is text written in a natural language. Such texts are usually called

documents. In contrast with structured data, the search for documents is always

imprecise, because we are typically interested in a document meaning that is not

precisely expressed in the content of the document. However, the criteria must be

precisely expressed in a query. Welcome to the world of uncertainty!

There are several different models for document search; the one implemented in

PostgreSQL is called a Boolean model. Note that modern Internet search engines use

more complex models.

https://doi.org/10.1007/978-1-4842-6885-8_14#DOI

294

In the Boolean search model, a document is considered a list of terms. Each term

usually corresponds to a word in the document transformed using certain linguistic

tools. This conversion is needed to improve the quality of search. For example, we expect

that the words “word” and “words” should map to the same term. The transformations

are not trivial: “a leaf” and “leaves” are the forms of the same word; however, “to leave” is

different. And it’s not just morphological transformations: meaning depends on context.

For example, “host” and “computer” have the same meaning in a document describing

network protocols, but these words are different in a document related to organizing a

conference.

In PostgreSQL, the linguistic rules defining the transformations are encapsulated in

a configuration. Several predefined configurations for different languages are available,

and additional configurations may be defined. One of the predefined configurations

does not depend on any language. Instead of processing words, it converts text into a set

of trigrams (i.e., three-character sequences) contained in the text.

The result of linguistic processing is represented as a value of type ts_vector. The

values of ts_vector are lists of terms and not related to any language or even text. A

ts_vector can be built from any list of values.

Why is text search called full text search? In the medieval ages (the 1970s), when the

capacity of hard drives was small, lists of terms were built from titles or abstracts. So full

text means that all the words in the document are considered as a source of terms.

Similarly, a query for document search is represented as a value of type ts_query.

These values are constructed from a textual representation of a query that can contain

words and logical connectors AND, OR, and NOT. A simple query consists of words only.

A document matches such a query if all terms in the query are present in the ts_vector

corresponding to the document.

The match operator @@ returns true if a document satisfies the query and false

otherwise. It can be used in the WHERE clause of a SELECT statement or anywhere else

where a Boolean expression is expected.

The Boolean search produces definite results: a document either matches a query or

does not match. Is it still uncertain? Yes, it is. Some information is lost when a document

is converted to ts_vector, and some information is lost when a query is converted into

ts_query as well.

The text search features of PostgreSQL can work without any indexes. PostgreSQL

also provides special types of indexes that can speed up text search. We discuss these

index types later in this chapter.

Chapter 14 More Complex Filtering and Search

295

�Multidimensional and Spatial Search
Filtering conditions considered in previous chapters used scalar attributes. Some kinds

of indexes, for example, compound indexes, may contain several attributes, but the

ordering of the attributes is essential: the index is useless if the value of the first attribute

is not specified.

A fixed ordering of attributes is not desirable for some applications and data types.

These applications require that multiple attributes are treated symmetrically, without

any preference to any attribute. Typical examples are objects on a plane or three-

dimensional space with coordinates as attributes. These kinds of data are collectively

called spatial.

More importantly, spatial data often requires different types of queries. The most

common queries are

•	 Range queries – Find all objects located at a certain distance or closer

to the specified point in the space.

•	 Nearest-neighbor queries – Find the k objects closest to the specified

point.

These queries cannot be supported with one-dimensional indexes even if multiple

indexes are used.

Of course, this kind of search is not limited to space only. The coordinates might

have timestamp values or event values in a discrete domain.

PostgreSQL provides index types suitable for spatial data. These indexes are briefly

discussed in the next section.

�Generalized Index Types in PostgreSQL
The CREATE INDEX operator includes an optional index type specified on index creation.

So far, this hasn’t been demonstrated in prior examples, because all of the previously

created indexes were B-tree indexes, and B-tree is the default value for the index type.

The other possible values are hash, GIST, spgist, GIN, and BRIN, at the time of writing.

This section discusses some of these types in more detail.

Chapter 14 More Complex Filtering and Search

296

�GIST Indexes
Some applications use multi-attribute objects like points with coordinates on a surface

or a plane. Previously, we discussed compound indexes that include multiple attributes.

However, compound indexes are not symmetric: the attributes are ordered. In contrast,

the coordinates of a point should be treated symmetrically.

The GIST index type does exactly what is needed for this application: it indexes

points, and search conditions are expressed with a rectangle. All points that are in the

rectangle are returned as the result of the search.

To be more precise, GIST is a family of index structures, each of which supports a

certain data type. Support for points is included in the PostgreSQL distribution; some

other data types may be installed as extensions.

Of course, the attributes included in a GIST index are not necessarily coordinates.

Such attributes may represent time or other ordered data types.

�Indexes for Full Text Search
PostgreSQL provides two kinds of indexes that can support text search. We begin by

discussing GIN indexes, where GIN stands for Generalized Inverted.

For the purpose of indexing, a document is considered as a list of terms (or tokens),

for example, represented as a value of the ts_vector data type described earlier.

For each term contained in at least one document, an inverted index contains a

list of documents containing the term. Thus, the overall structure is symmetrical: a

document has a list of terms, and a term has a list of documents. This symmetry explains

why the index type is called inverted.

Inverted indexes can efficiently support text search. For example, to find documents

containing all terms specified in a query, PostgreSQL scans all lists of documents for

these terms and leaves only documents that appear in the lists for all terms in the query.

The lists are ordered, so a single pass over the lists is sufficient to produce the result set.

A GIN index can be created as a functional index with an expression converting

the document being indexed into a ts_vector, or values of ts_vector can be stored as a

separate column. The advantage of the former approach is that it uses less space, while

the advantage of the latter is that the index does not depend on the configuration (as the

configuration is needed only to compute the value of ts_vector). If the values of ts_vector

are stored, an index can refer to documents written in different natural languages and

converted into ts_vector with different configurations.

Chapter 14 More Complex Filtering and Search

297

The structure of GIN is not derived from or related to a natural language; as noted

earlier, it treats documents as lists. Thus, it can work with data other than documents—in

fact, any attribute type containing multiple values, such as arrays. The GIN index will

find all rows with multivalued attributes containing all values specified in a query, just as

it finds all documents containing specified terms.

Documents (values of ts_vector type) can also be indexed with GIST. To build such

an index, the values of ts_vector are converted into bitmaps of fixed length, constructed

as follows. Each term that appears in any of the documents being indexed is hashed

to obtain a number that represents its position in the bitmap. Each term is a bitmap of

the same length, with a single bit equal to 1 (representing the term) and all other bits to

zero. A bitmap for a document is a bitwise logical OR of all the bitmaps that represent

terms in the document. Thus, the document bitmap has a bit equal to 1 in all positions

corresponding to terms appearing in that document. A query bitmap is constructed

similarly.

A search on this index is based on the following fact: a document satisfies the query

if its bitmap contains 1 in every position that the query bitmap has a 1.

Different terms can be hashed into the same position. Therefore, a GIST index can

return documents that are not relevant for the query; and usually, a recheck of ts_vector

values is needed, but PostgreSQL can recognize this automatically.

The number of false matches grows if the number of different terms becomes high.

Therefore, the GIST index is efficient for collections of documents where the total

number of different terms is small. This is uncommon with texts in natural languages, so

GIN indexes are usually more efficient in this case. GIST indexes for textual search are

still useful in special cases.

�Indexing Very Large Tables
Any index occupies some space, and indexes on large tables can be very large. Is it

possible to reduce the size of an index?

Database textbooks distinguish between dense and sparse indexes. All the indexes

covered so far are dense; that is, they contain all values of the indexed column (or

columns). A sparse index contains only a fraction of all values but still reduces the

number of reads needed to find any value of the indexed attribute. This differs from

conditional indexes that do not speed-up search of values not included in the index.

Chapter 14 More Complex Filtering and Search

298

Some database systems always store table rows in the order of (surrogate) primary

key. The index on a primary key can then contain only one value per table block, and

hence it can be a sparse index. More advanced database systems allow to order tables

on values of other attributes, not necessarily unique. Such organization of tables also

provides for sparse indexes. Sometimes such indexes are called cluster indexes as the

rows with same value of the indexed column are placed close to each other.

PostgreSQL does not provide any means for explicit control of row ordering.

However, in many cases, rows are ordered naturally. For example, rows registering

certain kinds of events will be, most likely, appended to the table and will be naturally

ordered on the arrival timestamp, making sparse indexing possible.

A generalization of sparse indexes implemented in PostgreSQL is called BRIN

(stands for Block Range Index). A table for which a BRIN index is created is considered

as a sequence of block ranges, where each range consists of a fixed number of adjacent

blocks. For each range, a BRIN index entry contains a summary of column values

contained in the block range. For example, a summary may contain minimal and

maximal values of the timestamp column of the event log table.

To find any value of the indexed attribute, it is sufficient to find an appropriate block

range (using the index) and then scan all blocks in the range.

The structure of the summarization method depends on the type of the column

being indexed. For intervals, a summary may be an interval containing all intervals

contained in the block range. For spatial data, a summary can be a bounding box

containing all boxes in the block range.

If the column values are not ordered or rows are not ordered in the table, a scan of a

BRIN index will return multiple block ranges to be scanned.

The summarization is expensive. Therefore, PostgreSQL provides multiple choices

for BRIN index maintenance: a BRIN index can be updated automatically with triggers;

alternatively, delayed summarization can be done automatically together with vacuum

or started manually.

�Indexing JSON and JSONB
Sometimes developers looking for flexibility convert table rows into text or

semistructured format (JSON or XML) and then use text search instead of more specific

indexes. This approach definitely works better than external indexing tools, but is

significantly slower than specific indexes.

Chapter 14 More Complex Filtering and Search

299

Returning to the question we posed at the end of Chapter 13, why go into the trouble

of building functions that transform the search results into JSON when we can simply

store the JSON type directly in the database?

Let’s see how such an approach would work in practice. To do this, let’s build a

table that stores bookings as JSON objects. The first problem we will encounter is

that we might need different JSON structures for different application endpoints (we

already built several different record types in Chapters 11–13). But let’s assume we can

consolidate different requirements and store the data in a way that would satisfy most

use cases. We can use the code presented in Listing 14-1.

Listing 14-1.  Building a table with JSONB column type

--create simplifies booking leg type

CREATE TYPE booking_leg_record_2 AS

(booking_leg_id integer,

 leg_num integer,

 booking_id integer,

 flight flight_record);

--create simplified booking type

CREATE TYPE booking_record_2 AS

(booking_id integer,

 booking_ref text,

 booking_name text,

 email text,

 account_id integer,

 booking_legs booking_leg_record_2[],

 passengers passenger_record[]

);

---create table

CREATE TABLE booking_jsonb AS

SELECT b.booking_id,

to_jsonb (row (

 b.booking_id, b.booking_ref, b.booking_name, b.email, b.account_id,

ls.legs,

ps.passengers

) :: booking_record_2) as cplx_booking

Chapter 14 More Complex Filtering and Search

300

FROM booking b

JOIN

 (SELECT booking_id, array_agg(row (

booking_leg_id, leg_num, booking_id,

 row(f.flight_id, flight_no, departure_airport,

 dep.airport_name,

arrival_airport,

arv.airport_name,

 scheduled_departure, scheduled_arrival

)::flight_record

)::booking_leg_record_2) legs

FROM booking_leg l

JOIN flight f ON f.flight_id = l.flight_id

JOIN airport dep ON dep.airport_code = f.departure_airport

JOIN airport arv ON arv.airport_code = f.arrival_airport

GROUP BY booking_id) ls

ON b.booking_id = ls.booking_id

JOIN

(SELECT booking_id,

 array_agg(

 �row(passenger_id, booking_id, passenger_no, last_name, first_name)::

passenger_record) as passengers

 FROM passenger

 GROUP by booking_id) ps

 ON ls.booking_id = ps.booking_id

) ;

Note that we create the table with a column type of JSONB (JSON Binary),

not JSON. The only difference between these types is that JSONB stores a binary

representation of the JSON data, rather than a string. For the JSON type, the only indexes

you can build are B-tree indexes on specific tags, and then you need to specify a full path,

including the indexes in the arrays, which would make it impossible, for example, to

index “any” booking leg.

If we want to build highly performant indexes on JSON columns, we need to use the

JSONB type.

Chapter 14 More Complex Filtering and Search

301

Building this table will take a while. And it will take a while to build a GIN index:

CREATE INDEX idxgin ON booking_jsonb USING GIN (cplx_booking);

However, after this index is created, it feels like all the world’s problems are solved.

Now we can retrieve all the data we need without any joins and any complex structure

builds, using simple queries like the one shown in Listing 14-2.

Listing 14-2.  Search using a GIN index on a JSONB column

SELECT *

FROM booking_jsonb

WHERE

cplx_booking @@ '$.**.departure_airport_code == "ORD" && $.**.arrival_

airport_code == "JFK"'

The execution plan in Figure 14-1 proves that the GIN index is used.

There are several issues that make this approach less appealing than it looks at a

first glance. First, this search is still slower than the search that uses B-tree indexes. For

example, if you call the function that we created in Chapter 13

SELECT * FROM search_booking_leg($${"departure_airport":"ORD", "arrival_

airport":"JFK"}$$:: json)

…it will execute 2–2.5 times faster than a search using a GIN index.

Second, GIN indexes do not support searches on date-time attributes or searches

using the like operator or searches on any transformed attribute values, like lower().

You can specify several complex search conditions with json_path expressions and

JSONB operators and functions, including regular expressions, in the WHERE clause, but

these will be checked with a heap scan. A good idea is to combine such conditions with

others that are supported with indexes.

Figure 14-1.  Execution plan with a GIN index

Chapter 14 More Complex Filtering and Search

302

You can facilitate these searches creating additional trigram indexes, as described

earlier in this chapter. In fact, we saw a production system that was built in a similar way:

data from multiple tables/schemas was used to create “search documents” of type JSON,

and then ts_vector columns were added and indexed.

However, there is a third problem with this approach. As already stated, one JSON

structure would support only one hierarchy. If we built a booking_jsonb column as

described earlier, we could relatively easily update a flight in the booking leg, but we

couldn’t update the actual departure time or flight status.

This means that the booking_jsonb table will have to be rebuilt periodically in order

to remain useful. Indeed, the production system mentioned earlier had a complex

sequence of triggers that rebuilt all potentially affected JSON data. In cases with a

relatively low expected number of updates, this restriction might not be critical, but that

is not the case with delayed flights and changing flight schedules.

�Summary
PostgreSQL has a multitude of different indexes. This book covers many of them, but

not all of them; new index types appear with nearly every new version. We wouldn’t be

surprised if by the publish date, new indexes will be in use.

Both Chapter 5 and this chapter provide a number of examples of how to choose the

right indexes to support different searches. Choosing the indexes that are best suited for

your system, for specific searches, is not a straightforward task. Do not to stop at creating

B-tree indexes for individual columns. Do you need compound indexes? Functional

indexes? Will a GIST index help solve your problem? How critical is response time for

this particular query? How much does this particular index impact updates? Only you

can answer these questions.

Chapter 14 More Complex Filtering and Search

303
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_15

CHAPTER 15

Ultimate Optimization
Algorithm
The preceding chapters covered a lot of optimization techniques: not only different

ways to optimize SQL statements but also how database design affects performance, the

importance of working together with application developers, the use of functions, and

many other aspects of database performance.

Still, the question posed in the Introduction remains: where to start, when you have

a real-world problem, when your users see an hourglass and you have no idea why?

A related but more challenging task is to figure out what to do from the start. You do not

have a problem yet. You have a task, possibly a draft of a query, or maybe you are lucky

enough to have detailed requirements. How do you make sure you are doing it right?

In this chapter, we will present a step-by-step guide that will help you to write

queries right right away and, when you have the option, to choose the database design

that is right for you.

�Major Steps
Figure 15-1 presents a flowchart that we suggest you can use to identify the best strategy

for your query in question. In the subsequent sections, we will discuss each step in more

detail.

https://doi.org/10.1007/978-1-4842-6885-8_15#DOI

304

�Step-by-Step Guide

�Step 1: Short or Long?
The first step is to determine whether the query in question is short or long. As discussed

in Chapters 5 and 6, looking at the query itself won’t necessarily help you find the answer.

Step 1 is a great time to recall that query optimization starts from gathering requirements,

and it’s important to work together with business owners and/or business analytics.

Check whether the business is interested in the most recent data or they need

to follow historic trends, and so on. The business might say that they need to see all

canceled flights, but it would be a good idea to ask whether they want to see all canceled

flights from the beginning of time or within the past 24 hours.

If you determine that the query in question is short, go to Step 2; otherwise go, to

Step 3.

�Step 2: Short
So, your query is a short query. Which steps do you need to follow to make sure that not

only is it written in the best possible way but also that query performance will be stable

even when data volumes grow?

Figure 15-1.  Steps of the Ultimate Optimization Algorithm

Chapter 15 Ultimate Optimization Algorithm

305

�Step 2.1: The Most Restrictive Criteria

Find the most restrictive criteria for your query. Remember that often you can’t tell

which criteria this will be by just looking at the query. Query the tables to find the

number of distinct values of attributes. Be aware of the value distribution (i.e., find out

which values are the least frequent). When the most restrictive criteria are identified,

proceed to the next step.

�Step 2.2: Check the Indexes

In this step, you need to check whether there are indexes that support the search on the

most restrictive condition. This includes the following:

•	 Check whether all search attributes for the most restrictive condition

are indexed. If the index(es) is missing, request or create one.

•	 If more than one field is involved, check whether a compound

index would perform better and whether the performance gains are

enough to justify the creation of an additional index.

•	 Check whether you can use an index-only scan using either a

compound or covering index.

�Step 2.3: Add an Excessive Selection Criterion, If Applicable

If the most restrictive condition is based on a combination of attributes from different

tables and thereby can’t be indexed, consider adding an excessive selection criterion.

�Step 2.4: Constructing the Query

Start writing the query by applying the most restrictive criteria; this may mean starting

from a select from a single table or a join that incorporates the most restrictive criteria.

Do not omit this step. Often, when database developers know the relationships

between objects, they tend to write all the joins before applying filtering. While we

are aware that this is an often-recommended approach, we believe that for complex

queries with multiple joins, it might complicate development. We suggest starting from a

SELECT that you know is executed efficiently, and then adding one table at a time.

Chapter 15 Ultimate Optimization Algorithm

306

Check query performance and the execution plan each time you add a new join.

Remember, optimizers tend to err in estimating the size of intermediate result sets

more and more the further from the root of the execution tree they are. If the number of

joins in the query is approaching ten, you may consider either using CTEs, if you are on

version 12 or higher, or you may consider building dynamic SQL.

�Step 3: Long
Your query is a long query. In this case, the first step would be to determine whether you

can use incremental refresh. Once again, this is when you need to work together with the

business owner and/or business analysts to understand better what the purpose of the

query is. Often, requirements are formulated without considering data dynamics. When

the results of a query are stored in a table and it is updated periodically, it can either be

pulled fresh each time (a full refresh, pulling all data from the dawn of time to the most

recently available data), or it can be pulled incrementally, bringing in only data that has

changed since the last data pull. The latter is what we mean by incremental updates. In

the vast majority of cases, it is possible to pull data incrementally. For example, instead

of creating the passenger_passport materialized view as shown in Chapter 7, create it as

the table passenger_passport, and add/update rows when new passport information is

entered.

•	 If it is possible to use incremental updates, go to Step 4.

•	 Otherwise, go to Step 5.

�Step 4: Incremental Updates
Treat the query to select recently added/updated records as a short query with time

of update being the most restrictive criterion. Go to Step 2 and follow the steps for

optimizing short queries.

�Step 5: Non-incremental Long Query
If running incremental updates is not possible, proceed with the following steps of long

query optimization:

Chapter 15 Ultimate Optimization Algorithm

307

•	 Find the most restrictive join, semi-join, or anti-join, if applicable

(refer to Chapter 6 for details), and make sure it is executed first.

•	 Keep adding tables to your join, one by one, and check the execution

time and the execution plan each time.

•	 Make sure you do not scan any large tables multiple times. Plan your

query to go through large tables only once, as described in Chapter 6.

•	 Pay attention to grouping. In the majority of cases, you need to

postpone grouping to the last step, that is, you need to make sure

that GROUP BY is the last statement in the execution plan. Be aware

of some cases described in Chapter 6, when grouping should be

performed earlier to minimize the size of intermediate datasets.

�But Wait, There Is More!
Throughout this book, we’ve insisted that database optimization is not limited to

optimizing individual queries; individual queries do not come from outer space. Still, the

optimization algorithm described in the previous sections is a guide only to the process

of optimizing an individual query or rather writing a query the right way from the start.

However, we’ve covered several other techniques.

Here are other things to consider:

•	 Parameters – Most likely, the query you are optimizing is

parameterized, that is, if you have a condition on flight_id, it

won’t be flight_id=1234 all the time, but rather could be any

arbitrary flight_id. As we discussed in Chapter 5, depending on

particular filtering values, the most restrictive criterion may differ

(e.g., “Canceled” flight status will be more restrictive than most other

criteria).

•	 Dynamic SQL – In the latter situation, the right approach is to use

dynamic SQL, which will be also the case when the selection criteria

themselves vary.

Chapter 15 Ultimate Optimization Algorithm

308

•	 Functions – As discussed in Chapter 11, functions in and of

themselves do not improve performance and may significantly

degrade the execution times. However, if dynamic SQL is needed, it is

difficult to get around using functions.

•	 Database design changes – While working on queries, you might feel

the need to make some DDL changes, from creating new indexes

to changing the table schema. You will need to work with your

DBAs and system architects to determine which changes can be

implemented.

•	 Interaction with the application – If your query is executed by an

application, query performance might be pretty good, while the

overall application performance may not be. If you and your team

choose to use NORM or another similar approach, you will need

to work with application developers to determine what belongs to

business logic and what belongs to database logic, as described in

Chapters 11 and 13.

�Summary
This chapter provided a step-by-step guide to help you navigate the process of writing

queries right right away. We encourage you to give it a try and follow these steps when

working on your next project.

Chapter 15 Ultimate Optimization Algorithm

309
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8_16

CHAPTER 16

Conclusion
Like all good things must do, this book is coming to an end.

In the Introduction, we shared that we wrote this book because we felt we could

not not write it. Countless times, we’ve met the question: “Is there a book you can

recommend for getting started with PostgreSQL?”

In the preponderance of cases, those asking this question were not database

development novices. PostgreSQL is not yet the database of choice for most educational

institutions, and a typical developer “new to PostgreSQL” already knows how to

write syntactically correct SELECT statements, but is not familiar with the particulars

of PostgreSQL. This includes not just any minor language differences, but more

importantly, differences in how data is stored and how queries are processed.

Yes, of course, documentation is always available, but it is not always easy to

find what you need, unless you already know exactly what you are looking for. Other

resources include many excellent tutorials on various subjects, as well as the blogs of

leading PostgreSQL experts. Most of the time, however, they are focused on specific

topics, showing off numerous great features of PostgreSQL, but not necessarily

indicating where exactly they fit into the big picture.

Of course, this book does not present the full picture either—PostgreSQL has a lot

to offer, and we did not attempt to provide exhaustive coverage. Rather, we approach

PostgreSQL from a different perspective: we demonstrate how to make these great

features work.

That being said, we hope that this book will become a go-to book for database

developers who are starting to explore PostgreSQL. We also hope that those who have

already been using PostgreSQL for a while will also find some useful information,

perhaps some techniques that they haven’t used before.

https://doi.org/10.1007/978-1-4842-6885-8_16#DOI

310

Our goal is to give you a structure that you can use to navigate the challenges of

database development and a resource you can consult in “what if” situations. While it is

impossible to cover in one book all that PostgreSQL has to offer, our hope is that having

this book as a guide will make it easier for you to find more details in the PostgreSQL

documentation.

Throughout, we’ve tried to explain not only what to do but also why it works,

because if you know the “why,” you will be able to recognize other situations in which a

similar solution could work. Understanding relational theory is a key to understanding

these “whys,” which is why this book began with a healthy portion of theory. For those

who persevered through the theoretical chapters, your work will be rewarded. These

theoretical foundations bring you one step closer to “thinking like a database,” which

allows you to write your queries right right away, rather than “write first and then

optimize.”

In addition, we’ve introduced the postgres_air schema, which is now open sourced

and is available at https://github.com/hettie-d/postgres_air. We hope this realistic

dataset will be helpful as a training, experimentation, and demonstration tool, as well as

an educational resource.

In the Introduction, our target audience was described as IT professionals working in

PostgreSQL who want to develop performant and scalable applications, anyone whose

job title contains the words “database developer” or “database administrator,” or anyone

who is a backend developer charged with programming database calls. We hope that one

of the takeaways from this book will be that collaboration between all these groups and

business owners is key to developing performant applications.

Database queries do not run in a vacuum: the database is a service. Database work

is invisible if everything works well, and it is extremely visible if something goes wrong.

With that in mind, we hope that your work will remain mostly invisible!

And now have fun with PostgreSQL!

Chapter 16 Conclusion

https://github.com/hettie-d/postgres_air

311
© Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova 2021
H. Dombrovskaya et al., PostgreSQL Query Optimization, https://doi.org/10.1007/978-1-4842-6885-8

Index

A
age_category_dyn function, 255
age_category function, 253, 255
Algorithm cost models, 23, 24
Algorithms

comparing, 42
hash-based, 39–41
sort-merge, 41, 42

Application Development and
Performance

impedance mismatch, 200
interfaces, 205
ORM, 205, 206
patterns, 201, 202
performance metrics, 199
response time, 197, 198
shopping list

problem, 203, 204
solution, 207–209
world wide wait, 198

Avoiding multiple scans
attributes, 132
black box, 134
collapsing, 137
custom_field table, 132, 133
EAV table, 132
first/last names, 135, 136
larger table, 133, 134
one table scan, 134, 135
postgres_air, 132, 133

sorting, 134
subquery, 137, 138

B
Bitmaps, 27, 35, 36, 48, 72
booking_leg table, 122, 192, 233, 234
Boolean search model, 294
B-tree indexes, 33, 34, 291, 295, 300, 301

blocks, 35
cost, 35
CPU, 35
data type, 35
keys, 35
leaf nodes, 34
non-leaf nodes, 34
range search, 34
root nodes, 34

C
coalesce() function, 69, 89
Common table expressions (CTEs)

behavior, 144
execution plan, 143, 145
forced materialization, 146
MATERIALIZED/NOT

MATERIALIZED, 144
optimization fence, 143
PostgreSQL, 143
query, 143

https://doi.org/10.1007/978-1-4842-6885-8#DOI

312

SQL statement, 146
temporary tables, 142

Compound indexes
arrival_airport/scheduled_departure,

74, 75
columns, 75
covering indexes, 77, 78
creation, 74
data retrieval, 76, 77
execution plan, 74
lower selectivity, 76

Concurrency control, 169
block layout, 170
high-performance database, 170
isolation level, 171
SI, 171
strategies, 171

Cost-based optimization algorithms, 43, 51
CREATE FUNCTION command, 212, 242
CREATE INDEX operator

definition, 295
full text search, 296, 297
GIST, 296
JSON/JOSNB, 299–302
large tables, 297, 298

CREATE TABLE statement, 140, 174

D
Data access algorithms

cost/query selectivity, 28, 29
filtering, 29
full scan, 26, 29
index-based table access, 27–30
index-only scan, 28, 29
intersection, 29

multiple indexes, 30
query optimizer, 29, 30
selectivity, 25
sequential scan, 30
SSDs/virtual environments, 29
statistics, 30, 31
storage structures/statistical

properties, 25, 26, 30
Data definition language (DDL), 167
Data manipulation language (DML), 167

parts, 168
working

concurrency control, 169
low-level input/output, 168
reads vs. writes, 168
reasons, 169

Date/time conversion
functions, 186

Decomposition/encapsulation, 140
DELETE statement, 173
Denormalization, 188
Dynamic SQL

definition, 245
FDWs, 266, 267
flexibility, 256–260, 262, 263
OLAP systems

build part, 254–256
function, 253

OLTP systems
hash joins, 248, 249
nested loop, 249–251
return type, 247
SELECT statement, 251
SQL, 247, 248

optimizer, 263–266
Postgres, 245
SQL injection, 246

Common table expressions (CTEs) (cont.)

Index

313

E
Entity-attribute-value (EAV)

model, 132, 182
Excessive selection criteria

database optimization, 82
exception reports, 81, 82
execution plan, 83
filtering conditions, 79, 82
flight table, 80
full scan/hash joins, 82
query, 82
query plan, 79, 80
short queries, 80, 81
suboptimal plan, 81

Execution plans
bitmap heap scan, 48
booking_leg, 49
cost, 46, 52–54
EXPLAIN command, 45, 48
filtering conditions, 48
flight table, 48
graphical representation, 46–48
logical plan, 44, 45
mysterious numbers, 46
nodes, 48
number of passengers, 44, 47
optimization, 49, 50
optimizer, 43, 54, 55
pgAdmin, 46
physical operations, 46
query planner, 45
size, 49
sum() function, 49
types, 50, 51
values, 46

EXPLAIN command, 45, 116, 223, 248, 265
Expressions, 19, 20

F
First commit wins, 171
First update wins, 171
Flexible design vs. efficiency, 185, 187
Foreign data wrappers (FDWs), 185, 266
Foreign key, 62, 63, 155
Function overloading, 216

G
GetObjectIdByName method, 204
Grouping

filter first, group last, 118–125
GROUP BY, 119, 120
group first, select last, 125–128
suboptimal decisions, 118

H
Hash-based algorithms, 39–41
Hash joins, 104, 248
Heap-only tuples (HOT), 172
Heuristics, 43, 51
Hierarchical structures, 36, 184

I
Indexes, 172

avoiding index usage, 89
build, 97, 98
column transformation

B-tree indexes, 65
case-specific value, 67
coalesce() function, 69
definition, 65
execution plan, 68
functional index, 66, 67
last name, 65, 66

INDEX

314

query, 70
query plan, 66, 67
scheduled_departure/actual_departure

columns, 69
search conditions, 69
selection criterion, 68
SELECT statement, 67
sequential scan, 66–68
timestamp, 68
update_ts column, 69

creating, 172
join order, 85–88
like operator, 70–72
meaning, 31
non-equal conditions, 65
PostgreSQL, 89–91
selectivity, 60

database table, 60
delayed status, 60
LAX, 61
training database, 60

short queries, 99
structure, 32, 33

bitmaps, 35, 36
B-tree index, 33–35
column, 32
filtering conditions, 32
hash index, 36
invisibility, 32
performance improvement, 32
redundancy, 32
R-tree index, 36
table, 32

table, 172
unique index/constraints

aircraft table, 63
booking_ref, 62

CREATE UNIQUE INDEX, 62
creation, 62
flight table, 63
foreign keys, 62, 63
nested loop, 63
non-null unique constraint, 61
primary key, 61, 62
query, 63, 64
query plan, 64

Internal functions, 211, 212, 218, 240

J
Join order

anti-join
definition, 112
execution plan, 113
JOIN operator, 113–115
NOT EXISTS keyword, 112
NOT IN keyword, 112

booking table, 110
cost-based optimization, 116, 117, 118
EXPLAIN command, 116
filtering, 111
full scan, 111, 112
index access, 110, 111
join_collapse_limit, 116
large tables, 105
parameter value, 116
semi-join, 107, 108

conditions, 105
definition, 105
execution plan, 106
EXIST keyword, 106
IN keyword, 106
iso_country field, 108
JOIN operator, 113–115
query planner, 108, 109

Indexes (cont.)

INDEX

315

result set, 107
writing queries, 106

table sequential scan, 110
table statistics, 117
two semi-joins, 109–111
update_ts column, 109

K
Key-value model, 183, 185, 186

L
Logical operations, 13, 14, 15, 19
Long queries

database objects, 139
full scans, 103
grouping (see Grouping)
hash joins, 104
large result set, 102
OLAP systems, 116
one-row result set, 102
optimization, 103
order of joins (see Join order)
parallelism, 165, 166
partitioning

boarding_pass_part table, 162–164
B-tree indexes, 164
create table, 160, 161
definition, 160
DROP command, 161
indexes, 164
key, 162
performance perspective, 161
query, 162
range, 160
resources, 165
uses, 161

performance, 139
report performance, 101
structuring queries, 139, 140

M
Materialized views

considerations, 156
creation, 154, 155
custom_field table, 158
definition, 154
dependencies, 159
illustration, 157
optimization, 158, 159
passenger_id, 158
passport information, 158
REFRESH command, 156
refreshing, 158
subquery, 157
usages, 154, 155
and view, 154

Multiple indexes, 27, 30, 35, 72, 73

N
Nested loops

abovementioned algorithms, 39
algorithm, 38
Cartesian product, 37, 38
index-based, 39
input tables, 39
join algorithm, 39
join operation, 38
processing cost, 39
pseudocode, 37
sophisticated algorithms, 39
theoretical fact, 38

Nondeterministic process, 45

INDEX

316

Normalization, 187
purpose, 188
real-world entities, 188

NORM (No-ORM), 269

O
Object-oriented programming (OOP),

139, 255
Object-relational impedance mismatch

(ORIM), 207
Object-Relational Mapping (ORM)

application developers, 292
complex searches, 283–286
implementation, 278–283
JSON, 291
vs. NORM, 270, 271
NORM, 270

BookingLegEntity class, 276
database, 273
ERD, 272
FlightEntity class, 275
manifest object, JSON, 278
matching transport object, 273
postgres_air Entity-Relationship

diagram, 272
performance gains, 291
updates, 286–290

One-table design, 179, 180
Online Analytical Processing (OLAP), 8
Online Transaction Processing (OLTP), 8
Optimization

database optimizer, 2
declarative language, 2, 5
definition, 1
goals, 5–7
imperative language, 2

account numbers, 3

bookings, 3
constructed query, 3, 4
frequent flyer, 3
passengers, 4

process
application development, 10
database, 7
database design, 8–10
database developers/DBAs, 7
lifecycle, 10, 11
OLAP, 8
OLTP, 8
organization level, 7
performance, 8–10
queries, 8

queries, 2
Optimization algorithm, 41, 43, 51, 55

P
Partial indexes, 83, 84, 186
Performance metrics, 199
postgres_air schema, 172, 177, 310
PostgreSQL

algorithms, 20
core team, 11
feature, 11
index access, 92
index scan, 92, 93
last name, 93
operations, 20
optimization, 11
parameters, 93, 94, 96, 97
query, 92
sequential scan, 92, 93
source code, 11
time interval, 92

PostgreSQL functions

INDEX

317

business logic, 239, 240
composite types, nested structure, 231,

233, 234
data manipulation, 236, 237
execution, 218–220
execution internals, 220–223
function creation

dollar quoting, 214
function overloading, 216, 217
internal, 212
parameters/output, 215
procedural language, 213
user-defined, 212

function/performance, 223–225
functions/type dependencies, 235
OLTP systems

dynamic SQL, 241
parameterizing, 240
tables/views, 241

returning composite types, 227, 229, 230
security, 238
stored procedures, 241
user-defined types, 226, 227

Q
Queries

definition, 59
long query, 57–59

output, 59
OLAP, 59
short query, 58, 59

definition, 57
optimization, 59, 99

small percentage, 59
taxonomy, 59

Query processing
compilation, 13

execution, 14
optimization, 14
steps, 13

Query selectivity, 60

R
Referential integrity, 174, 175
Relational databases, 181

EAV, 182
features, 185
hierarchical, 184
key-value, 183
types, 182

Relational normalization, 187
Relational operations

associativity, 18
Cartesian product, 18
commutativity, 18
complex expressions, 15
equivalence rules, 18, 19
filter operation, 16
join operations, 18
product operation, 17
project operation, 16

S
Search

full text, 293, 294
multidimensional/spatial, 295

select_booking_dyn() function, 263
SELECT operation, 173
SELECT statements, 309
Semi-join

conditions, 105
definition, 105
execution plan, 106

INDEX

318

EXIST keyword, 106
IN keyword, 106
JOIN operator, 113–115
and join order, 107, 108
join order, 109–112
writing queries, 106

Set operations
complex selection, 130–132
EXPECT operation, 129
INTERSECT operation, 129, 130
UNION ALL, 130

Snapshot isolation (SI), 171
Sort-merge algorithm, 41, 42
Stored procedures

exception processing, 243, 244
functions, 242
no results, 241
transaction management, 242, 243

Surrogate keys, 189
account table, 193
advantage, 189
airport table, 190
boarding pass, 195
booking table, 191
errors, 189
flight table, 194
passenger table, 192
source system, 189
table, 189
three-character codes, 190, 191

System behavior, 81, 139

T
Temporary tables

chain, 141
CREATE statement, 140

excessive I/O, 141
executes, 140
indexes, 141
inefficient usage, 142
negative implication, 141
optimal join order, 141
PostgreSQL, 141
SQL developer, 140
statistics, 141
Tempdb space, 141

to_json() PostgreSQL function, 282
Transaction processing, 8, 169
Transformation rules, 43
Triggers, 175
Two-table design, 179, 180

U
Ultimate Optimization Algorithm

query, 304
construct, 305
incremental updates, 306
long, 306
non-incremental long, 307
short, 304

UPDATE statement, 173
User-defined functions, 212

V
VACUUM operation, 171, 173
Views

advantage, 148
controversial database, 147
creation, 147
departure_date column, 152
encapsulation, 151
flight table, 150

Semi-join (cont.)

INDEX

319

flight_departure, 151
flight_stats, 148–150
formal definition, 147
performance degradation, 152, 153
query, 147, 148
stand-alone query, 150

usages, 154
virtual table, 147

W, X, Y, Z
Write-ahead log (WAL), 168, 169

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Why Optimize?
	What Do We Mean by Optimization?
	Why It Is Difficult: Imperative and Declarative
	Optimization Goals
	Optimizing Processes
	Optimizing OLTP and OLAP
	Database Design and Performance
	Application Development and Performance
	Other Stages of the Lifecycle

	PostgreSQL Specifics
	Summary

	Chapter 2: Theory: Yes, We Need It!
	Query Processing Overview
	Compilation
	Optimization and Execution

	Relational, Logical, and Physical Operations
	Relational Operations
	Logical Operations
	Queries as Expressions: Thinking in Sets
	Operations and Algorithms

	Summary

	Chapter 3: Even More Theory: Algorithms
	Algorithm Cost Models
	Data Access Algorithms
	Storage Structures
	Full Scan
	Index-Based Table Access
	Index-Only Scan
	Comparing Data Access Algorithms

	Index Structures
	What Is an Index?
	B-Tree Indexes
	Why Are B-Trees Used So Often?
	Bitmaps
	Other Kinds of Indexes

	Combining Relations
	Nested Loops
	Hash-Based Algorithms
	Sort-Merge Algorithm
	Comparing Algorithms

	Summary

	Chapter 4: Understanding Execution Plans
	Putting Everything Together: How an Optimizer Builds an Execution Plan
	Reading Execution Plans
	Understanding Execution Plans
	What Is Going On During Optimization?
	Why Are There So Many Execution Plans to Choose From?
	How Are Execution Costs Calculated?
	How Can the Optimizer Be Led Astray?

	Summary

	Chapter 5: Short Queries and Indexes
	Which Queries Are Considered Short?
	Choosing Selection Criteria
	Index Selectivity
	Unique Indexes and Constraints

	Indexes and Non-equal Conditions
	Indexes and Column Transformations

	Indexes and the like Operator
	Using Multiple Indexes
	Compound Indexes
	How Do Compound Indexes Work?
	Lower Selectivity
	Using Indexes for Data Retrieval
	Covering Indexes

	Excessive Selection Criteria
	Partial Indexes
	Indexes and Join Order
	When Are Indexes Not Used
	Avoiding Index Usage
	Why Does PostgreSQL Ignore My Index?

	Let PostgreSQL Do Its Job!
	How to Build the Right Index(es)?
	To Build or Not to Build
	Which Indexes Are Needed?
	Which Indexes Are Not Needed?

	Indexes and Short Query Scalability
	Summary

	Chapter 6: Long Queries and Full Scans
	Which Queries Are Considered Long?
	Long Queries and Full Scans
	Long Queries and Hash Joins
	Long Queries and the Order of Joins
	What Is a Semi-join?
	Semi-joins and Join Order
	More on Join Order
	What Is an Anti-join?
	Semi- and Anti-joins Using the JOIN Operator
	When Is It Necessary to Specify Join Order?

	Grouping: Filter First, Group Last
	Grouping: Group First, Select Last
	Using SET operations
	Avoiding Multiple Scans
	Conclusion

	Chapter 7: Long Queries: Additional Techniques
	Structuring Queries
	Temporary Tables and CTEs
	Temporary Tables
	Common Table Expressions (CTEs)

	Views: To Use or Not to Use
	Why Use Views?

	Materialized Views
	Creating and Using Materialized Views
	Refreshing Materialized Views
	Create a Materialized View or Not?
	Do Materialized Views Need to Be Optimized?
	Dependencies

	Partitioning
	Parallelism
	Summary

	Chapter 8: Optimizing Data Modification
	What Is DML?
	Two Ways to Optimize Data Modification
	How Does DML Work?
	Low-Level Input/Output
	The Impact of Concurrency Control

	Data Modification and Indexes
	Mass Updates and Frequent Updates
	Referential Integrity and Triggers
	Summary

	Chapter 9: Design Matters
	Design Matters
	Why Use a Relational Model?
	Types of Databases
	Entity-Attribute-Value Model
	Key-Value Model
	Hierarchical Model
	Combining the Best of Different Worlds

	Flexibility vs. Efficiency and Correctness
	Must We Normalize?
	Use and Misuse of Surrogate Keys
	Summary

	Chapter 10: Application Development and Performance
	Response Time Matters
	World Wide Wait
	Performance Metrics
	Impedance Mismatch
	The Road Paved with Good Intentions
	Application Development Patterns
	“Shopping List Problem”
	Interfaces
	Welcome to the World of ORM

	In Search of a Better Solution
	Summary

	Chapter 11: Functions
	Function Creation
	Internal Functions
	User-Defined Functions
	Introducing Procedural Language
	Dollar Quoting
	Function Parameters and Function Output: Void Functions
	Function Overloading

	Function Execution
	Function Execution Internals
	Functions and Performance
	How Using Functions Can Worsen Performance
	Any Chance Functions Can Improve Performance?

	Functions and User-Defined Types
	User-Defined Data Types
	Functions Returning Composite Types

	Using Composite Types with Nested Structure
	Functions and Type Dependencies
	Data Manipulation with Functions
	Functions and Security
	What About Business Logic?
	Functions in OLAP Systems
	Parameterizing
	No Explicit Dependency on Tables and Views
	Ability to Execute Dynamic SQL

	Stored Procedures
	Functions with No Results
	Functions and Stored Procedures
	Transaction Management
	Exception Processing

	Summary

	Chapter 12: Dynamic SQL
	What Is Dynamic SQL
	Why It Works Better in Postgres
	What About SQL Injection?

	How to Use Dynamic SQL in OLTP Systems
	How to Use Dynamic SQL in OLAP Systems
	Using Dynamic SQL for Flexibility
	Using Dynamic SQL to Aid the Optimizer
	FDWs and Dynamic SQL
	Summary

	Chapter 13: Avoiding the Pitfalls of Object-Relational Mapping
	Why Application Developers Like NORM
	ORM vs. NORM
	NORM Explained
	Implementation Details
	Complex Searches
	Updates
	Insert
	Update
	Delete

	Why Not Store JSON?!
	Performance Gains
	Working Together with Application Developers
	Summary

	Chapter 14: More Complex Filtering and Search
	Full Text Search
	Multidimensional and Spatial Search
	Generalized Index Types in PostgreSQL
	GIST Indexes
	Indexes for Full Text Search
	Indexing Very Large Tables

	Indexing JSON and JSONB
	Summary

	Chapter 15: Ultimate Optimization Algorithm
	Major Steps
	Step-by-Step Guide
	Step 1: Short or Long?
	Step 2: Short
	Step 2.1: The Most Restrictive Criteria
	Step 2.2: Check the Indexes
	Step 2.3: Add an Excessive Selection Criterion, If Applicable
	Step 2.4: Constructing the Query

	Step 3: Long
	Step 4: Incremental Updates
	Step 5: Non-incremental Long Query

	But Wait, There Is More!
	Summary

	Chapter 16: Conclusion
	Index

