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ABSTRACT
Q-value function models based on variations of Deep Q-Network

(DQN) have shown good results in many virtual environments. In

this paper, we surveyed over 30 sub-algorithms that could influ-

ence the performance of DQN variants. We found important sta-

bility and repeatability aspects of state of art Deep Reinforcement

Learning algorithms. We also developed Multi Deep Q-Network

(MDQN) as a generalization of popular Double Deep Q-Network

(DDQN) algorithm. Finally, using PyGame Learning Environment

we produced visual representations of a learning process as Q-

Value maps. Videos of trained models available in following link:

http://yellowrobot.xyz/mdqn.

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms;
• Applied computing;

KEYWORDS
Deep Reinforcement Learning, Deep Learning, DQN,DDQN,MDQN

1 INTRODUCTION
This paper surveys many of the latest Deep Q-Learning algorithms

in the field of Deep Reinforcement Learning. Notable examples

of Deep Q-Learning (DQN) algorithms are the original DQN [12],

Double Deep Q-Learning (DDQN) [19], Dueling Network [21] and

asynchronous n-step DQN [11]. In addition to these Q-Value based

algorithms, there are two other major branches of development in

this field. One is policy gradient methods, with notable algorithms

like Trust Policy Region Optimization (TRPO) [15] and Proximal

Policy Optimization [17]. Another branch is combination of Q-Value

and policy gradient models that is called actor-critic model with

notable algorithms like Deep Deterministic Policy Gradient (DDPG)

[10], Asynchronous Advantage Actor-Critic (A3C) [11], GPU A3C

[2] and Actor-Critic with Experience Replay (ACER) [20]. In this

paper, we focus only on Q-Value based algorithms. We studied

how variations of these algorithms and hyper-parameters affect

performance in PyGame Learning Environment (PLE) [18]. We also
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proposed a generalization of the DDQN algorithm and extended it

for use with 3 or more decoupled DQN models.

2 RELATEDWORK
Recently some surveys have been conducted to assess a huge variety

of Deep Reinforcement Learning algorithms [9], [3], [7]. Many Deep

Reinforcement Learning algorithms suffer from large variance in

results. There have been a number of papers trying to resolve

this issue [1], [16]. Some research also point out problems with

repeatability and identifies random seed as a significant factor that

impacts results [8], [6].

3 METHODOLOGY
3.1 Deep Q-Network variants
All Q-function algorithms share underlying equations: the calcula-

tion of Cumulative Reward Equation 1 and the Bellman equation

for modeling policy π through Q-function Equation 2 that is an

approximation of a reward function for a given state s and action a
at a time step t .

R =
n∑
t=0

γ t rt (1)

Qπ (st ,at ) = rt + γ max

a′
Qπ (st+1,a′) (2)

DQN algorithm relies on Equation 3 where a parametrized Q-

function is based on a deep neural network. Usually, an input is a

raw pixel representation trained by Convolution Neural Network

(ConvNet) or a lower dimensionality representation of s . The model

also usually utilize Recurrent Neural Network (RNN) like LSTM or

GRU.

QΘ(st ,at ) ← QΘ(st ,at )
+ α(∇((rt +max

a′
γQΘ(st+1,a′) −QΘ(st ,at )))) (3)

QΘ(st ,at ) ← QΘ(st ,at )
+ α(∇((rt +max

a′
γQtarдet (st+1,a′) −QΘ(st ,at )))) (4)

DDQN algorithm is similar to DQN, but it utilizes theory from

Double Q-Learning [5] by using two decoupled Q-functions like

shown in Equation 4.Qtarдet function parameters are copied from

QΘ with a given time step interval thereby achieving two decoupled

Q-functions.

http://yellowrobot.xyz/mdqn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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3.2 Multiple Deep Q-Networks
In this research we found some differences of DDQN (Double Deep

Q-Network via Target network) [19] and original DQL (Double

Q-Learning) [5]. In case of DDQN Qtarдet is used as decoupled

function whereas in pure DQL there should be Q1 and Q2 that are

used intermittently. DDQN is simpler and should preserve same

properties as pure DQL. We studied how this simplification impacts

performance and implemented a pure version of DDQN and com-

pared it with a standard DDQN.We also generalized DQL algorithm

in order to use any number of decoupled functions in Bellman equa-

tion and call it MDQN (Multiple Deep Q-Network). MDQN with

2 decoupled functions is listed in Algorithm 1, but this could be

easily expendable to more decoupled function pairs.

3.3 Other algorithmic improvements
We also made some algorithmic improvements that could be applied

to other deep reinforcement learning algorithms. One of the im-

provements was to use the cumulative reward for training actions

that were observed in an offline rollout of a episode. For example, if

the offline state contains {st ,at } and calculated cumulative reward

for {st+1,at+1} it is possible to train the model using this value

instead of Bellman equation. And when {st ,at , st+1,at+1} was not

observed in an episode we can use a value from Bellman equation.

Idea are shown in in Algorithm 2.

In this research, we used RNN (Recurrent Neural Networks) as

models of DQN variants. These models take as input observation

from 5 previous frames. In order to speed up training we used

RNN-ReLU instead of LSTM or GRU. We concluded that LSTM

and GRU perform better than RNN-ReLU, but also take up to 7

times longer to train. We also implemented a label smoothing that

prevents vanishing gradients in ReLU RNN [13].

We made all of our code used to test algorithms included in

this paper open-source. Prioritized replay buffer is implemented

as a separate library that could be used with a completely differ-

ent set of reinforcement learning algorithms https://github.com/

evaldsurtans/dqn-prioritized-experience-replay. It includes both

types of prioritized replay buffer algorithms: proportional and

ranked [14]. The main part of source code that contains variants

of algorithms we tested is also available as an open-source project

https://bitbucket.org/evaldsurtans/dqn-research. We implemented

it in a way that we could utilize High-Performance Cluster (HPC)

architecture where every sample of random seed is executed as a

separate task on a node in a larger network. Each sample of ran-

dom seed was a complete training of 10
7
frames with specified

hyper-parameters.

Algorithm 1: MDQN (2 decoupled functions)
1: procedure Train
2: while Traininд = True do
3: if random(0, 0, 1.0) < 0.5 then
4: if st , terminal state then
5: Q1(at , st ) ← Rt + γ maxa Q2(a, st+1)
6: else
7: Q1(at , st ) ← Rt

8: else
9: if st , terminal state then
10: Q2(at , st ) ← Rt + γ maxa Q1(a, st+1)
11: else
12: Q2(at , st ) ← Rt

13: at ←maxaaveraдe({Q1(a, st ),Q2(a, st )})
14: ...

https://github.com/evaldsurtans/dqn-prioritized-experience-replay
https://github.com/evaldsurtans/dqn-prioritized-experience-replay
https://bitbucket.org/evaldsurtans/dqn-research
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Algorithm 2: Offline MDQN with a cumulative reward boost
1: procedure Train
2: while Traininд = True do
3: for do{at , st , st+1} sample from ReplayBu f f er
4: if {at , st , st+1} in ReplayBu f f er then
5: if random(0, 0, 1.0) < 0.5 then
6: Q1(at , st ) ←

∑t+1
t=0 γ

tRt
7: else
8: Q2(at , st ) ←

∑t+1
t=0 γ

tRt

9: else
10: if random(0, 0, 1.0) < 0.5 then
11: if st , terminal state then
12: Q1(at , st ) ← Rt + γ maxa Q2(a, st+1)
13: else
14: Q1(at , st ) ← Rt

15: else
16: if st , terminal state then
17: Q2(at , st ) ← Rt + γ maxa Q1(a, st+1)
18: else
19: Q2(at , st ) ← Rt

20: while st , terminal state do
21: at ←maxaaveraдe({Q1(a, st ),Q2(a, st )})
22: ...

23: store {at , st , st+1, rt } in ReplayBu f f er

4 EXPERIMENTS
4.1 PyGame Learning Environment
In order to evaluate results, we used the open-source game envi-

ronments from the "PyGame Learning Environment" (PLE) https:

//github.com/ntasfi/PyGame-Learning-Environment. PLE contains

many different games including Flappy Bird, 3D Maze, Doom, and

others. For most of the game environments it is possible to get

low dimensional representations of a state, which are useful for

testing deep reinforcement algorithms with limited computational

resources. Of course, it is also possible to train agents using high

dimensional pixel representations of a state. Another very desir-

able feature is that game environments can be manipulated while

running because full source code for each game is easily accessible.

We implemented curriculum learning for the 3D raycast maze,

where target moves away from starting point in later stages of

training. We also implemented a way to produce Q-value map

(Q-map) by manipulating a position of a game character in an en-

vironment and getting Q-value for every artificial state in a game.

For example, in a game of flappy bird, we moved the bird across all

pixels in a frame and calculated Q-function value that we overlaid

as a heat map like in Fig. 4. This kind of representation helps to

understand what DQN model has learned. In fact, we found and

fixed a bug in a Flappy Bird environment by using Q-map when

we noticed that DQN model learned to cross an obstacle over the

top of the screen. In case of 3D raycast maze, we implemented

Q-map by teleporting a player to all walkable squares and rotating

incrementally player’s camera around the center of each square.

For every frame, it is possible to calculate average Q-Value of all

actions available and then make a heat map of a maze like in Fig. 8.

4.2 Random seed and repeatability
In our research, we came across problem that all DQN, DDQN and

MDQN variants are very sensitive to seed randomization. We imple-

mented a way to restore all random seeds in order to repeat results,

but this is actually not desirable because it can lead to misleading

results when comparing different hyper-parameters. A better ap-

proach is to increase sample size of random seeds. This means that

every training configuration should be rerun multiple times with

different randomization seeds as shown in Fig. 1. We also noticed

large variance between different samples of random seed. In order

to make accurate comparisons, we chose a random seed size of 10,

since we observed that this resulted in similar variances to sam-

ple sizes 20 and 40. Whereas using a sample size of 5 produced a

much lower variance of results. We had quite limited computing

resources and even random seed size of 10 took considerable time

to test. It is one of the reasons why we chose experimentally initial

hyper-parameter values that we changed one by one, instead of

performing full grid search.

Often it is advised to reduce variance by reducing the model com-

plexity [4]. Our results confirm this hypothesis Fig. 2, however by

reducing model complexity also a maximal average score of testing

set reduces as well. When constructing such models we would ad-

vise to find the compromise between model complexity, repeated

random seed test set size and a variance.

Another widely used method to reduce variance is to use regu-

larization. Again our results confirm that it reduces variance, but

again it also reduces average scores as shown in Fig. 3. As for batch

normalization, we also found no improvement in an average score

as shown in results in an appendix.

https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
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Fig. 2: Comparison of different hidden unit vector sizes. Average score for 107 frames.

Fig. 1: Sample size of random seeds and variance of average score for 107 frames.
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Fig. 3: Effect of L1 (Lasso) and L2 (Ridge) regularization. Average score for 107 frames.

Table 1: Initial hyper-parameters that other parameters were measured against in all environments

parameters

batch norm: false mini-batch: 32

bellman gamma: 0.99 model: 1 states to n actions

beta replay buffer: true offline prebatch: false

cumulative reward: true online: false

diff. states: false optimizer: rmsprop

dropout: 0.0 pixels input: none

dueling arch.: false priority replay buffer: ranked

epsilon greedy: true reg.: none

epsilon start-end: 1e-3 - 1e-6 replay buffer: 5e5

epsilon stuck: false rnn: relu

extra frame reward: 1e-5 sarsa: false

frames back: 5 state prev. act. reward: false

frames before: 5e4 target network alpha: 1.0

grad clip.: 0.0 terminal reward: -1e3
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4.3 Flappy Bird
Initially to test more than 28 hyper-parameters of DQN variants

we ran many partial grid searches on combinations of parame-

ters.Then we did benchmarking for one step changes in each of

hyper-parameters against initial parameters that are shown in Ta-

ble 1. Each set of parameters were repeated for at least 10 times to

ensure repeatability as described in subsection 4.2. By run, we mean

full training of 10
7
frames with a defined set of hyper-parameters.

We used ReLU RNN as Q-value model in order to speed up train-

ing. As seen in Fig. 5 more appropriate RNN architectures perform

better, but takes much longer to train.

We compared DQN, DDQN and MDQN algorithms with full set of

hyper-parameters as shown in Table 2 , Table 3, Table 4 and Table 5.

We conclude that classic DQN outperforms DDQN and MDQN, but

our version of MDQN slightly outperform DDQN. This is noth-

ing particularly surprising that DQN outperforms more advanced

DDQN and MDQN because in previous studies it has also been

shown that different algorithms excel in different environments. In

some environments, DQN is more effective, but in others DDQN.

We also could not see significant improvements by applying some

more interesting architectures like Dueling Network or different

activation functions in RNN like Leaky ReLU, ELU and PreLU.

We also found out that none of the regularization methods such

as L1, L2, Dropout or Batch Normalization didn’t improve perfor-

mance. This could be the case because huge data set that is gathered

from training environment in itself accomplishes normalization

[4].

Because of the flexibility of open-source environments in PLE

we managed to produce Q-Value maps to track and compare the

progress of different sets of hyper-parameters. An example of Q-

Value maps is given in Fig. 4.

Fig. 4: Q-Maps of sequential training of Flappy Bird from beginning on left till 107 frame on right. Green is highest value state.
Red is lowest value state.

Fig. 5: Comparison of RNN types for Flappy Bird environment. Average score for 107 frames (sample size of random seeds: 10)
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Table 2: Top 20 hyper-parameters of DQN for Flappy Bird environment

parameters lr avg. score max. score var. score time (min.)

rnn: gru 0.0001 41.95876824 264.1 289.0515166 2829.558

rnn: lstm 0.0001 38.19286308 264.1 96.85448042 3637.49

optimizer: adam 0.001 28.78679352 264.1 303.0517411 500.211

bellman gamma: 0.90 0.0001 19.36507549 264.1 114.9246432 443.704

epsilon greedy: false 0.001 15.05309331 264.1 42.61359982 455.75

default 0.001 13.17070586 175.06628 19.87366074 592.704

bellman gamma: 0.99 0.001 13.17070586 175.06628 19.87366074 592.704

beta replay buffer: true 0.001 13.17070586 175.06628 19.87366074 592.704

cumulative reward: true 0.001 13.17070586 175.06628 19.87366074 592.704

beta replay buffer: false 0.001 12.89863154 183.06919 12.74031999 459.317

frames back: 10 0.0001 12.67872818 230.08696 9.432428545 715.232

extra frame reward: 0.0 0.0001 12.62185465 264 65.53895774 453.495

grad clip.: 1.0 0.001 12.45487645 186.07046 19.81659023 481.066

grad clip.: 10.0 0.0001 12.12482097 223.08459 37.59049115 478.056

target network alpha: 0.5 0.001 12.07657609 227.08608 30.91554801 644.119

rnn: elu 0.0001 12.02852927 215.08156 41.96880395 380.207

default 0.0001 11.91111497 264.1 31.95937102 527.8

frames before: 1e5 0.0001 11.72732532 149.0567 15.32392026 439.196

extra frame reward: 0.0 0.001 11.46642777 238 24.56193688 456.816

bellman gamma: 0.90 0.001 11.39091096 264.1 130.1593219 421.819

Table 3: Top 20 hyper-parameters of DDQN for Flappy Bird environment

parameters lr avg. score max. score var. score time (min.)

rnn: gru 0.0001 42.97024986 264.1 5.49E+02 2603.809

rnn: lstm 1.00E-04 28.60916534 264.1 9.92E+01 3246.475

optimizer: adam 1.00E-03 16.96737049 264.1 3.69E+01 351.827

grad clip.: 1.0 0.001 12.45431387 254.096 1.90E+01 399.956

optimizer: adam 1.00E-04 10.19414131 207.07831 2.17E+01 367.396

grad clip.: 10.0 0.0001 9.765907544 184.06991 1.92E+01 361.19

grad clip.: 10.0 0.001 8.694875819 156.05916 1.28E+01 364.509

grad clip.: 1.0 0.0001 7.633139692 140.05331 1.71E+01 357.085

rnn: lstm 1.00E-03 6.614351436 182.06913 2.15E+01 3770.588

optimizer: adam 1.00E-05 1.929185929 47.0181 1.81E+00 375.648

mini-batch: 8 1.00E-05 1.922057009 40.0155 4.14E-01 505.778

bellman gamma: 0.90 1.00E-05 1.916720841 47.01799 1.19E+00 366.701

grad clip.: 10.0 1.00E-05 1.783358575 32.01237 3.22E-01 400.212

beta replay buffer: false 1.00E-05 1.647591408 60.02323 1.02E+00 423.562

default 1.00E-05 1.533690858 32.01236 3.08E-01 377.689

rnn: relu 1.00E-05 1.533690858 32.01236 0.308035851 377.689

grad clip.: 1.0 1.00E-05 1.486492849 22.00888 4.45E-01 388.789

dropout: 0.1 1.00E-05 1.466420627 36.01396 6.52E-01 394.784

epsilon greedy: false 1.00E-05 1.437370177 45.01724 0.20441139 406.223

model: n states to n act. 1.00E-05 1.412973236 34.01324 0.90539683 595.273
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Table 4: Top 20 hyper-parameters of MDQN3 for Flappy Bird environment

parameters lr avg. score max. score var. score time (min.)

rnn: gru 0.0001 24.6588361 264.1 70.62906959 2735.039

rnn: lstm 0.0001 16.17153479 224.08495 31.69684243 3041.107

optimizer: adam 0.001 12.14972485 148.05634 8.572064894 357.792

rnn: lstm 0.001 6.362237775 161.06122 10.33771355 3052.423

grad clip.: 10.0 0.001 6.148186995 130.0494 11.12354631 380.245

grad clip.: 10.0 0.0001 5.774537436 104.03959 11.92569845 361.402

optimizer: adam 0.0001 5.541812022 124.0473 18.46937444 379.416

grad clip.: 1.0 0.0001 4.706386259 119.04543 11.58234856 374.33

grad clip.: 1.0 0.001 2.676778874 65.02486 4.486235409 456.614

rnn: gru 0.001 1.117617436 64.02454 1.294722902 2537.775

target network alpha: 0.0 1.00E-05 1.047481234 19.00759 0.298771101 745.303

model: n states to n act. 1.00E-05 0.881531711 12.00483 0.101958401 600.168

epsilon stuck: true 1.00E-05 0.878962391 11.00452 0.013849234 384.174

grad clip.: 10.0 1.00E-05 0.86220963 21.00828 0.183416314 402.766

mdqn: min 1.00E-05 0.740644674 10.0041 0.05608085 376.083

mini-batch: 8 1.00E-05 0.719492781 9.0037 0.091634393 512.362

epsilon start end: 1e-3 1e-3 1.00E-05 0.704522112 10.0042 0.022748512 398.203

bellman gamma: 0.80 1.00E-05 0.667448615 35.01376 0.158929947 381.275

epsilon start end: 1e-1 1e-6 1.00E-05 0.665939117 15.00605 0.167286059 392.187

optimizer: adam 1.00E-05 0.659281593 10.00418 0.180768865 389.655

Table 5: Comparison of DQN, DDQN andMDQNmodels for Flappy Bird environment. Decimal number after abbreviation like
mdqn3 1.0 denotes coefficient of target network. Coefficient 0.0 denotes that algorithm do not use target network.

model type lr avg. score max. score var. score time (min.)

dqn 1.0 0.001 28.78679352 264.1 303.0517411 500.211

mdqn2 1.0 0.001 17.19567935 264.1 50.58413201 421.452

ddqn 1.0 1.00E-03 16.96737049 264.1 3.69E+01 351.827

mdqn2 0.0 0.001 14.07828206 212.08043 18.74729045 493.78

mdqn3 1.0 0.001 12.14972485 148.05634 8.572064894 357.792

mdqn3 0.0 0.001 9.328698486 179.06784 24.94178454 635.494

mdqn2 0.0 0.0001 9.311841471 202.07645 13.39635414 521.696

mdqn2 1.0 0.0001 5.351493407 127.04827 14.07459022 384.702

mdqn3 0.0 0.0001 4.406378303 102.03882 5.088549631 776.327

mdqn2 0.0 1.00E-05 1.603283236 61.02341 0.715069292 642.106

mdqn3 0.0 1.00E-05 0.872432773 12.00487 0.087176378 713.332

mdqn2 1.0 1.00E-05 0.692394861 12.00513 0.221167891 389.493
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4.4 Pong
For Pong and 3D raycast maze environments, we changed in initial

hyper-parameters optimizer from "rmsprop" to "adam", because it

gave better results without increasing processing time. In case of

Pong again DQN slightly outperformed MDQN and DDQN, but

MDQN slightly outperformed DDQN as shown in Fig. 7 and Table 7.

We also produced Q-Value maps by manipulating position of ball in

Pong environment on frozen Q-Value model at checkpoints during

training as shown in Fig. 6.

Fig. 6: Pong Q-map before and after training. After training
possible to see clear path of projected ball trajectory.

Fig. 7: Comparison between model types for Pong environment. Average score for 107 frames.
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Table 6: Comparison of DQN, DDQN andMDQNmodels for Pong environment. Decimal number after abbreviation likemdqn3
1.0 denotes coefficient of target network. Coefficient 0.0 denotes that algorithm do not use target network.

model type lr avg. score max. score var. score time (min.)

dqn 1.0 0.001 1.794835114 6.09985 0.689502582 303.509

mdqn2 0.0 0.001 1.707382894 6.09998 0.712970429 478.007

mdqn2 1.0 0.001 1.624445803 6.09998 1.162839194 252.519

mdqn3 1.0 0.001 1.398198348 6.09906 0.879391948 254.385

ddqn 1.0 0.001 1.33096317 6.09998 0.341259324 288.435

mdqn3 0.0 0.001 0.945720479 6.09998 1.587272644 572.729

dqn 1.0 0.0001 0.772168575 6.09814 0.365215527 247.754

ddqn 1.0 0.0001 0.534693025 6.09998 0.324040409 266.406

mdqn2 1.0 0.0001 0.384394197 6.09267 0.12705127 255.21

mdqn2 0.0 0.0001 0.156203775 6.09631 0.008177064 362.899

mdqn3 0.0 0.0001 0.146223293 6.07963 0.009221072 666.229

mdqn3 1.0 0.0001 0.068661735 6.0579 0.0040051 266.283

dqn 1.0 1.00E-05 0.018227918 6.02963 0.00013185 271.978

ddqn 1.0 1.00E-05 0.017447873 6.01034 0.000257357 274.989

mdqn2 0.0 1.00E-05 0.01239353 6.02133 2.66E-05 392.133

mdqn3 1.0 1.00E-05 0.0089922 6.01675 9.56E-05 279.051

mdqn2 1.0 1.00E-05 0.007004221 6.01711 1.32E-05 286.278

mdqn3 0.0 1.00E-05 0.004662119 6.01216 3.99E-06 603.306

Table 7: Comparison of DQN, DDQN and MDQN models for 3D Raycast maze environment.

model type lr avg. score var. score time (min.)

mdqn2 0.0 1.00E-05 3.904359232 0.728045918 1213.991

dqn 1.00E-05 3.88654262 2.124993494 484.859

mdqn2 1.0 1.00E-06 3.7166532 0.154117942 533.389

ddqn 1.00E-06 3.713829593 1.524318234 524.65

ddqn 1.00E-05 3.638360789 1.662039807 521.975

mdqn2 0.0 1.00E-05 3.506246831 1.746571203 809.374

mdqn2 0.0 1.00E-06 3.345749731 2.749636472 978.638

ddqn 0.0001 3.267777864 2.889255991 523.012

mdqn2 1.0 1.00E-07 3.247272282 0.576931468 500.424

mdqn2 1.0 1.00E-05 3.180342964 2.016163812 523.085

mdqn3 1.0 1.00E-05 3.056116361 2.339890159 872.317

dqn 1.00E-06 3.026868771 2.028895348 534.022

mdqn3 0.0 1.00E-05 2.807473511 2.395394139 1212.21

mdqn3 1.0 1.00E-06 2.770128326 0.714132328 864.442

mdqn3 0.0 1.00E-06 2.629530288 1.724929361 1152.146

mdqn2 0.0 0.0001 2.545370799 4.120312752 623.82

dqn 0.0001 2.24425396 2.153779645 516.078

mdqn3 1.0 0.0001 2.174641347 3.541216037 775.408

mdqn2 0.0 0.0001 2.157170755 3.235455294 899.93

mdqn2 1.0 0.0001 1.959047125 2.688871288 479.06

mdqn3 0.0 0.0001 1.678048035 3.272271359 1117.217

mdqn2 0.0 1.00E-06 1.452786487 1.887540531 809.63

mdqn2 1.0 1.00E-08 1.399096696 1.827157866 495.813

mdqn2 0.0 1.00E-07 0.178030303 0 463.67
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Fig. 8: 3D Raycast maze Q-map for each position in map from top down view. Each Q-map represents sequential frame check-
point during training. On left first frame and on right 107 frame. Notice that map increases in size thus using curriculum
learning principle.

4.5 3D Raycast maze
Finally, we benchmarked algorithms on "3D Raycast Maze" envi-

ronment where instead of a low dimensional representation of a

state, we used RGB 48x48 pixel input. In many environments in

order to save resources pixel grayscale representation would be

recommended, but to make sure that in doors have a distinguishable

difference in color form walls we chose to use only two channels

per pixel red and green. The model consisted of ConvNet embed-

ding and RNN layers. All pixel inputs were normalized in a range

0.0 − 1.0 instead of using byte value of 0 − 255.
After the model has been trained we generated GradCAM map to

visualize highest gradients in ConvNet as shown in Fig. 9. These

maps are more informative than Saliency Maps used in other Deep

Reinforcement Learning papers [21]. These maps help us to un-

derstand what part of input pixel array is the most important for

training. In this case, it was the exit door that gives the reward

when reached.

Another way to reduce dimensionality of problem was to remove

some of actions available to an agent. We allowed agent only to

move ahead and make turns left and right, but not to go back and

wait (do nothing).

We again constructed Q-Value maps to visualize the progress of

learning as shown in Fig. 8. In this case, we manipulated a posi-

tion of player around the maze and recorded Q-Values by rotating

player’s view around this position.

Fig. 9: GradCAM Saliency maps of trained MDQN agent in
3D Raycast maze environment. Images show attention on
target in a 3D maze.

5 CONCLUSIONS
We introduced a new Deep Reinforcement Learning algorithm

MDQN that slightly outperforms DDQN in some environments.

Still in others DQN could work better than MDQN or DDQN. Most

of DQN variants that we tested have little or no significant effect on

performance. We also introduced a new way to construct Q-Value

maps by manipulating training environment. Q-Value maps are

useful for assessing the progress of training. We also conclude that

it is essential to run a sufficient number of repeated training runs

for every set of parameters, because of the impact of random seed

initialization and large variance in results.
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APPENDIX
In this paper we have included heat-map of average score in a

game of Flappy Bird after 10
7
frames for each hyper-parameter

and studied learning rates. All hyper-parameters have been studied

for DQN, DDQN and MDQN variants of algorithms. Results are

available here: http://yellowrobot.xyz/full-survey-flappybird.pdf
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