2023-Q4-AI 8. ResNet, DenseNet

 

8.1. Video / Materials

Video: https://youtube.com/live/iuf33QP8T0s?feature=share

Jamboard: https://jamboard.google.com/d/1gHCHbXnb9adphDPC2090g2amOSMlviptuXhNQu9zEbc/edit?usp=sharing

Materials:

  1. ResNet: https://arxiv.org/abs/1512.03385

  2. DenseNet: https://arxiv.org/abs/1608.06993

 


^ For new Jamboard user rights given to amir.zkn85@gmail.com

Previous year video for preparation

Focus on ResNet, DenseNet part

Video: https://youtu.be/9IJb0juuYik

Jamboard: https://jamboard.google.com/d/1cJQkpyOCg7uUt4d2OX5rr7HuhlCdfjNMRKfeZu0ozEs/edit?usp=sharing

 

Source code:

http://share.yellowrobot.xyz/quick/2023-10-26-66A1647B-FD86-4853-8E4C-A70DA24C46C5.zip

 

You must add tasks in DURING LECTURE the same way as others in ORTUS: https://estudijas.rtu.lv/course/view.php?id=349808

Added to course as Lecturer image-20231026165026828

 

When starting the lection start Screen Recording using OBS software (you can choose a window to record using it + Mirror it on Wall Display in Class)

Stream key: 2c4r-cxsy-dmdq-7wtv-cj1x Youtube RTMP: rtmp://a.rtmp.youtube.com/live2

Before lecture test streaming NOT on this key, but create your own livestream in youtube to make sure this works

 

This is way how to make output of OBS visible on Display on Wall (left click)

image-20231026155842296

Setting stream image-20231026160000783

 

9.2. Implement ResBlock using schema

Implement ResBlock using schema, submit images of training loss plots and source code

Template:

http://share.yellowrobot.xyz/quick/2023-10-26-A10C56AC-170F-4578-B1BF-6ED4F1B867E3.zip

Schema:

http://share.yellowrobot.xyz/quick/2023-10-26-05A727FA-EE6E-469A-BD2B-4FF30086F0C7.zip

Resblock

 


 

9.3. Implement DenseBlock using schema

 

Implement DenseBlock using schema, submit images of training loss plots and source code Schema: http://share.yellowrobot.xyz/quick/2023-10-26-D37835EF-7381-445C-BA82-C29C6E57C0EC.zip

Use torch.cat over channel dimension out = torch.cat([x, conv1, conv2], dim=1)

DenseBlock


 

9.4. Implement DenseNet TransitionLayer using schema

Implement DenseNet TransitionLayer using schema, submit images of training loss plots and source code Schema:

http://share.yellowrobot.xyz/quick/2023-10-26-2C2930E8-5FE2-40B1-9AEE-404F9671CBAF.zip

TransitionLayer_DenseNet


 

9.5. Implement InceptionNet using schema

Tasks

  1. Implement InceptionBlockA using schema

  2. Implement InceptionNet using schema

Schema: http://share.yellowrobot.xyz/quick/2023-10-26-81E1A5BE-3CEA-47A2-9FDC-205659691D5C.zip

InceptionBlockA and InceptionNet does not have channel count set, you can choose it youself. Number of branches and elements in branchees does not need to match, you can experiment and change them as you wish.

Additional tasks:

  1. Implement InceptionBlockBottleneck so that you do not need to use MaxPool layer in between blocks

  2. Implementēt other types of InceptionNet blocks https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202 https://arxiv.org/pdf/1409.4842.pdf https://arxiv.org/pdf/1512.00567.pdf

Template:

http://share.yellowrobot.xyz/quick/2023-10-26-668E5491-9AD4-4717-8C4A-992978D67757.zip

Submit images of training loss plots and source code

 

InceptionBlockA

InceptionBlockA

InceptionNet

InceptionNet

 


Materiāli slaidiem Jamboard

89462AEA-706D-4882-A8F8-213FEA3205F1

27A6E847-6B14-44F7-8A31-1515EE64406A

2D300D24-55A4-49B4-9DE5-762A96A4E0FF

C40766D4-FE91-4FB2-B22D-6DA38532DAE8

3D6EDABD-E3AE-4A39-AFF0-8434A758233C

962CAF7E-A018-4459-90CA-E6A7A1192A57

5FF1D9BF-081D-4AAA-8E1D-5B8A07C9ED83

FED42FCF-7590-4C8E-B2A3-CE9EF1DB67B4

 

001B172D-5D93-4FEA-B70C-D69559D162E8

992823B3-F29F-401C-B6F8-5ED62BBEBE8E

FD8C8D2D-5690-4DB9-8B98-646A192E2614

Untitled (54)

Untitled (53)

Untitled (52)