
2 LITERATURE REVIEW
This section aims to provide a background of existing research in the

loss functions of the Deep Metric Learning. It explains the importance of the
research and activity in the development of novel loss functions. Similar sur-
vey of methods and loss functions has been done also for Deep Reinforcement
Learning [109]. Results of the findings for Deep Reinforcement Learning have
been included in Appendix C.

2.1 Methodolgy of Literature Review
The methodology of SLR (Systematic Literature Review) presented in this
document is based on a systematic mapping study [80] [43]. The results
of SLR contain the map of clusters based on the origins of loss functions
and methods, as well as a qualitative review based on research questions.
The results also include a list of limitations identified for loss functions and
methods used in the reviewed papers.

The method for selecting and evaluating papers contains the steps listed
in Fig. 3. Initially the most well-known publications [7], [23] in the field of
deep metric learning (DML) have been selected. Additionally, the follow-
ing keywords were used for the initial search of papers: triplet loss, con-
trastive loss, ranking loss, deep metric learning, representation learning, one-
shot learning, zero-shot learning, product re-identification task, signature
re-identification, face re-identification task. Then the publications have been
thoroughly analyzed and documented to check if publications match the field
of DML loss function research. Then matching to Quality Assessment crite-
ria has been evaluated. If at least single assessment criterion has been met,
a publication was added to the main list. In addition, if answers to research
questions have been found in selected publications, then those were docu-
mented. The references and citations of this publication have been found.
For each of the relevant publications, their citation count has been found and
divided by years passed since publishing. Those with the highest value of
influence were analyzed first.
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Figure 3: The methodology of SLR.

To find a valid direction of further research, few research questions (RQ)
were selected. The research questions addressed by this study are:

• RQ1: What kinds of functions have been studied similar to Triplet Loss
functions?

• RQ2: Do the novel loss functions achieve significantly better results
than previous functions?

• RQ3: Do the novel loss functions have theoretical grounding, or are
they purely empirical?

• RQ4: What are the limitations of novel loss functions?
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2.2 Results of the Literature Review on Deep Metric
Learning

The results of SLR regarding DML are mapped in multiple tables depending
on the relevant properties extracted from papers. Information about authors,
affiliation, country of origin, and conferences regarding DML have been listed
in Table 1.

Publications have been ordered by the year of publishing, and the num-
bering of publications has been maintained also in the following tables.

Table 1:

Authors and conferences on studies regarding DML.

No Title Authors Affiliation Country Year Conference
/ Journal

1 Signature Verification Us-
ing A "Siamese" Time De-
lay Neural Network [7]

J. Bromley,
J. Bentz,
L. Bottou,
I. Guyon,
Y. LeCun,
C. Moore,
E. Sckinger,
R. Shah

AT&T Bell labo-
ratories

USA 1993 INT J
PATTERN
RECOGN

2 Neighbourhood Compo-
nents Analysis [27]

J. Goldberger,
S. Roweis,
G. Hinton,
R. Salakhutdinov

AT&T Bell labo-
ratories

Canada 2004 NIPS

3 Learning a Similarity
Metric Discriminatively,
with Application to
Face Verification [14]

S. Chopra,
R. Hadsell,
Y. LeCun

NYU USA 2005 CVPR

4 Distance metric learning
for large margin near-
est neighbor classification
[127]

K. Q. Weinberger,
L. Saul

Yahoo!,
University of Cal-
ifornia

USA 2005 NIPS

5 Large scale metric learn-
ing from equivalence con-
straints [46]

M. KŽstinger,
M. Hirzer,
P. Wohlhart,
P. Roth,
H. Bischof

Graz University
of Technology

Austria 2012 CVPR

6 Quadruplet-Wise Image
Similarity Learning [52]

M. Law,
N. Thome,
M. Cord

Sorbonne Univer-
sity

France 2013 ICCV

7 Reidentification by Rela-
tive Distance Comparison
[135]

W. Zheng,
S. Gong,
T. Xiang

College of Elec-
tronic and Infor-
mation,
South China Uni-
versity of Tech-
nology

China 2013 TPAMI

8 Deep Metric Learning
for Practical Person
Re-Identification [132]

D. Yi,
Z. Lei,
S. Li

IEEE China 2014 ArXiv

9 FaceNet: A unified
embedding for face
recognition and
clustering [23]

F. Schroff,
D. Kalenichenko,
J. Philbin

Google USA 2015 CVPR

10 Improved Deep Metric
Learning with Multi-class
N-pair Loss Objective [98]

K. Sohn NEC USA 2016 NIPS

11 A Discriminative Feature
Learning Approach for
Deep Face Recognition
[128]

Y. Wen,
K. Zhang,
Z. Li,
Y. Qiao

SIAT China 2016 ECCV
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12 Deep Metric Learning via
Lifted Structured Feature
Embedding [100]

H. O. Song,
Y. Xiang,
S. Jegelka,
S. Savarese

Stanford Univer-
sity,
MIT

USA 2016 CVPR

13 Deep
clustering: Discriminative
embeddings for segmenta-
tion and
separation [34]

J. Hershey,
Z. Chen,
J. Le Roux,
S. Watanabe

Mitsubishi,
Columbia Univer-
sity

USA 2016 ICASSP

14 Learning Deep Embed-
dings with Histogram
Loss [113]

E. Ustinova,
V. Lempitsky

Skoltech Russia 2016 NIPS

15 Local Similarity-Aware
Deep Feature Embedding
[37]

C. Huang,
C. C. Loy,
X. Tang

The Chinese Uni-
versity of Hong
Kong,
SenseTime Group
Limited

China 2016 NIPS

16 Metric Learning with
Adaptive Density Dis-
crimination [86]

O. Rippel,
M. Paluri,
P. DollĞr,
L. D. Bourdev

Facebook USA 2016 ICLR

17 L2-constrained Softmax
Loss for Discriminative
Face Verification [84]

R. Ranjan,
C. D. Castillo,
R. Chellappa

UMIACS USA 2017 ArXiv

18 In Defense of the Triplet
Loss for Person Re-
Identification [33]

A. Hermans,
L. Beyer,
B. Leibe

RWTH Germany 2017 ArXiv

19 Deep Metric Learning
with Angular Loss [117]

J. Wang,
F. Zhou,
S. Wen,
X. Liu,
Y. Lin

Baidu China 2017 ICCV

20 No Fuss Distance Met-
ric Learning Using Proxies
[70]

Y. Movshovitz-
Attias,
A. Toshev,
T. Leung,
S. Ioffe,
S. Singh

Google USA 2017 ICCV

21 Sampling Matters in Deep
Embedding Learning [64]

R. Manmatha,
C. Y. Wu,
A. Smola,
P. KrŁhenb§hl

UT Austin,
Amazon

USA 2017 ICCV

22 Deep Metric Learning via
Facility Location [99]

H. O. Song,
S. Jegelka,
V. Rathod,
K. Murphy

Google USA 2017 CVPR

23 Deep spectral clustering
learning [53]

M. Law,
R. Urtasun,
R. Zemel

University of
Toronto

Canada 2017 ICML

24 Hard-Aware Deeply Cas-
caded Embedding [133]

Y. Yuan,
K. Yang,
C. Zhang

MOE,
Peking Univer-
sity,
DeepMotion,
Microsoft Re-
search

China 2017 ICCV

25 PPFNet: Global Context
Aware Local Features
for Robust 3D Point
Matching [17]

H. Deng,
T. Birdal,
S. Ilic

TMU,
NUDT

Germany,
China

2018 CVPR

26 Ranked List Loss for Deep
Metric Learning [121]

X. Wang,
Y. Hua,
E. Kodirov,
G. Hu,
R. Garnier,
N. Robertson

Anyvision,
QueenÕs Univer-
sity Belfast

UK 2019 CVPR

27 Multi-Similarity Loss with
General Pair Weighting
for Deep Metric Learning
[119]

X. Wang,
Xintong Han,
W. Huang,
D. Dong,
M. Scott

Malong Technolo-
gies

China 2019 CVPR

28 A Simple and Effective
Framework for Pairwise
Deep Metric Learning [82]

Q. Qi,
Y. Yan,
Z. Wu,
X. Wang,
T. Yang

The Chinese Uni-
versity of Hong
Kong

China 2019 ECCV
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29 Deep Metric Learning
Meets Deep Clustering:
An Novel Unsupervised
Approach for Feature
Embedding [73]

B. X. Nguyen,
B. D. Nguyen,
G. Carneiro,
E. Tjiputra,
Q. D. Tran,
T. T. Do

AIOZ Singapore 2020 ArXiv

30 Exponential triplet loss
[110]

E. Urtans,
A. Nikitenko,
V. Vecins

RTU Latvia 2020 ICCDA

In, Table 3 information about novel loss functions and their properties
regarding DML have been listed. Embedding space refers to normalization
or measurement methods between two or more vectors in a latent space.
Each of the embedding vectors has been produced by a deep learning based
model for the data point. Then two or more embedding vectors have been
processed using the loss function and a deep learning based model weights
are calculated using the back-propagation algorithm. In addition, for many
of these papers sample mining methods are used to select the best training
samples to improve the results and speed of the training.

Table 3:

Novel loss functions of studies regarding DML.

No Title Year Embedding space Sample Mining Loss function
1 Signature Verification Us-

ing A "Siamese" Time De-
lay Neural Network [7]

1993 Euclidean None Contrastive loss

2 Neighbourhood Compo-
nents Analysis [27]

2004 Euclidean, Maha-
lanobis

None NCA Loss

3 Learning a Similarity
Metric Discriminatively,
with Application to
Face Verification [14]

2005 L1, Euclidean None Contrastive Loss

4 Distance metric learning
for large margin near-
est neighbor classification
[127]

2005 Euclidean, Maha-
lanobis

None Triplet Hinge
Loss

5 Large scale metric learn-
ing from equivalence con-
straints [46]

2012 Mahalanobis None KISS-BCE Loss

6 Quadruplet-Wise Image
Similarity Learning [52]

2013 Qwise None Quadruplet
Hinge Loss

7 Reidentification by Rela-
tive Distance Comparison
[135]

2013 RDC None RDC Loss

8 Deep Metric Learning
for Practical Person
Re-Identification [132]

2014 Cosine distance Hard Binomial De-
viance Loss

9 FaceNet: A unified
embedding for face
recognition and
clustering [23]

2015 L2, Euclidean Hard, Semi-Hard Triplet Loss,
Harmonic Triplet
Loss

10 Improved Deep Metric
Learning with Multi-class
N-pair Loss Objective [98]

2016 L2, Cosine distance N Hard Mining multi-class N-pair
loss

11 A Discriminative Feature
Learning Approach for
Deep Face Recognition
[128]

2016 Cosine distance None Center loss
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12 Deep Metric Learning via
Lifted Structured Feature
Embedding [100]

2016 L2, Euclidean Mining positives Lifted Structured
Loss,
Lifted Struct

13 Deep
clustering: Discriminative
embeddings for segmenta-
tion and
separation [34]

2016 L2, Euclidean None Pairwise metric
Loss

14 Learning Deep Embed-
dings with Histogram
Loss [113]

2016 Cosine distance None Histogram Loss

15 Local Similarity-Aware
Deep Feature Embedding
[37]

2016 PDDM Hard mining PDDM - Double
Header Hinge
Loss

16 Metric Learning with
Adaptive Density Dis-
crimination [86]

2016 Euclidean Neighbourhood Sam-
pling

Magnet Loss

17 L2-constrained Softmax
Loss for Discriminative
Face Verification [84]

2017 Cosine distance None L2 constrained
Softmax Loss

18 In Defense of the Triplet
Loss for Person Re-
Identification [33]

2017 L2, Euclidean None Batch All Triplet
Loss

19 Deep Metric Learning
with Angular Loss [117]

2017 Angle None Angular loss

20 No Fuss Distance Met-
ric Learning Using Proxies
[70]

2017 L2, Euclidean None Proxy Ranking
Loss,
Proxy NCA Loss

21 Sampling Matters in Deep
Embedding Learning [64]

2017 L2, Euclidean Distance weighted
sampling

Triplet Loss,
Contrasitve Loss

22 Deep Metric Learning via
Facility Location [99]

2017 L2, Euclidean None Struct Clust,
Clustering Loss

23 Deep spectral clustering
learning [53]

2017 L2, Euclidean None Spectral Cluster-
ing Loss

24 Hard-Aware Deeply Cas-
caded Embedding [133]

2017 Euclidean Model-based Any / Con-
trastive loss

25 PPFNet: Global Context
Aware Local Features
for Robust 3D Point
Matching [17]

2018 L2, Euclidean None N-Tuple loss

26 Ranked List Loss for Deep
Metric Learning [121]

2019 Euclidean Hard Ranked List Loss

27 Multi-Similarity Loss with
General Pair Weighting
for Deep Metric Learning
[119]

2019 Cosine distance Hard Multi-Similarity
Loss

28 A Simple and Effective
Framework for Pairwise
Deep Metric Learning [82]

2019 Euclidean TopK Loss mining DRO-TopK Loss

29 Deep Metric Learning
Meets Deep Clustering:
An Novel Unsupervised
Approach for Feature
Embedding [73]

2020 L2, Euclidean None Unsupervised
UDML Loss

30 Exponential triplet loss
[110]

2020 Unit-Range Hard Exponential
Triplet Loss
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In Fig. 4 relationship of DML Loss functions has been summarized.
Colours denote similar groups of loss functions by their origin and method-
ology. It is possible to observe that most of the loss functions come from the
seminal works of Contrastive Loss [7], NCA Loss [27], and Triplet Loss [127].
Most of the functions are extensions of simple Hinge Loss [127]. As seen
in Table 3, most of the loss functions use sample mining methods, because
they are trained only using a few data samples per training iteration. Some
methods like Histogram Loss [113] or Quadruplet Hinge Loss [52] use more
samples per training iteration, but their results on benchmark datasets are
not significantly better than other methods as seen in Table 5.
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Figure 4: Relationship of DML Loss functions. Colours denote similar groups
of loss functions by their origin and methodology.

Table 5 lists practical applications for each of DML loss functions that
have been studied, as well as their benchmark datasets and the best results
on those datasets. Where applicable, Top-1 accuracy has been selected for
the best results on each of the datasets. As seen in the listings, most of
the practical applications and datasets have been used for face and product
re-identification.
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Table 5:

Practical applications and best results for every dataset.

No Title Year Practical
application

Dataset / Top-1
Acc.

1 Signature Verification Us-
ing A "Siamese" Time De-
lay Neural Network [7]

1993 Signature re-
identification

Signatures: 97%

2 Neighbourhood Compo-
nents Analysis [27]

2004 Handwriting iden-
tification, Face
re-identification

USPS: 85%
FERET-B

3 Learning a Similarity
Metric Discriminatively,
with Application to
Face Verification [14]

2005 Face Re-identification AT&T: 92.5%

4 Distance metric learning
for large margin near-
est neighbor classification
[127]

2005 Handwriting identifi-
cation, text classifica-
tion

MNIST: 98.8%
Letters: 96.3%
20news: 92%
Isolet: 96.6%
YaleFaces: 93.9%

5 Large scale metric learn-
ing from equivalence con-
straints [46]

2012 Face Re-
identification,
Image Re-
idenification

LFW: 80.5%
VIPeR: 22%

6 Quadruplet-Wise Image
Similarity Learning [52]

2013 Product or image re-
trieval

OSR: 74.6%
Pubfig: 77.6%

7 Reidentification by Rela-
tive Distance Comparison
[135]

2013 Face Re-identification ETHZ: 61.58%
i-LIDS: 32.60%
VIPeR: 9.12%

8 Deep Metric Learning
for Practical Person
Re-Identification [132]

2014 Face Re-identification VIPER: 34.49%

9 FaceNet: A unified
embedding for face
recognition and
clustering [23]

2015 Face Re-identification LFW: 99.63%
YTF: 95.12%

10 Improved Deep Metric
Learning with Multi-class
N-pair Loss Objective [98]

2016 Product image re-
trieval,
Face Re-identification

LFW: 98.33%
SOP: 28.19%
CAR-196: 33.5%
CUB-200: 27.24%

11 A Discriminative Feature
Learning Approach for
Deep Face Recognition
[128]

2016 Face Re-identification LFW: 99.28%
YTF: 94.9%
MegaFace: 76.5%

12 Deep Metric Learning via
Lifted Structured Feature
Embedding [100]

2016 Product or image re-
trieval

CUB200: 55%,
CARS196: 48%,
SOP: 62%

13 Deep
clustering: Discriminative
embeddings for segmenta-
tion and
separation [34]

2016 Speaker diarization,
seperation

WSJ0: 2.74 dB
(SDR)

14 Learning Deep Embed-
dings with Histogram
Loss [113]

2016 Product or image re-
trieval

CUHK03: 65.7%
CUB-200: 51%
Market-1501:
59.47%
SOP: 65%

15 Local Similarity-Aware
Deep Feature Embedding
[37]

2016 Product or image re-
trieval

CARS196: 57.4%
CUB-200: 58.3%
ImageNet: 48.2%

16 Metric Learning with
Adaptive Density Dis-
crimination [86]

2016 Image classification,
Face Re-identification

Stanford Dogs:
75.1%
Flowers-102: 91.4%
Oxford-IIIT Pet:
89.4%
ImageNet: 84.1%

17 L2-constrained Softmax
Loss for Discriminative
Face Verification [84]

2017 Image classification,
Face Re-identification

LFW: 99.33%
YTF: 99.78%
MNIST: 99.05%
IJB-A: 97.5%

18 In Defense of the Triplet
Loss for Person Re-
Identification [33]

2017 Product image re-
trieval,
Face Re-identification

MARS: 90.53%,
Market-1501: 79.8%,
CUHK03: 87.58%

26



19 Deep Metric Learning
with Angular Loss [117]

2017 Product or image re-
trieval

CAR-196: 71.4%,
CUB-200: 54.7%,
SOP: 70.9%

20 No Fuss Distance Met-
ric Learning Using Proxies
[70]

2017 Product or image re-
trieval

CARS196: 73:22%
CUB200: 73.22%
SOP: 73.73%

21 Sampling Matters in Deep
Embedding Learning [64]

2017 Product or image re-
trieval,
Face Re-identification

CARS196: 86.9%
CUB200: 63.9%
SOP: 72.7%

22 Deep Metric Learning via
Facility Location [99]

2017 Product or image re-
trieval

CARS196: 58.11%
CUB200: 48.18%
SOP: 67.02%

23 Deep spectral clustering
learning [53]

2017 Product or image re-
trieval

CARS196: 73.07%
CUB200: 43.22%
SOP: 67.59%

24 Hard-Aware Deeply Cas-
caded Embedding [133]

2017 Product or image re-
trieval

CARS196: 83.8%
CUB-200: 60.7%
In-shop: 62.1 %
SOP: 70.1%

25 PPFNet: Global Context
Aware Local Features
for Robust 3D Point
Matching [17]

2018 3D Point Cloud
matching

SUN3D: 71%

26 Ranked List Loss for Deep
Metric Learning [121]

2019 Product or image re-
trieval

CARS196: 82.1%
CUB-200: 61.3%
SOP: 79.8%

27 Multi-Similarity Loss with
General Pair Weighting
for Deep Metric Learning
[119]

2019 Product or image re-
trieval

CARS196: 77.3%
CUB-200: 65.7%
In-Shop: 78.2%

28 A Simple and Effective
Framework for Pairwise
Deep Metric Learning [82]

2019 Product or image re-
trieval

In-shop: 91.3%
CARS-196: 86.2%
CUB-200: 68.1%

29 Deep Metric Learning
Meets Deep Clustering:
An Novel Unsupervised
Approach for Feature
Embedding [73]

2020 Product or image re-
trieval

CUB200: 47.5%,
Car196: 42.6%

30 Exponential triplet loss
[110]

2020 Face Re-
identification,
Image Re-
idenification

VGGFace2: 85.7%
EMNIST: 86%
FMNIST: 93.1%
CIFAR10: 87.3%
MNIST: 99.6%

The Quality Assessment (QA) criteria are as follows:

• QA1: Does the publication provide open-source implementation of a
novel loss function or methodology?

• QA2: Has a publication achieved state-of-the-art results on the datasets
it studies?

• QA3: Does the publication provide a theoretical proof of a novel loss
function or methodology?

• QA4: Does the publication include an ablation study to test effects on
the results of functional parts one by one?

• QA5: Does a publication have over 100 citations?
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Table 7:

Evaluation of quality of publications baset on criteria.

No Title QA1 QA2 QA3 QA4 QA5 Total
11 A Discriminative Feature

Learning Approach for
Deep Face Recognition
[128]

Yes Yes No Yes Yes 4

18 In Defense of the Triplet
Loss for Person Re-
Identification [33]

Yes Yes No Yes Yes 4

21 Sampling Matters in Deep
Embedding Learning [64]

No Yes Yes Yes Yes 4

23 Deep spectral clustering
learning [53]

No Yes Yes Yes Yes 4

28 A Simple and Effective
Framework for Pairwise
Deep Metric Learning [82]

Yes Yes Yes Yes No 4

3 Learning a Similarity
Metric Discriminatively,
with Application to
Face Verification [14]

No Yes Yes No Yes 3

5 Large scale metric learn-
ing from equivalence con-
straints [46]

No Yes Yes No Yes 3

9 FaceNet: A unified
embedding for face
recognition and
clustering [23]

No Yes No Yes Yes 3

16 Metric Learning with
Adaptive Density Dis-
crimination [86]

Yes Yes No No Yes 3

17 L2-constrained Softmax
Loss for Discriminative
Face Verification [84]

No Yes No Yes Yes 3

19 Deep Metric Learning
with Angular Loss [117]

No Yes Yes No Yes 3

20 No Fuss Distance Met-
ric Learning Using Proxies
[70]

No Yes Yes No Yes 3

22 Deep Metric Learning via
Facility Location [99]

No Yes Yes No Yes 3

25 PPFNet: Global Context
Aware Local Features
for Robust 3D Point
Matching [17]

No Yes No Yes Yes 3

27 Multi-Similarity Loss with
General Pair Weighting
for Deep Metric Learning
[119]

Yes No No Yes Yes 3

1 Signature Verification Us-
ing A "Siamese" Time De-
lay Neural Network [7]

No Yes No No Yes 2

4 Distance metric learning
for large margin near-
est neighbor classification
[127]

No No Yes No Yes 2

6 Quadruplet-Wise Image
Similarity Learning [52]

No No Yes Yes No 2

7 Reidentification by Rela-
tive Distance Comparison
[135]

No Yes No No Yes 2

8 Deep Metric Learning
for Practical Person
Re-Identification [132]

No No Yes Yes Yes 2

10 Improved Deep Metric
Learning with Multi-class
N-pair Loss Objective [98]

No No No Yes Yes 2

12 Deep Metric Learning via
Lifted Structured Feature
Embedding [100]

No Yes No No Yes 2

28



14 Learning Deep Embed-
dings with Histogram
Loss [113]

Yes No No No Yes 2

24 Hard-Aware Deeply Cas-
caded Embedding [133]

Yes No No No Yes 2

26 Ranked List Loss for Deep
Metric Learning [121]

No Yes No Yes No 2

29 Deep Metric Learning
Meets Deep Clustering:
An Novel Unsupervised
Approach for Feature
Embedding [73]

No No Yes Yes No 2

30 Exponential triplet loss
[110]

Yes Yes No No No 2

2 Neighbourhood Compo-
nents Analysis [27]

No No No No Yes 1

13 Deep
clustering: Discriminative
embeddings for segmenta-
tion and
separation [34]

No No No No Yes 1

15 Local Similarity-Aware
Deep Feature Embedding
[37]

No No No No Yes 1

After reviewing over 30 publications in the field of DML, the following
answers have been found to the research questions (RQ):

• RQ1: In this study, 27 types of loss functions for DML have been iden-
tified. They have been categorized and listed in their historical order
in Fig. 4. All the DML loss functions originate from Margin Rank-
ing Loss, which itself is a variant of earlier Hinge Loss functions [127].
Then most of the newer loss functions originate from Contrastive loss
[7], Triplet Loss [23], Histogram Loss [113], and Quadruplet Hinge Loss
[52]. For most of the publications included in the study research subject
is either the loss function itself or the sample mining methodology.

• RQ2: Latest loss functions and sample mining strategy achieve sig-
nificantly better results than the previous functions as seen in Table
5. Also, datasets used in experiments have changed over time, but
practical applications like image re-identification have not.

• RQ3: Most of the novel loss functions do not have theoretical expla-
nations or derivations of the novel loss functions used in the model,
but nonetheless some loss functions like Contrastive Loss [14], Triplet
Hinge Loss [127], KISS-BCE Loss [46], Quadruplet Hinge Loss [52] and
Binomial Deviance Loss [132] do have theoretical proof. Most of the
other loss functions discussed in this study have their grounding in
empirical experiments.
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• RQ4: A number of significant limitations of DML loss functions and
methods have been found in this study. Most of the loss functions
require hyper-paramter α that is, a margin between clusters, but in
realistic datasets this might not be equal for all classes. Some classes
might have more variance than others. Some efforts have been made to
resolve the issue like Proxy NCA Loss [70], but even this loss function
requires hyper-parameter tuning and prior knowledge of class distribu-
tions.
Intra-class similarities are also a significant problem. Most of DML loss
functions ignore the fact that the same class samples also have their
own distributions of similarities. Some works address this problem, but
it still not fully solved [86] [52] [121].
Sample mining strategies also are a major problem as they require sig-
nificant computing resources dedicated just for selecting the best sam-
ples to train the model and apply the loss function. Multiple sampling
strategies have been developed like Hard [23], Semi-Hard [23], N Hard
Mining [98], Neighborhood Sampling [86], Distance weighted sampling
[64] and others, but the problem is still not yet fully solved.
Choice of the number of dimensions of embedding vectors and their
embedding space also is a problem that still needs more studies. Pub-
lications differ in suggestions, how many dimensions to choose, and
what normalization methods to apply to embeddings. Typical method
is to use Euclidean distance with L2 normalized embeddings with high
dimensionality of at least 128 dimensions [23], but some of the lat-
est papers propose also alternative embedding space normalization [37]
[117] and lower number of dimensions per embedding [110].
Another significant limitation is the computing resources required to
reach higher accuracy in re-identification tasks, some earlier works from
2015 required over 2000 CPU hours to reach the highest accuracy on
face re-identification tasks [23]. Latest works have been using GPUs
to accelerate and parallelize training, but even nowadays as datasets
grow larger that requires expensive GPU hardware [110].
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2.3 Conclusions of Literature Review
The results of the literature review indicate that the loss function design is
an active research topic in DML. Many of the DML loss functions have been
designed using empirical experiments instead of the derivation of classical
mathematical theories.

DML loss functions come from Hinge loss and Ranking loss functions
that have been around since the early days of computing. Then most of the
modern loss functions originated from two major approaches, either by using
triplets and Triplet Hinge Loss [127] or by using pairs and Contrastive Loss
[7]. There have also been studies to use quadruplets or even more permu-
tations of samples, but none has been as effective as Contrastive Loss and
Triplet Loss based methods. The last group of DML methods are related to
NCA [27] and other dimension reduction methods that produce similar out-
comes like DML, but would not work as well for zero-shot learning settings.

Other significant areas of research have been identified for sample min-
ing methods and embedding space normalization functions. Sample mining
methods are necessary so that the model would use only difficult data sam-
ples in a loss function to improve the convergence speed of a loss function.
The most common sampling methods are the Hard sample mining and the
Semi-Hard sample mining [23]. Also, normalization of the embedding space
is important, because the embeddings should be bounded to a predictable
range of values to fill evenly the embedding space with clusters of different
known and unknown classes. The most common method for normalization is
to use Euclidean distance with L2 normalization, but some studies also have
used cosine distances, Mahalanobis distance, angle in degrees, etc. DML
is applicable to different types of practical solutions like re-identification of
faces, speakers, signatures, handwriting, and product images.
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3 IMPROVING THE PERFORMANCE OF
FUNCTIONS USING DEEP LEARNING
MODELS
This section of the Thesis introduces a novel deep learning-based ap-

proach to optimize the performance of well-studied functions. As a practical
application, the Value Iteration algorithm has been used. It finds the short-
est path from any position in the map to the target position in the map.
Its performance degrades exponentially with the larger input size of the map
as it cannot be executed in parallel, but novel iterative deep learning-based
models can produce comparable results using parallelized architectures and
achieve higher performance on larger maps.

The problem domain of Value Function and Value Iteration algorithm
learning has been described in Subsection 3.1, then the existing Deep Learn-
ing based methods that can be used to model Value Function are shown in
Subsection 3.2 and in Subsection 3.3. Finally, a novel method to model Value
Function has been presented in Subsection 3.4. The results of these methods
have been shown in Subsection 6.1.

3.1 Value Iteration Algorithm
Value Iteration Algorithm (VI) is used in classical reinforcement learn-

ing tasks to find an optimal policy for any problem within a fully observable
environment. It can take into account the state transition model when the
transition is uncertain [88]. VI is often used for finding the optimal path
in maps with discrete states. A path finding task formalizes and discretizes
a natural terrain and obstacles of the environment. Often this information
is gathered using sensors that are attached to the mobile robot. These sen-
sors might include LIDAR (Light Detection and Ranging), ultrasonic sensors
for distance measurement, or IMU (Internal Measurement Units), etc. Dis-
cretization of a map is usually done by generating an occupancy grid.

VI is an iterative algorithm that repeatedly applies the same Value
function of Equation (3) over all positions of a map to find the cumulative
value of each cell position, as shown in Fig. 5.

Then the gradient between the values of these positions gives the policy
of the optimal path. The policy of the optimal path enables an agent to find
its way from any state in a discretized map to a positive terminal state. For
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