
Baltic J. Modern Computing, Vol. 0 (2012), No. 0, pp. 00–00

Comparative analysis of Robustness of Bayes
Neural Nets and Monte Carlo Dropout methods

Rinalds Daniels Pikše1, Evalds Urtans1

Riga Technical University, Department of Artificial Intelligence and Systems Engineering, Riga,
Latvia

rinalds.pikse@gmail.lv, evalds.urtans@rtu.lv

Abstract. This is a survey paper that compares three Beyesian methods - Bayes by Backprop,
Variational Inference, and Monte Carlo Dropout. These methods measure the uncertainty and
robustness of the data. The research aims to identify the strengths and weaknesses of each method
in order to guide practitioners in selecting the most suitable method for various applications.

The paper reviews the theoretical foundations of each algorithm and describes the experimental
setup, which involves mixing labels for the mushroom classification data set from 0 to 50% of
the training data. The performance of the method is evaluated on the basis of its uncertainty
estimates, accuracy, and robustness.

In noise-free conditions, the Monte Carlo Dropout algorithm delivered 100% accuracy, while
Bayes by Backprop also performed impressively at 99.7%. However, with 40% data noise, Bayes
by Backprop proved the most robust, its accuracy decreasing to 92.93%, compared to Monte
Carlo Dropout’s more significant drop to 90.67%. Variational inference showed the highest sus-
ceptibility to noise, dropping to 76.6%. At the same time, Variational Inference and Monte Carlo
Dropout were shown to be a potential estimator of the noiseiness of the data set, since its standard
deviation correlated with noise r = 0.95.

Keywords: Machine Learning, Bayesian Neural Networks, Monte Carlo Dropout, Bayesian In-
ference, Bayes by Backprop, MC-D, VI, BBB

1 Introduction

Bayesian neural networks represent a specific type of neural networks that express a
measure of uncertainty about their predictions, providing not only point predictions, but
also a probability distribution over possible outcomes. They work by applying princi-
ples from Bayesian statistics to estimate the uncertainty in the network’s weights, hence
providing a mathematical framework for representing and calculating uncertainties.

The concept of Bayesian neural networks has seen significant evolution since its
inception in the 1990s. Renowned methods have been proposed over the years such as



2 R. Pikse, E. Urtans

Variational Inference (VI), introduced by Jordan et al. (1999), which provides a method
for approximating complex probability distributions. Subsequently, the Monte Carlo
Dropout (MC-D) technique was proposed, which used dropout layers in a network as
a means of implementing Bayesian inference Gal and Ghahramani (2015). Another
significant contribution was the development of Bayes by backpropagation (BBB) by
Blundell et al. (2015), a method that applied Bayesian inference to the backpropagation
algorithm, one of the core algorithms for training neural networks. Further advances
have been continuously researched (Jospin et al. (2020)), expanding the scope and ap-
plicability of Bayesian neural networks.

The goal of this research is to develop and apply a novel approach to compara-
tively assess these existing Bayesian neural network algorithms, focusing specifically
on methods such as Variational Inference, Monte Carlo Dropout, and Bayes by Back-
propagation. The methodology involves implementing these methods in the Python pro-
gramming language and then selecting tabular data for empirical analysis.

2 Related work

Bayesian methods strive to employ probability to quantify uncertainty in conclusions
based on data analysis. Probability claims made by Bayesian methods are contingent
on observed data, differentiating them from other techniques (Gelman et al. (2013)).
Bayesian inference, a statistical method grounded in Bayes’ theorem, aims to deter-
mine the probability of a possible event, considering both prior information and newly
acquired observational data.

Ai et al. (2021) describes how Bayesian neural networks (BNNs), grounded in
Bayesian inference, utilize an initial probability distribution and aim to approximate the
true probability distribution. Two main approximating strategies have been proposed:
sampling and optimization methods. Sampling methods repetitively execute an algo-
rithm with variable results for the input parameters, forming a distribution, whereas op-
timization methods implement a distribution into the function parameters, training them
to obtain the final distribution. Optimization techniques include the Bayesian variational
inference method, which shapes and refines value distribution (Blei et al. (2016)), and
Bayes by Backpropagation, which applies the backpropagation algorithm to Bayesian
inference (Jospin et al. (2020)). Monte Carlo Dropout, a sampling method, repetitively
generates variable results, thus creating a value distribution. This article provides a com-
prehensive analysis of these methodologies.

2.1 Variational Inference

In probabilistic models, inference refers to the process of estimating latent variables
given observed data and the model’s parameters. Latent variables, often referred to as
hidden variables, are indirectly obtained from observable variables and influence the
final result. The goal of variational inference is to create an approximate final posterior
probability from observed and latent variables (Blei et al. (2016)).

Variational inference is a technique in Bayesian statistics in which an approximate
distribution (the variational distribution) is used to represent the posterior distribution



Comparative analysis of Bayes Neural Nets 3

of the model parameters. The parameters of this variational distribution are optimized
so that the distance between the variational distribution and the true posterior distribu-
tion is minimized, often using measures such as the Kullback-Leibler (KL) divergence,
which measures the difference between two probability distributions based on Shannon
information theory (Jospin et al. (2020)).

However, minimizing KL divergence is not easily applicable, as machine learn-
ing algorithms do not always have access to the true value distribution. Hence, using
Jensen’s inequality, it is possible to derive a new optimizable measure called ELBO
(Evidence Lower BOund) (Blei et al. (2016)). Although minimizing the KL divergence
is equivalent to maximizing the ELBO, the advantage of the latter approach is that it
does not require knowledge of the true value distribution for optimization (Jospin et al.
(2020)).

Several methods can be used to maximize the ELBO value. One possible approach
is the gradient descent method, which adjusts the weight parameters of the variational
distribution to maximize the ELBO value. Stochastic Variational Inference (SVI) uses
batches of samples that form probability distributions, which are iteratively improved
using stochastic optimization (Hoffman et al. (2012)). This approach can be scalable,
since ELBO can be calculated for each batch of samples, in each training iteration
(Jospin et al. (2020)). ADVI is another method that seeks to maximize the ELBO value
by transforming the inference problem into a uniform space and then solving the vari-
ational optimization problem. As described (Kucukelbir et al. (2015)), there are also
so-called black-box variational inference methods (Ranganath et al. (2013)), which al-
low maximizing ELBO, but often rely on stochastic optimization (Kucukelbir et al.
(2015)), hence they can be considered a subgroup of SVI algorithms.

Other methods also exist for Bayesian Variational Inference, which are briefly de-
scribed in this section. Structured Mean Field Variational Inference (SMFVI) is a method
that maintains dependencies between variables (Hoffman and Blei (2014)). This method
is practical when variable relationships are known. Nonparametric models perform vari-
ational inference by creating a more complex value distribution that can contain several
modes (Nguyen and Bonilla (2013)), which is illustrated in Figure 1.2. This figure pro-
vides an example of the multimodal problem, where a single-mode probability distri-
bution would not fully characterize the true probability.

2.2 Monte Carlo dropout

Monte Carlo Dropout (MC-D) is a method involving the stochastic deactivation of a
proportion of neurons in a network. MC-D is widely adopted in traditional neural net-
works to avoid overfitting by reducing the influence of each individual neuron on the
entire network. After model training, dropout is deactivated (Srivastava et al. (2014)).

This technique, where neurons are deactivated, can also be used in a different con-
text - to calculate the uncertainty measure of a neural network. Gal and Ghahramani
(Gal and Ghahramani (2015)) demonstrate that, by not deactivating dropout after train-
ing, this method can be considered an approximation of Bayesian methods and yield
a distribution of values equivalent to the Variational Inference algorithm. Monte Carlo
methods, through random neuron deactivation (dropout), allow the creation of a dy-
namic model that provides different results each time a specific data point is analyzed.



4 R. Pikse, E. Urtans

This occurs because deactivated neurons are removed from calculations, thereby intro-
ducing variability in the model’s output upon repeated evaluations.

MC-D is easily incorporated into existing artificial neural networks without the need
for model retraining (Jospin et al. (2020)), making it a popular and practical choice for
injecting Bayesian principles into established deep learning models. As a dropout-based
approach, MC-D shares core functionalities with traditional artificial neural networks,
including a layered neuron structure with adjustable weight and bias factors, the propa-
gation of input data to deeper network layers, and iterative optimization of weight values
via error backpropagation and optimization algorithms. Despite this, the uniqueness of
MC-D within the Bayesian framework arises from its ability to reflect uncertainty via
multiple model evaluations, each one influenced by a distinct dropout-induced network
configuration.

2.3 Bayes by Backprop

Bayes by Backpropagation (BBB), an algorithm introduced in the research work "Weight
Uncertainty in Neural Networks" (Blundell et al. (2015)), incorporates principles of
variational inference in neural networks. Essentially, BBB performs an evaluation of
neural network weights by employing distributions instead of fixed values. The goal of
this approach is to introduce uncertainty into weight values, assessing the confidence
in the model’s prediction accuracy. Training is executed by maximizing the Variational
Lower Bound (ELBO) cost function, using both the error function and Kullback-Leibler
divergence for optimization. The authors of BBB argue that, based on their studies, this
algorithm’s classifying performance is comparable to the Monte Carlo dropout algo-
rithm.

The BBB algorithm uses the reparametrization trick method to assess and optimize
the weight distribution parameters in the neural network. Variable reparametrization
has long been a technique used in the statistical literature, but only recently has it found
applications in gradient-based machine learning (Kingma and Welling (2013)). This
method proves useful when learning parameters that define the distribution of values,
such as the distribution of weights in a neural network.

Within the Bayes by Backpropagation (BBB) algorithm, the weight distribution of
the neural network is represented as a normal distribution with adjustable parameters
µ and σ. During backpropagation, neural networks employ gradient descent, which
necessitates the computation of gradients of the network error function relative to the
weights of the network. These gradients guide the adjustment of the network’s weights
to minimize the error.

In the context of BBB, it becomes important to discern not only how the error fluc-
tuates with respect to the weights of the network but also in relation to the parameters of
the weight distribution. This presents a challenge as computing gradients for stochas-
tic values can be computationally complex and potentially lead to high variance due
to inherent randomness. The reparameterization trick solves this issue - it reformulates
the problem in a way that enables the calculation of gradients with respect to a deter-
ministic weight distribution instead of a stochastic one, thus simplifying the gradient
computation process.



Comparative analysis of Bayes Neural Nets 5

Instead of attempting to calculate gradients in relation to the parameters of the
stochastic weight distribution, the problem can be transformed to calculate gradients
in relation to a deterministic weight distribution. This is accomplished by transforming
samples from a standard normal distribution using our weight distribution parameters.
This method is implemented by first obtaining a sample ϵ from a standard normal dis-
tribution N(0, I), which is then transformed using our weight distribution parameters
µ and σ and can be represented as

gφ(ϵ, x) = µ+ σ ∗ ϵ (1)

In this equation, gφ(ϵ, x) is the vector value function, a sample of our weight dis-
tribution, and as this transformation function is deterministic and differentiable, the
calculation of gradients is straightforward using the standard backpropagation method.
BBB could also be referred to as a practical implementation of the Stochastic Varia-
tional Inference (SVI) algorithm with the reparametrization trick (Jospin et al. (2020)).
A visual representation of the reparametrization trick method can be seen in Figure 1.

Fig. 1: The illustration reflects the method of the reparametrization trick - the left side
shows that the output value is stochastic, while the right side shows that the stochastic

parameter ϵ is parameterized to obtain a deterministic value z.

3 Methodology

3.1 Formal definition of the task

In this study, our objective is to conduct experiments under different levels of data noise
conditions. To achieve this, we employ a technique called ’label noise injection’, which
involves the intentional modification of the values in categorical data within the training
dataset. This method can be applied to both the input features and the classes - in this
case, the classification of mushrooms as edible or inedible.

We conduct a series of experiments in which noise is injected into features, classes,
or both. A specific program is designed for these experiments. This program randomly
alters a specified percentage of the values of the training data. The process unfolds as
follows: for a pre-defined percentage of records, the indices are randomly selected. If
we are injecting noise into classes, which only contain values of 0 or 1, the program
randomly flips the label of the selected percentage of records.



6 R. Pikse, E. Urtans

On the other hand, if we are injecting noise into features, the program replaces the
original values for the selected indices with another valid value for that specific feature.

We conducted a series of six experiments, varying the noise injection rate from 0%
(no injection) to 50%, with an increment of 10% for each successive experiment.

3.2 Dataset

This study uses the mushroom classification dataset, which comprises 8124 records and
23 distinct features related to various species of mushrooms. The dataset includes 22
descriptive features and one classification column, indicating whether the mushroom is
poisonous (p) or edible (e). Each feature includes several categories, with the excep-
tion of the ’veil-type’ feature, which is universally denoted as ’p’ across all mushroom
records. Other features fall into 2 to 12 distinct categories. As the data processing li-
brary used does not efficiently handle letter values representing categorical features,
these values are transformed into numerical equivalents, where each unique number
represents a different category. Lastly, the data set is divided into training and testing
subsets through a random selection process, ensuring a representative distribution of
data in both groups.

3.3 Applied approaches

The goal of our experiments is to compare the accuracy and standard deviation of the
algorithms described under increasing levels of noise in the training data. During the ex-
perimental investigation we have used the following implementations of the algorithms
described in the following subsections.

3.3.1 Variational Inference A commonly used Python library for implementing
Variational Inference is PyMC3 (Salvatier et al. (2015)), which provides a variety of
tools for probabilistic programming and Bayesian analysis.

After preparing our dataset, a Bayesian model is first defined using the pm.Model()
function of PyMC3. This function allows us to construct a Bayesian model that includes
all required prior probability distributions and associated likelihood functions. Within
this model, we assume normal distributions, frequently symbolized by alpha and beta,
as our initial prior distributions.

The mean, µ, is estimated as a linear combination of the features in the dataset. This
function considers the initial probability distribution values and the features extracted
from the dataset. Following this, the likelihood function is defined, typically employing
the Bernoulli distribution, given the binary nature of many prediction tasks.

The Variational Inference approximation is then performed using the pm.fit() func-
tion provided by the PyMC3 library. This step is crucial to the VI algorithm. It aims to
find the optimal parameters that maximize the Evidence Lower BOund (ELBO), simul-
taneously working to minimize the Kullback-Leibler (KL) divergence.

Once the variational approximation concludes, we draw samples from the approxi-
mated posterior distribution. These samples allow us to generate predictions on an inde-
pendent test dataset. We assess the model’s performance by comparing these predictions



Comparative analysis of Bayes Neural Nets 7

with the actual outcomes from the test set. Metrics such as accuracy and the standard
deviation of results provide insight into the model’s performance and variability.

3.3.2 Monte Carlo dropout In implementing the Monte Carlo dropout (MC-D) al-
gorithm, we utilize PyTorch’s torch.nn library (Paszke et al. (2019)). The algorithm’s
execution happens in two distinct phases: training and testing.

First, we define the model’s linear layers using the torch.nn.Linear class. Data is
then propagated through these network layers, resulting in a tensor for each record
which contains two values representing each of the final classes.

The performance of the algorithm is then evaluated using a cross-entropy loss cal-
culation. Additionally, we introduce dropout layers after the ReLU activation function
applied to the first and second layers. These dropout layers, set with a 70% dropout rate,
aid in reducing overfitting and in enhancing the model’s generalization capabilities by
introducing an element of randomness.

The testing phase involves running the algorithm multiple times - 100 times in our
case - on each group of input data. This process allows us to obtain a measure of con-
fidence or variance for the results. We then tally the number of records correctly cat-
egorized by the model, adding this information to a list for graphical representation.
Upon reaching a specified number of cycles, the results from the final testing cycle are
collected.

For our neural network architecture, we establish three linear layers: input, hidden,
and output, comprising 200, 300, and 2 neurons respectively. The output layer size
corresponds with the number of classes in the dataset - poisonous or edible. We set the
learning rate to 0.001 and execute the algorithm for 30 epochs. The data split used for
our experiment is 80% for training and 20% for testing.

3.3.3 Bayes by backprop Bayes by backprop algorithm can be implemented us-
ing the PyTorch library, specifically using the torchbnn library (Lee et al. (2022)) for
its Bayesian-specific functionalities. The neural network model is defined using the
"Module" class from PyTorch, but the linear transformation layer is chosen from the
"BayesLinear" function available in the torchbnn library. The activation function used
is the ReLU function. An essential difference from other methods like the Monte Carlo
Dropout (MC-D) is that for each layer, the input and output data size variables are
defined along with the µ and σ values, which determine the distribution to define the
weights of the model.

The BBB algorithm’s training phase includes calculating the KL divergence value
in addition to the cross-entropy error. Both these quantities are combined and used for
optimizing the model to improve the total result. After the training phase, a testing phase
is performed similarly to the MC-D algorithm, including error calculation, counting the
correctly categorized records, and creating an error matrix.

Hyperparameter tuning is performed to determine the optimal configurations for the
neural network. This tuning establishes the number of neurons for each layer (typically
200 and 2 for the input and output layers, respectively), the µ and σ values for all layers
(usually both 0 and 0.1), and the weights for the KL divergence error and cross-entropy
error (0.3 and 0.7, respectively). The training rate is generally set to 0.001, with 30



8 R. Pikse, E. Urtans

training cycles planned. The dataset is split into 80% for training and 20% for testing,
with a batch size of 64, and 100 samples used for variance calculations.

4 Results

Results show that as the noise in the dataset increases, the accuracy of all algorithms
decreases as seen in Figure 2. This observation is consistent for both clean and noisy
data across all three types of noise additions. These results are expected because as
the noise in the training data increases, the algorithm may start to emphasize random
correlations instead of the true dependencies in the data. These findings highlight the
importance of considering data noise when improving algorithm performance.

Fig. 2: Change in accuracy corresponding to the amount of added noise for each of the
three algorithms.

Looking at the standard deviation values presented in Figure 3, there are noticeable
differences between all algorithms. Variational inference (VI) exhibits the largest stan-
dard deviation, approximately 10 times greater than Bayes’ Bayes by Backprop (BBB)
and noticeably larger than Monte Carlo Dropout (MC-D). This higher standard devia-
tion for VI corresponds to its lower accuracy, suggesting that the algorithm’s frequent
errors tend to yield values far from the average. It is also noticeable that for all algo-
rithms, the standard deviation increases as the number of mixed labels grows, indicating
that the algorithms are sensitive to the amount of noise. The largest changes in standard
deviation with increasing noise are observed for the VI and MC-D algorithms. VI and
MC-D seem to be the best candidates for esitmating noise in the dataset using standard
deviation.



Comparative analysis of Bayes Neural Nets 9

Fig. 3: Change in standard deviation in response to the quantity of incorporated noise
for all three investigated algorithms.

Under conditions with 50% added noise, the highest accuracy and the lowest stan-
dard deviation are observed when noise is introduced exclusively to the features. How-
ever, scenarios where noise is added either solely to classes or to both classes and fea-
tures yield similar accuracy results. This observation suggests differential impacts of
class and feature noise on algorithm performance. It appears that output data noise may
more strongly affect performance. A possible explanation is that, as the applied dataset
contains 23 different features, the algorithms are relatively more resistant to introducing
noise in the features, leveraging the information contained among the unmixed features.
As seen in tables below, in most experiments MC-D showed the highest robustness with
highest accuracy at different noise levels in both input features and output class labels.
The negative correlation between accuracy and noise level is listed as −r while the cor-
relation between standard deviation and noise level is listed as rstd. From the results,
it can be concluded that MC-D and BBB are more robust than VI, as these methods
have significantly lower correlation between accuracies and noise levels. On the other
hand, VI and MC-D captures better noise in standard deviation as these methods have
a higher correlation between noise.

Table 1: Accuracy and standard deviation of each method for different levels of noise
in input features and class labels.

Method 0% 10% 20% 30% 40% 50% −r rstd
MC-D 100 ± 0.00 99.94 ± 0.03 99.79 ± 0.05 98.18 ± 0.10 90.67 ± 0.20 59.49 ± 0.27 0.77 0.97

VI 90.76 ± 0.33 88.49 ± 0.41 87.62 ± 0.45 85.71 ± 0.48 76.60 ± 0.49 51.17 ± 0.50 0.84 0.93
BBB 99.70 ± 0.05 98.35 ± 0.06 98.05 ± 0.06 94.60 ± 0.07 92.93 ± 0.11 55.29 ± 0.11 0.77 0.92



10 R. Pikse, E. Urtans

Table 2: Accuracy and standard deviation of each method for different levels of noise
in input features only.

Method 0% 10% 20% 30% 40% 50% −r rstd
MC-D 100 ± 0.01 99.94 ± 0.02 99.88 ± 0.02 99.88 ± 0.03 99.34 ± 0.05 95.77 ± 0.07 0.73 0.95

VI 91.63 ± 0.33 88.49 ± 0.35 87.81 ± 0.36 86.88 ± 0.37 86.08 ± 0.37 84.36 ± 0.38 0.96 0.96
BBB 99.70 ± 0.05 99.04 ± 0.05 98.32 ± 0.05 95.68 ± 0.07 94.46 ± 0.06 92.33 ± 0.06 0.97 0.65

Table 3: Accuracy and standard deviation of each method for different levels of noise
in class labels only.

Method 0% 10% 20% 30% 40% 50% −r rstd
MC-D 100 ± 0.01 100 ± 0.03 99.94 ± 0.04 98.71 ± 0.08 94.72 ± 0.10 50.45 ± 0.09 0.72 0.95

VI 90.76 ± 0.33 91.87 ± 0.39 89.78 ± 0.44 90.95 ± 0.48 83.93 ± 0.49 53.39 ± 0.50 0.75 0.95
BBB 99.82 ± 0.05 99.70 ± 0.05 99.70 ± 0.06 98.38 ± 0.09 96.91 ± 0.12 57.20 ± 0.09 0.70 0.84

5 Discussion

This study offers insights into the robustness of Bayesian algorithms, such as MC-
Dropout (MCD), Bayes by Backprop (BB), and Variational Inference (VI), against data
noise. Examination of their performance under varying degrees of data cleanliness un-
derscores the necessity of assessing these algorithms across diverse datasets.

We also identify promising areas for further research. Enriching the comparison
with additional Bayesian methods could refine our understanding, while studying Black
Box Variational Inference or Structured Mean-Field Variational Inference methods might
offer further insight into the relationships between VI, MCD, and BBB algorithms.

Our findings highlight the significant impact of noise on accuracy and standard
deviation. Future research should consider other potentially influencing factors, such as
the complexity of the classification task and the size of the training dataset. Although
BBB and MCD showed comparable performance across test conditions, it would be
worthwhile exploring circumstances under which one might outperform the other, thus
informing algorithm selection in specific contexts.

The study has uncovered intriguing evidence that class mixing influences algorithm
performance more than feature mixing. This observation could inform the strategic al-
location of resources for data cleaning and help in balancing accuracy, dispersion, and
execution time. We also suggest investigating the role of sample size in result dispersion
and the resilience of different machine learning algorithms to data noise from various
sources.

Lastly, an intriguing possibility emerging from our study is that algorithms could
infer the level of noise in a dataset, presenting a potential avenue for cost savings,
particularly in contexts where data cleaning expenses are significant.



Comparative analysis of Bayes Neural Nets 11

6 Conclusions

This study sheds light on the sensitivity of Bayesian and Monte Carlo Dropout (MC-
D) algorithms to data noise. Evidently, the MC-D and Variational Inference (VI) algo-
rithms, in comparison to Backpropagation by Bayesian (BBB) methods, demonstrate an
amplified response to noise, which could reflect a more precise uncertainty modeling.

In terms of binary classification tasks under various noise levels, both MC-D and
BBB prove robust.

Performance differences become more pronounced under low-noise conditions, with
both BBB and MC-D achieving high accuracy. In particular, MC-D maintains 100% ac-
curacy even after deliberate noise introduction. In contrast, VI exhibits lower accuracy
and, even with hyperparameter tuning, fails to match the performance of MC-D and
BBB.

Significant differences also extend to dispersion values. With the increase of train-
ing data noise, VI and MC-D’s dispersion is markedly affected, whereas BBB, despite
showing changes, exhibits minor shifts, which raises questions about its ability to model
confidence effectively. The dispersion that increases with noise allows for the estima-
tion of noise in the dataset which is a valuable feature in real-life datasets that are not
always clean.

The study finds that up to 40% mixed training data, the algorithms under study
can deliver high accuracy and stable dispersion. However, stability deteriorates and
accuracy dips to approximately 50% when classes are mixed 50%. Interestingly, all
three algorithms exhibit greater stability in feature-mixing scenarios than in class label-
only or combined class label and input feature mixing scenarios.

Highlighting the differential impact of noise, we observe that class-level noise in
training data exerts a greater effect than feature-level noise. However, even with mixed
50% of all features, the algorithms maintain high accuracy and relatively low standard
deviation. This stability is not mirrored when training data classes are mixed, empha-
sizing the importance of output noise over input noise in the training data.

References

Ai, Q., Liu, S., He, L., Xu, Z. (2021). Stein variational gradient descent with multiple kernels,
Cognitive Computation 15, 672–682.

Blei, D. M., Kucukelbir, A., McAuliffe, J. D. (2016). Variational inference: A review for statisti-
cians, Journal of the American Statistical Association 112, 859 – 877.

Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D. (2015). Weight uncertainty in neural
networks, ArXiv abs/1505.05424.

Gal, Y., Ghahramani, Z. (2015). Dropout as a bayesian approximation: Representing model
uncertainty in deep learning, ArXiv abs/1506.02142.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., Rubin, D. B. (2013). Bayesian
Data Analysis, CRC press.

Hoffman, M. D., Blei, D. M. (2014). Structured stochastic variational inference, arXiv: Learning
.

Hoffman, M. D., Blei, D. M., Wang, C., Paisley, J. W. (2012). Stochastic variational inference,
ArXiv abs/1206.7051.



12 R. Pikse, E. Urtans

Jordan, M. I., Ghahramani, Z., Jaakkola, T., Saul, L. K. (1999). An introduction to variational
methods for graphical models, Machine Learning 37, 183–233.

Jospin, L. V., Buntine, W. L., Boussaid, F., Laga, H., Bennamoun (2020). Hands-on bayesian neu-
ral networks—a tutorial for deep learning users, IEEE Computational Intelligence Magazine
17, 29–48.

Kingma, D. P., Welling, M. (2013). Auto-encoding variational bayes, CoRR abs/1312.6114.
Kucukelbir, A., Ranganath, R., Gelman, A., Blei, D. M. (2015). Automatic variational inference

in stan, NIPS.
Lee, S., Kim, H., Lee, J. (2022). Graddiv: Adversarial robustness of randomized neural networks

via gradient diversity regularization, IEEE Transactions on Pattern Analysis and Machine
Intelligence .

Nguyen, T. V., Bonilla, E. V. (2013). Efficient variational inference for gaussian process regres-
sion networks, International Conference on Artificial Intelligence and Statistics.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library, Advances in Neural Information
Processing Systems 32, Curran Associates, Inc., pp. 8024–8035.
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-\
high-performance-deep-learning-library.pdf

Ranganath, R., Gerrish, S., Blei, D. M. (2013). Black box variational inference, International
Conference on Artificial Intelligence and Statistics.

Salvatier, J., Wiecki, T. V., Fonnesbeck, C. J. (2015). Probabilistic programming in python using
pymc, arXiv: Computation .

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014). Dropout:
A simple way to prevent neural networks from overfitting, Journal of Machine Learning
Research 15.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-\high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-\high-performance-deep-learning-library.pdf

	Comparative analysis of Robustness of Bayes Neural Nets and Monte Carlo Dropout methods
	Introduction
	Related work
	Variational Inference
	Monte Carlo dropout
	Bayes by Backprop

	Methodology
	Formal definition of the task
	Dataset
	Applied approaches
	Variational Inference
	Monte Carlo dropout
	Bayes by backprop


	Results
	Discussion
	Conclusions


