Launch ChromSwordOfflineService.exe (INCLUDED in Offline installation - it runs silently this in background, if you close Offline.exe you can run itself) in backgound or compile it using FPC Lazarus from source code ./service to Linux https://bitbucket.org/evaldsurtans/chromsword-offline-service-fpc/src/master/
It will start TCP based JSON service at 127.0.0.1:7890
Input in messages must be ASCII encoded Output must be UTF8 encoded
Request format
1{
2 command: string,
3 is_poll_mode: bool //is_poll_mode only in tandem with mgrad_optimize, "poll", "stop"
4}
Generic Response format
xxxxxxxxxx
41{
2 success: bool,
3 error: string // if error
4}
Common in all requests for building model Request:
xxxxxxxxxx
301{
2 power: int // 1 linear, 2 quadratic, 3 cubic, -1 pK
3 zero_time: float,
4 dwell_time: float,
5 comp_count: int, // number of compounds in sample runs
6 runs: [
7 {
8 flowrate: float,
9 zero_time: float,
10 dwell_time: float,
11 var: float, // Target isocartic vartiable conc, temp, pH
12 gradient: [
13 {
14 time: float, //starting from 0.0 - till run time
15 conc: float
16 }
17 ],
18 compounds: [ // must be in correct order
19 {
20 comp_idx: int,
21 is_included: bool, // if not found then false, ignore rt, k, width
22 rt: float, // retention time
23 k: float, // K' value
24 width: float,
25
26 }
27 ]
28 }
29 ]
30}
Response (model tied to every compound with values in response):
xxxxxxxxxx
201{
2 success: bool,
3 error: string,
4 compounds: [ // model coefs, used for simulations later, need to save
5 {
6 coeffs: float[]
7 couts: float[], // when using chemical structures these would not be used, but if unknown these needed
8 plates: float[], // when using chemical structures these would not be used, but if unknown these needed
9 power: int,
10 run_number: int,
11 is_acid: bool,
12 is_neutral: bool,
13 p_const_diss: float,
14 const_diss: float,
15 kion: float,
16 kneut: float,
17 error: int
18 }
19 ]
20}
command
:
mstruct_build
- building model using calibrated columns, isocratic, concentration only, need to pass in request also binmix_idx: int
which is pre-defined structures
mgrad_build
- building model using only gradient information from sample runs
mgrad_oleg_build
- building model using only gradient information from sample runs - for LARGE molecules
mgrad_dwelltime_oleg_build
- building model that estimates dwell time for column
miso_build
+ request.model_var = "c"
- building model for isocratic concentrations
miso_build
+ request.model_var = "t"
- building model for isocratic temperatures
miso_build
+ request.model_var = "ph"
- building model for isocratic ph
Request
x1{
2 command: "mgrad_init", // conc gradient model
3 command: "mgrad_oleg_init", // conc gradient model for large molecules
4
5 command: "miso_init", // isocratic model
6 model_var: "c" | "t" | "ph", // if isocratic
7
8 zero_time: float,
9 dwell_time: float,
10
11 runs: [
12 {
13 flowrate: float,
14 zero_time: float,
15 dwell_time: float,
16 var: float, // Target isocartic vartiable conc, temp, pH
17 gradient: [
18 {
19 time: float, //starting from 0.0 - till run time
20 conc: float
21 }
22 ],
23 peaks: [ // must be in correct order
24 {
25 comp_idx: int,
26 rt: float, // retention time
27 width: float,
28 area: float,
29 height: float,
30 }
31 ]
32 }
33 ],
34 comp_count: int, //len(compounds)
35 compounds: [
36 {
37 comp_idx: int,
38 coeffs: float[]
39 couts: float[], // when using chemical structures these would not be used, but if unknown these needed
40 plates: float[], // when using chemical structures these would not be used, but if unknown these needed
41 power: int,
42 area: float, // avarage Area over all runs
43 is_included: true,
44 is_acid: bool, // send only if model power -1
45 is_neutral: bool, // send only if model power -1
46 p_const_diss: float, // send only if model power -1
47 const_diss: float, // send only if model power -1
48 kion: float, // send only if model power -1
49 kneut: float, // send only if model power -1
50 }
51 ]
52
53}
command
:
mgrad_peak_table
- concentration gradient based simulation
Request:
xxxxxxxxxx
161{
2 command: "mgrad_peak_table",
3 max_time: float, //up to 240min
4 gradient: [
5 {
6 time: float, // last time MUST be at least max_time
7 conc: float
8 }
9 ],
10 compounds: [
11 {
12 comp_idx: int
13 is_included: bool, // if you want to include this peak
14 }
15 ]
16}
mgrad_oleg_peak_table
- concentration gradient based simulation Large molecules
miso_peak_table
- isocratic model simulation
Request:
xxxxxxxxxx
41{
2 command: "miso_peak_table",
3 var: float // conc, temperature, pH
4}
Response:
xxxxxxxxxx
121{
2 success: bool,
3 error: string, // if error
4 compounds: [
5 {
6 rt: float,
7 width: float,
8 height: float, //* 1e-3
9 area: float
10 }
11 ]
12}
Generated from Peak table using following equations - used only for visualization
xxxxxxxxxx
601var hz = SIMULATED_CHROMATOGRAM_HZ;
2if (maxTime > 60f)
3{
4 hz = 1f;
5}
6if (maxTime > 120f)
7{
8 hz = 0.5f;
9}
10
11double timeDelta = (maxTime - minTime);
12int stepCount = (int)(timeDelta * 60.0f * hz);
13double stepDelta = timeDelta / (double)stepCount;
14double time = minTime;
15double[] intensities = new double[stepCount];
16
17double kSpectralPeakAreaCoef = (Math.Sqrt(Math.PI / Math.Log(2.0)));
18
19var timeStart = DateTime.Now;
20
21Parallel.ForEach(_run.PeaksList, (peak) =>
22{
23 //Skip peaks before time
24 if (peak.RetentionTime <= 0.0f || peak.Width <= 0 || peak.Area <= 0 || peak.RetentionTime >= maxTime)
25 {
26 return;
27 }
28
29 double fwhm = peak.Width * 60.0;
30 double height = (peak.Area * 2.0 * 0.001) / (kSpectralPeakAreaCoef * fwhm);
31 var fwhm2 = (fwhm * fwhm);
32 peak.Height = (float)height * 1000f;
33
34 var timeLoc = minTime;
35 for (int i = 0; i < stepCount; i++)
36 {
37
38
39 double part = (timeLoc - peak.RetentionTime) * 60.0;
40 double intensity = height * Math.Exp((-4.0 * Math.Log(2.0) * part * part) / fwhm2);
41 //double intensity = Math.Exp(-Math.Log(2) * Math.Pow(2 * (time - dataPoint.RetentionTimes[iPeak]) / fwhm, 2.0));
42 //double intensity = 1.0 / Math.Sqrt(2 * Math.PI * variance) * Math.Exp(-(x - mean) * (x - mean) / 2 / variance);
43
44 intensities[i] = Math.Max(intensities[i], intensity);
45
46 timeLoc += stepDelta;
47 }
48});
49
50//Debug.WriteLine($"diff: {stepCount} {(DateTime.Now - timeStart).TotalMilliseconds} milisec");
51
52_run.Data.Times.Clear();
53time = minTime;
54for (int i = 0; i < stepCount; i++)
55{
56 runIntensities.Intensities.Add((float)intensities[i]);
57 _run.Data.Times.Add((float)time);
58
59 time += stepDelta;
60}
command
:
get_binmix
- gives predefined list of structures - used for mstruct_build
Resoponse:
xxxxxxxxxx
141{
2 columns: [
3 {
4 idx: int,
5 column: string,
6 eulent: string,
7 vendor: string,
8 comment: string,
9 min_conc: int,
10 max_conc: int
11 }
12 ],
13 error: string // if error
14}
mgrad_optimize
- Built-in gradient optimization - will return best gradients found by current methods, Request params
xxxxxxxxxx
341request.opt_time_max = optimization.TimeMax;
2request.opt_conc_min = optimization.ConcMin;
3request.opt_conc_max = optimization.ConcMax;
4
5request.opt_nodes_max = optimization.NodesMax;
6request.opt_time_seperation = optimization.TimeSeperation;
7request.opt_slope_min = optimization.SlopeMin;
8request.opt_slope_max = optimization.SlopeMax;
9
10request.opt_time_first_peak = optimization.TimeFirstPeak;
11request.opt_weight_first_peak = optimization.WeightFirstPeak;
12
13request.opt_time_last_peak = optimization.TimeLastPeak;
14request.opt_weight_last_peak = optimization.WeightLastPeak;
15
16request.opt_weights_pair = new List<dynamic>();
17for (var i = 0; i < optimization.WeightsPairs.Count; i++)
18{
19 var weightPair = optimization.WeightsPairs[i];
20
21 if (weightPair.Item2.IsSelected)
22 {
23 //Label => weightPair.Item1
24 //Compound => weightPair.Item2
25 request.opt_weights_pair.Add(weightPair.Item2.OptimizationWeight);
26 }
27}
28
29request.opt_quadratic_error = optimization.QuadraticErrorMax;
30request.opt_cubic_error = optimization.CubicErrorMax;
31request.opt_del_ch_nds = optimization.DelChNds;
32request.opt_del_ch_nds_value = optimization.DelChNdsValue;
33request.opt_rsmin = optimization.RsMin;
34request.opt_timeout = optimization.Timeout;
Response:
xxxxxxxxxx
121{
2 gradients: [
3 {
4 ln_best: float,
5 last_peak_rt: float
6 gradient: {
7 time,
8 conc
9 }
10 }
11 ]
12}
poll
+ is_poll_mode:true
- Only useful while executing “mgrad_optimize” with first request before this. It is meant to get progress while optimizing/searching for best gradient separation based on data provided by “mgrad_optimize”
Response:
xxxxxxxxxx
41{
2 waiting: bool,
3 nev: double //optimization reward value to visualize convergence
4}
stop
+ is_poll_mode:true
- Mean to interrupt optimization procedure