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Abstract—In this study, we present a new dataset of knot-
covered oak planks. It contains 1500 images that have 1 to 11
knots per image, along with mask and bounding-box annotations.
The data set was evaluated using deep machine learning methods,
and it has been found that instance segmentation models are
superior in this task, achieving 59% Box-IoU versus 49%
Box-IoU using semantic segmentation. Instance segmentation
performed better to detect knots by segmenting instances with
an accuracy of 90%, while semantic segmentation detected konts
with an accuracy of 89%.
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I. INTRODUCTION

In recent years, there has been an increase in research
interest in the domain of instance segmentation and seman-
tic segmentation models. Although these methods are often
used interchangeably because they often accomplish the same
goal, there has rarely been a direct comparison between both
methods on the same data set under controlled experimental
conditions. This research compares these fundamentally differ-
ent methods using domain-specific dataset. It also introduces a
novel data set called ’FSCC oak knots’, which consists of high-
quality photos of wooden oak boards that contain knots. Wood
knots are a term known in the woodworking industry that
describes defects or blemishes in the wood and the knots are
caused by the natural growth of the tree. In the woodworking
industry, every step of the manufacturing process affects the
use and cost of the material. Defects, such as knots, reduce
its aestethic value and the heterogeneity of the material [1].
It plays an important role in the mechanical properties of
wood, such as strength. Traditionally, these defects have been
detected by manual labor of skilled but often biased workers,
and recent studies have shown that manual inspections achieve
low precision [2]. In addition to the data set, this research has
an open-source implementation 1 of data processing scripts
and training scripts written in PyTorch.

1https://github.com/evaldsurtans/FSCC-Oak-Knots-Dataset

II. RELATED WORK

Publicly available wood defect datasets are very limited;
currently there are only a handful of such datasets, for exam-
ple, LSIDWS [3], WOOD [4], Wood Spieces [5] and Kaggle
Wood Textures 2. Most of the data sets used in the wood
defects research domain are either private or require contacting
a particular individual to possibly acquire said data sets. Some
data sets are available for the classification of defects in
other industrial materials, including kaggle steel defects 3,
magnetic tile defects [6], CrackForest data set [7], TILDA
textile texture database 4, etc. Furthermore, there are different
technology classification datasets, such as DTD [8] or Kylberg
texture dataset [9], which do not have the labels needed to
perform semantic or instance segmentation. This indicates a
certain interest in the topic of segmentation and classification
of various material defects. However, this field still severely
lacks publicly available qualitative datasets. For models, the
latest research uses smaller datasets of wood defects that were
made for the purpose of the particular research. Often, for
instance segmentation models such as SSD [10], Faster R-
CNN [2], Mask R-CNN [11] and YOLO [12], [13] are used.
Classification models that do not provide defect localization
have also been studied, such as FCN based methods [14], [15]
or novel PCA feature fussion methods [16].

A. Dataset

The data set contains 1500 high-quality oak plank photos
with controlled lightening that have been photographed from
the same distance. The images are colored RGB photos with
a resolution of 500x500 pixels. The data set has been divided
into 1200 samples for training and 300 samples for testing.
Data have been collected using professional wooden plank
scanning equipment and metdology that has been described in
previous research [11]. All samples contain at least one knot,

2https://www.kaggle.com/datasets/edhenrivi/wood-samples
3https://www.kaggle.com/competitions/severstal-steel-defect-

detection/overview
4http:// lmb.informatik.uni-freiburg.de/resources/datasets/tilda.en.html



and many samples contain more knots per image, as shown
in Fig. 1. Most samples contain one knot per image, which is
also the median count of knots per image, and the maximum
number of knots per image is 11.

Fig. 1: Number of knots per image

Most samples contain pixels labeled knots between 0.1-40%
of the image, but there are also some images that contain larger
knots, as shown in Fig. 2. The median area size of knots per
sample is 1.54% of the image. Visual examples of knots with
the smallest area are shown in Fig. 3. Similarly, examples of
knots with the largest area are shown in Fig. 4.

Fig. 2: Percentage of pixels labelled as knot per image

Fig. 3: Random selection of samples with smallest area size
of knots below 5% of whole image. Number above image
denotes the area in percentage.

Fig. 4: Random selection of samples with largest area size
of knots above 25% of whole image. Number above image
denotes the area in percentage.

Examples of images with the highest number of knots are
shown in Fig. 5. As can be seen in the examples, bias of
laboratoryler is present, as in some samples labeler might
choose to label multiple small knots as one larger knot or
mark each of them separately. Finally, the data set is publicly
available for use in research under CCL 5.

Fig. 5: Samples with highest number of knots

III. METHODOLOGY

For evaluation, two metrics have been chosen, IoU (inter-
section over union) for pixel area and Box-IoU for bounding
boxes. The first metric IoU Equation (1) for pixel area have
been used for semantic segmentation models because this
group of models produces per-pixel masks as the output,
but Box-IoU has been used for both semantic and instance
segmentation models. In equation Equation (1) TP denotes
True Positive, FP denotes False Positive, FN denotes False
Negative, y denotes the ground truth label of a pixel, ŷ denotes
the predicted label of a pixel, and ϵ denotes the smoothing
constant for numerical stability.

IoU =
1

N

∑ TP + ϵ

TP + FP + FN + ϵ
= (1)

1

N

∑ y ⊙ ŷ + ϵ

y ⊙ ŷ + (1− y)⊙ ŷ + y ⊙ (1− ŷ) + ϵ
(2)

5http://share.yellowrobot.xyz/1651675667-llu



Fig. 6: Different types of archtectures used in training

Models have also been evaluated using the accuracy metric,
which is calculated as the classification metric to measure how
many predictions overlap with the actual positions of the knots;
any bounding box that overlaps is classified correctly. This
mimics the human labrourer who usually identifies only the
location of the knot and not the exact shape of a knot which is
subject to interpretation. Only the best metrics found during
the entire training run have been used, and only those runs
with loss function convergence have been used. The box-IoU
measures the intersection area between two bounding boxes
with a score of 0 to 1, with 1 being the perfect bounding
box intersection and 0 without intersection Fig. 7. Equations
Equation (3) show steps to calculate the Box-IoU metric. Since
the intersection area is nothing more than a rectangle, it is
calculated using the x and y coordinates of the bounding boxes
that make up this area. In (x2, y2) and (x3, y3) coordinates
belong to Box_1 and Box_2 accordingly. Then the total area
covered by both bounding boxes is calculated using their
respective coordinates. Finally, the intersected area is divided
by the total area outside the overlapping region from both
bounding boxes to produce a Box-IoU score.

Fig. 7: Bounding box IoU working principle.

Experiments have been repeated iteratively multiple times
by running subsets of grid search of hyper-parameters to find
the best performing model. All experiments used the maximum
number of samples per batch that could fit in GPU and
different learing rates, class weights, and model architectures.

Intersec = (x3 − x2) ∗ (y3 − y2) (3)

Box1_Area = (x3 − x1) ∗ (y3 − y1) (4)

Box1_Area = (x3 − x1) ∗ (y3 − y1) (5)

Box2_Area = (x4 − x2) ∗ (y4 − y2) (6)

Box IoU =
Intersec

Box1_Area+Box2_Area− Intersec
(7)



The study included the following architectures that use se-
mantic segmentation: FCN ResNet, [17], DeepLab v3 ResNet
[18], DeepLab v3 MobileNet [19], and Lite R-ASPP Mo-
bileNet [20]. The study included the following architectures
that use instance segmentation: Faster R-CNN [21] with
different backbones, FCOS [22], RetinaNet [23] and SSD
[24]. The main architectures used are shown in Fig. 6.
Semantic segmentation models were trained using weighted
BCE. While instance segmentation models used composite
losses consisting of objectiveness loss, box regression loss,
region-proposal network loss, and classifier loss. For semantic

segmentation, the bounding boxes were calculated using the
contour detection algorithm in the predicted class maps [25].
For instance segmentation models confidence threshold of 0.5
for predicted bounding boxes was used. If two or more boxes
overlapped with mote than 0.1 Box-IoU then only bounding
boxes with the highest confidence score were left in the results.
This was done to avoid artificially improving the results for
multiple bounding boxes at the same predicted position. All
experiments used a set of random image augmentations with
probability opf 90% in the training data set. These included
horizontal flip, vertical flip, scale, rotation, and color jitter.

TABLE I: Comparison of performance between instance and semantic segmentation methods using the FSCC oak knot dataset

Model Method Pixel IoU Box IoU Acc.
Faster R-CNN Instance segmentation N/A 0.59 0.90
FCOS Instance segmentation N/A 0.51 0.77
SSD VGG-16 Instance segmentation N/A 0.27 0.67
RetinaNet Instance segmentation N/A 0.49 0.72
DeepLab V3 ResNet-101 Semantic segmentation 0.51 0.49 0.89
DeepLab V3 ResNet-50 Semantic segmentation 0.45 0.40 0.86
DeepLab V3 MobileNet Semantic segmentation 0.40 0.37 0.72
Lite R-ASPP MobileNet Semantic segmentation 0.42 0.37 0.73
FCN ResNet-50 Semantic segmentation 0.42 0.43 0.81

IV. EXPERIMENTS

The results show a considerable difference between instance
segmentation and semantic segmentation models, as seen in
Table I. Instance segmentation loss functions and model archi-
tectures are significantly more complex and outperform much
simpler semantic segmentation models using the Box IoU
metric. Instance segmentation models with some exceptions
like Mask R-CNN [26] output only a bounding box without
mask of the detected object. This is the reason why instance
segmentation models do not contain Pixel IoU values.

In Table I it is seen that Faster R-CNN model achieved both
the highest accuracy and the Box-IoU metric of all models
tested in this data set. The lowest was obtained for both
accuracy and Box IuU metrics with the SSD VGG-16 model.
From the semantic segmentation models, the Peak Pixel IoU
metric was achieved with DeepLab V3 ResNet-101 and the
lowest value for this metric was obtained by Lite R-ASPP
MobileNet and FCN ResNet-50.

Instance segmentation and semantic segmention models
reached the convergence of loss function well below 100
epochs, but instance segmentation models achieved a much
more stable improvement in Box-IoU and accuracy metrics.
Also, as seen in Fig. 8 and Fig. 9 convergence of loss function,
for instance segmentation was much faster than for semantic
segmentation. Sensitivity to the details of textures might, and
interpretation of human labelers might have a significant effect

on results between both methods. As seen in the examples
below, semantic segmentation predictions try to estimate the
shape of a knot, which often has not been very precisely
drawn by labelers. Thus, a more practical metric might be
the detection of overlapped bounding boxes and the higher
accuracy of the detection of a knot at a specific location, rather
than the precise shape of it. On the left Fig. 8 are shown the
loss function and the metric plots. On the right mask, the
ground truth and the predicted mask are seen. On the left
Fig. 9 are shown both the loss function and the Box-IoU plots
during training for the test and training sets. On the right there
are samples with both true and predicted bounding boxes, and
labeled masks are seen.

V. FURTHER RESEARCH

This study did not include all semantic segmentation models
such as UNet ++ [27] or UNet 3+ [28] which could improve
the results for this group of models. Models that combine
instance and semantic segmentation should also be examined
[26]. Furthermore, this study did not include all losses that
could have a significant effect on the results functions used in
this domain, such as focal loss [23], DICE loss [29], Tversky
loss [30], etc. The results could also be improved by studying
transfer learning techniques from a pre-training model using
other texture or wood defect datasets. Furthermore, more com-
plex data enhancement could be explored to further improve
the results.



Fig. 8: Example of training process and results using instance segmentation model

Fig. 9: Example of training process and results using semantic segmentation model

VI. CONCLUSIONS

In this article, we compared several instance and semantic
segmentation models and found that instance segmentation
models performed better on this task. The results demonstrated
the applicability of both methods to the task of locating and

segmenting wood defects. The limitation of this method is the
need to manually label images to train models, which makes
it difficult to error and bias the labeler. Another limitation is
that the Box-IoU for semantic segmentation was calculated
using bounding boxes derived from the contour detection



algorithm, which reduces the precision of the output. Instance
segmentation models achieved 59 % Box-IoU versus 49 %
Box-IoU semantic segmentation, which is surprising because
the semantic segmentation models have simpler architecture
and loss functions, which should produce more robust results
in all experiments, but could not achieve better results in
the same controlled setting. Instance segmentation was also
able to detect knots with an accuracy of 90%, while semantic
segmentation detected konts with an accuracy of 89 %. It can
be concluded that instance segmentation is better at detecting
boundries of a shape of a knot. The results achieved in this
work establish a benchmark for follow-up studies and are
probably not the highest achievable accuracy.
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