LSTM rollout curriculum using double pendulum
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Abstract—In this work, we model a double pendulum system
with deep neural networks based on a data set generated from
video recordings. For comparison, a similar model is made
by describing the system with differential equations. Actually
compared are the capabilities of both models in predicting the
next 2s of double pendulum motion using information about
the previous second. In addition, both models are compared
by their ability to make predictions in specific error margins.
Results show that deep learning-based approaches give much
better predictions, where the best deep learning-based model
could predict the next 1.5s in a specified error margin, while the
best differential equation-based one only 0.12s, all other metrics
agree with this result as well.
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I. INTRODUCTION

Differential equation modeling of mechanical systems is a
typical way to approach problems in mechanical engineering.
But modern engineering solutions allow one to create and
manipulate large amounts of data because of the fact that data-
driven methods, including neural networks, can be a valuable
alternative to classical approaches. It is backed by statistics,
which shows that in the last five years, the popularity of
both deep neural networks altogether as well as specifically
in the field of engineering has risen significantly. It also
provides a way to switch the analysis domain in the system
- while differential equation-based solutions generally use
the physical parameters of the system, such as weight and
material properties, as well as geometrical parameters, data-
driven methods introduce more flexibility in this matter, such
as using only visual information.

For the actual analysis and comparisons in this work, we
use a well-known mechanical system, the double pendulum,
because its states in time are simple to describe, but it
has a well-known chaotic behavior.[1] Our goal is to study
the double pendulum system with experimental data and to
make comparisons between various data-driven methods, more
specifically deep learning, and methods based on differential
equations and how well they can predict the pendulum motion.

For the deep learning part, we apply long- and short-term
memory (LSTM) models, together with an implementation of
Curriculum Learning [2] to modify how LSTM are trained to
achieve better long-term predictions. On the other hand, we
describe the system with differential equations with various
degrees of complexity, starting with a simple mathematical
model and continuing with a physical one. To counteract the
problem of lack of knowledge of the physical parameters of the
pendulum, we use parameter grid search. The comparison
aims to find the longest time a model can predict the motion

of pendulum blobs within a specific error margin, measured
with various metrics.

II. RELATED WORK

Previously, work has been done to find uses for deep
learning considering problems in mechanics. A method to use
deep neural networks has been proposed to solve ordinary
and partial differential equations[3], providing an alternative
to classical numerical methods. Raissia et al. have proposed
incorporating both experimental data and knowledge about
the systems that govern the equations into the deep learning
method, known as PINNs (physics informed neural networks)
[4]. Research has also been done considering uses for recurrent
neural networks in the modeling of mechanical systems, by
considering their data as a time series problem. An often used
system is the double pendulum, because its states in time are
simple to describe, yet it has a well-known chaotic behavior.
[1] Klinkachorn et al. have compared different machine learn-
ing methods to model a double pendulum system [5], and
have found the solution involving recurrent neural networks
to give the best predictions. A similar study has been done by
D.Gannon and also found that an LSTM based architecture
could successfully model the differential equations governing
the double pendulum system. [6] Both aforementioned works
look at differential equations that describe the system and
compare how well they can be modeled, but an important
aspect to consider is not only how well neural networks
can learn the differential equation, but also how accurate
the differential equation itself is in representing the real-life
system as a mathematical model. This problem was identified,
and a dataset was created by Asseman et al. [7], which contains
information about a real life double pendulum system, on
which the further work here has been built. This dataset also
provides a challenge considering the information about it’s
physical properties - while the dataset contains information
about the kinematics of the pendulum’s motion, the only
available physical properties are of the geometry, but not the
masses of the system’s parts, materials, weight distribution etc.
But such a situation is possible where an already made system
would need to be analyzed,for example, for diagnostical pur-
poses, without access/ability to measure all physical properties
necessary for mathematical modeling. Some research presents
the application of LSTM, a deep learning tool, to modeling the
solutions to time-dependent differential equations, specifically
showcasing its effectiveness in simulating the trajectory of
projectiles with wind resistance and the behavior of the
double pendulum up to the point of encountering chaotic
regions [8]. Another approach is model-free estimation of



Lyapunov exponents of chaotic systems using reservoir com-
puting, which utilizes high-dimensional dynamical systems to
learn output weights from a limited time series, allowing the
approximation of the ergodic properties of the original system,
as demonstrated through successful application to the Lorenz
system and the Kuramoto-Sivashinsky equation [9]. In related
work, researchers have proposed the use of recurrent neural
networks to generate particle trajectories in classical molecular
dynamics simulations, achieving energy-conserving dynamics
with significantly longer time steps compared to traditional
numerical integrators such as Verlet [10]. Methods have even
been extended to work that explores the development of
a neural network architecture inspired by human physical
reasoning, enabling machine-assisted scientific discovery by
leveraging representation learning and making predictions
based on relevant parameters and conservation laws [11]. Not
all research uses RNN or LSTM, and some also propose the
use of a Convolutional Neural Network as a surrogate model
to approximate the steady-state diffusion equation, offering
significant computational speed-ups for simulations involving
fast-diffusing chemical species, such as oxygen gradients in
the retina, and discuss various loss functions and accuracy
estimators for selecting the most suitable network for different
applications [12]. Pratical applications in related research have
been studied for logistics of ships [13] and router networking
stabilization [14].

III. METHODOLOGY
A. Dataset

In 2019 a work was published in which IBM researchers
released a dataset containing data on the kinematics of a
double pendulum system. [7]. Their premise was that for a
reliable test for various prediction methods considering chaotic
systems a real life benchmark was needed, but most works
were using data from simulated origin, for example extracted
from differential equations. The dataset contains 21 video with
oscillations of the double pendulum, each of which is about
40s long and contains around 17,500 frames. Each of the
frames is processed with OpenCV and the coordinates of each
of the pendulum blobs 1, y;, T2, y2, T3, ys are extracted.

19 mmf " (=)---

9] mm

19 mm§ (-4
70 mm

19 mm{ "(5)---

Figure 1: The pendulum used for the experiment and it’s
geometric parameters [7]

The parameters in figure 1 are the only available ones, thus
the rest of them, such as mass and moments of inertia, had

to be approximated, which would provide a problem in any
method based on these parameters.

The coordinates of the pendulum bobs were converted into
angles between its arms and the vertical axis, as shown in fig-
ure 2. A benefit of that is the possibility to use the gradients in
further research involving the system’s governing differential
equations in the learning process as well, previously mentioned
as physics-informed neural networks. [4]

B. Limitations

To smooth out the noise, a Savitzky-Golay digital filter was
used [15]. Then the dataset was split into train and test parts,
corresponding to a ratio of 80:20 accordingly, from which the
time series with a length of 400 steps were further extracted.

C. Metrics

Various metrics were implemented to objectively evaluate
the results. The first is the mean absolute error, which is
calculated for each time step of every sequence between the
prediction and the ground truth.
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But in case of a bad prediction, the mean absolute error
may be misleading due to large accumulation of erors over
each time step, because of that two additional metrics were
used - the mean step count (MSC) and mean step sum (MSS).
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The mean step count M .SC measures the number of time
steps it takes for the difference between the prediction and
ground truth to reach a certain threshold ¢. This metric helps
to determine how close the prediction is to the initial period
and whether it predicts the right direction and acceleration of
the oscillations.
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The sum of the mean steps M.SS works similarly to the
sum of the mean steps, the difference being that it measures
the discrepancy in each time step and sums it up, measuring
the time steps until a threshold is reached for the sum ~. It
helps to distinguish how the accumulation of errors impacts
the predictions. For the evaluation in the experiments described
further, the exact 6 and ~ values are 20 rad/s and 8 rad/s
accordingly.

D. ODE method

To model the system with differential equations an im-
portant feature of the dataset needs to be considered - the
information about it’s dimensions and properties is scarce.
Thus, many of the properties used in differential equations
need to be approximated, potentially reducing the accuracy of
their solutions. We model the system in two ways, the simplest
one considers the system as a mathematical pendulum with
point masses and no moments of inertia, air resistance, or
other real life factors. The other, the physical model, takes



these factors into consideration, as far as possible with the
limited knowledge about their properties.
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Figure 2: Schematics describing the double pendulum system
for creating the differential equations.

The differential equations are written using Lagrange’s
equations for a system with ¢ = 1,2, ..., NV degrees of freedom.
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Where: K — kinetic energy

P — potential energy
q — generalized coordinate

Coordinates for the upper pendulum’s part:

x1 = l1sin 6, y1 = —l1 cos b (@)
Coordinates for the lower pendulum’s part:

To =118inf; + lysinfy  yo = —ly cosfy — o cosby  (6)

Velocities can be attained by taking the derivatives of the
coordinates with respect to time:
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Then plugging both equations and their respective deriva-
tives in the Lagrange’s equation results in two differential
equations describing the angle between the vertical axis for
each of the pendulum’s parts 6; and 6.

The second differential equation based method takes into
consideration the moments of inertia and air resistance of
the pendulum. To accomodate air resistance, the Lagrange’s
equations can be supplemented with a dissipative term D in
the form:
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Often the dissipative term D is modelled with the Rayleigh’s
dissipation function, but that assumes a linear, velocity depen-
dant friction. By calculating the average speed of the pendulum
blobs and the respective Reynold’s numbers in those speeds,
it was concluded that air resistance in the observable velocity
ranges in the experiment are not completely linear. Thus a
more suitable option is the generalized dissipation function,
which can model non-linear dissipation processes.

1 n+1
b= n+1;0ﬂf¢

Where n depicts the order of the velocity depence of the air
resistance, c is the coefficient of friction, and v is the velocity.
As was indicated by the calculated Reynolds numbers, we used
a linearly dependent function for the first blob and a quadratic
one for the second, giving the final form of the dissipation
function:
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The coefficients of friction ¢ for both blobs were found with
the Stoke’s and drag equation accordingly.
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E. LSTM method

The other approach for the prediction of pendulums move-
ment is based in deep learning methods. The models consists
of stacked LSTM cells, whose outputs are put through linear
layers. Research also shows that the data should be prepro-
cessed with feed-forward layers before the LSTM cells to
simplify the temporal dynamics. [16] To reduce the loss at
the initial time step learnable inital and hidden states ¢y and
ho for the LSTM cells are used. LayerNorm is used after each
feed-forward layer together with Mish activation function. [17]
(18]

F. Training methods

Typical training method for recurrent neural networks is
teacher forcing, where the ground truth values are fed as model
inputs in each time step. [19] But this method has problems,
because in a real life scenario the ground truth values are not
available and the model has to work in a reccurent regime
- only receiving the first step as input from the dataset and
further using it’s own prediction from the previous step, which
obviously differs from the training process if pure teacher
forcing is used, resulting in accumulating errors.



Figure 3: A schematics describing the structure of the deep
learning based model.

So a potential workaround is training the model while in-
corporating its own previous predictions as inputs. To avoid
large loss accumulation and thus unstable learning a method
called Curriculum Learning can be used, where, rather than
starting with just the models previous predictions, the input
is gradually changed from ground truth to previous predicted
values. [2]

For the actual training we combine both methods for some
amount of time steps, which itsef is a hyperparameter, as
shown in the image below. So the training is started in teacher
forcing mode and then switches to the recurrent mode with
Curriculum Learning.
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Figure 4: A step scheme showing the transfer from teacher
forcing initially to a generative part using the previous
predictions as inputs

G. Loss function

The total loss function £ used is the mean absolute error
MAE, which then combines losses from both previously
mentioned parts.

1 t1=(2—a)s 1 to=as
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Where « is the length of recurrent learning part and then 2—
« is the length of the part part for teacher forcing, considering
that the total prediction length is a step count corresponding
to 2s of pendulum’s motion.

IV. RESULTS

Table 1 contains the best results from each type of model.
The LSTM based models are grouped by the usage of the
recurrent part, its length and whether the curriculum learning
was applied to the recurrent part. The ODE models shown
are the simplified mathematical model and the more complex
physical model. Results from the LSTM based models were
obtained with hyper-parameter grid-search, while similar strat-
egy was used to determine best results from the differential
equation based models, with the difference being that ODE
grid-searched parameters were the physical attributes m; and
mao.

TABLE I: Comparison of ODE methods and LSTM methods

Method Recurrent Length of Curriculum | MSC, MSS, MAE,
part rec. Part steps steps rad/s

LSTM + 50 + 600 79 0.0126
LSTM + 50 - 444 56 0.0147
LSTM - 190 41 0.0262

ODE 46.69 11.77 0.0341

physical

ODE 47.63 11.73 0.0385

mathema-

tical

Figure 5 illustrates the total loss in each epoch, where a
clear convergence of both the test and train loss values can be
observed with no noticeable overfitting.
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Figure 5: Loss value for train and test set

In the images below a comparison is illustrated for the
prediction abilities of the best ODE model and the best deep



neural network model. Both predictions have used the same
1s long input sequence and predicted the next 2s or 800 steps.
The upper and lower graphs in both images correspond to the
first and second blob accordingly.

—— w1 ODE prediction

—— wj values before prediction

—— w1 ground truth values

Angular velocity wy, rad/s

0.0 0.5 10 15 2.0 25 3.0
Timet, s

—— w2 ODE prediction
7 —— wa values before prediction

—— w; ground truth values

Angular velocity w,, rad/s

0:0 0:5 l.‘O 1.‘5 2:0 2:5 3.‘0
Timet, s
Figure 6: Comparison between the ODE predictions and the
ground truth values for the angular velocities w; and w9 in a
prediction span of 2s.
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Figure 7: Comparison of diferential equation and
experimental results for angular velocities w; and ws.

It can be visually seen that the predictions based on the
LSTM model, shown in figure 7, are closer to the ground truth

values and close to them throughout the 2s prediction period,
whereas the ODE-based model is capable of predicting the
real values only in the early steps, while later diverging from
the ground truth values. Data in the results table 1 show the
same conclusion. The best LSTM based model could predict
600 steps or 1.5s in the specified error margin § = 20%
, while the best ODE based model only 48 steps or 0.12s.
The MSS and MAE values also show a similar superiority of
the LSTM based model, with the MSS values being 79.00 and
11.77 steps on average accordingly and the MAE being 0.0126
%d and 0.0341 % accordingly. This means that LSTM based
model’s predictions could stay closer to the ground truth values
for more steps and provide a lower average error overall.

Another comparison can be made between the prediction
capabilities between the same types of models. Major im-
provements of the LSTM model predictions can be gained
by adding the recurrent learning part with curriculum-based
approach, indicated by all metrics.

Downsampling of the signal provided worse results in all
test cases, but could be considered if a solution with more
limited computational resources would be of interest.

V. FURTHER RESEARCH

In our work only experimental data was used for the training
of the deep learning-based model, but, as outlined previously,
a secondary part could be provided by using the differential
equations themselves, similarly as in physics-informed neural
networks [3]. In that case more physical meaning of the system
could be learned by the model, potentially improving long-
term prediction abilities. As the deep learning-based model
showed good prediction capabilities, it could be adapted for
some system for diagnostic purposes, as the loss values could
be used for determining a change in the system. That would
also involve creating a procedure for data gathering. Further-
more, further research could be done considering alternatives
to the LSTM cell with the goal of improving the long-term
prediction abilities. Some of these alternatives could include
transformer-based architectures [20] or Phased-LSTM [21].

VI. CONCLUSIONS

In this study, we rigorously compare the prediction per-
formance of LSTM and ODE-based models, with a specific
focus on an experimentally extracted data set from a dou-
ble pendulum system. Our research reveals that despite the
scarce description of the system’s physical parameters, a deep
learning-based approach with LSTM consistently produces
predictions closer to the ground-truth values throughout a 2-
second prediction period. On the contrary, the ODE-based
model tends to diverge from these ground truth values. This
emphasis on the LSTM model’s capacity to maintain closer
proximity to the ground truth values over an extended duration
translates to lower overall average errors compared to its
ODE counterpart. Further comparative analysis among the
deep learning models unveils a significant boost in prediction
ability across all evaluated metrics when curriculum learning
is incorporated into the model’s training. This improvement is



markedly apparent in contrast to other modes such as auto-
regression mode or a combination of auto-regression mode
with a recurrent part without curriculum learning, underscoring
the advantages of incorporating such a learning strategy in our
model’s training.
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