Video: https://youtube.com/live/EBg5Kn_omt4?feature=share
Jamboard: https://jamboard.google.com/d/1SXTxmqll6gJj0EugkFG1k9L8oFT0eVGP06I8IK-SBRw/edit?usp=sharing
Materials:
ResNet: https://arxiv.org/abs/1512.03385
DenseNet: https://arxiv.org/abs/1608.06993
^ For new Jamboard user rights given to stefan.dayneko@gmail.com
Focus on ResNet, DenseNet part
Video: https://youtu.be/9IJb0juuYik
Jamboard: https://jamboard.google.com/d/1cJQkpyOCg7uUt4d2OX5rr7HuhlCdfjNMRKfeZu0ozEs/edit?usp=sharing
Source code & finished examples:
http://share.yellowrobot.xyz/quick/2023-10-26-66A1647B-FD86-4853-8E4C-A70DA24C46C5.zip
You must add tasks in DURING LECTURE the same way as others in Moodle here:
https://moodle.yellowrobot.xyz/course/view.php?id=2
When starting the lection start Screen Recording using OBS software (you can choose a window to record using it + Mirror it on Wall Display in Class)
Stream key: ppvu-34gs-mmxu-dsqu-9qqr Youtube RTMP: rtmp://a.rtmp.youtube.com/live2
Before lecture test streaming NOT on this key, but create your own livestream in youtube to make sure this works
This is way how to make output of OBS visible on Display on Wall (left click)
Setting stream
Implement ResBlock using schema, submit images of training loss plots and source code
Template:
http://share.yellowrobot.xyz/quick/2023-10-26-A10C56AC-170F-4578-B1BF-6ED4F1B867E3.zip
Schema:
http://share.yellowrobot.xyz/quick/2023-10-26-05A727FA-EE6E-469A-BD2B-4FF30086F0C7.zip
Implement DenseBlock using schema, submit images of training loss plots and source code Schema: http://share.yellowrobot.xyz/quick/2023-10-26-D37835EF-7381-445C-BA82-C29C6E57C0EC.zip
Use torch.cat over channel dimension out = torch.cat([x, conv1, conv2], dim=1)
Implement DenseNet TransitionLayer using schema, submit images of training loss plots and source code Schema:
http://share.yellowrobot.xyz/quick/2023-10-26-2C2930E8-5FE2-40B1-9AEE-404F9671CBAF.zip
Tasks
Implement InceptionBlockA using schema
Implement InceptionNet using schema
Schema: http://share.yellowrobot.xyz/quick/2023-10-26-81E1A5BE-3CEA-47A2-9FDC-205659691D5C.zip
InceptionBlockA and InceptionNet does not have channel count set, you can choose it youself. Number of branches and elements in branchees does not need to match, you can experiment and change them as you wish.
Additional tasks:
Implement InceptionBlockBottleneck so that you do not need to use MaxPool layer in between blocks
Implementēt other types of InceptionNet blocks https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202 https://arxiv.org/pdf/1409.4842.pdf https://arxiv.org/pdf/1512.00567.pdf
Template:
http://share.yellowrobot.xyz/quick/2023-10-26-668E5491-9AD4-4717-8C4A-992978D67757.zip
Submit images of training loss plots and source code
InceptionBlockA
InceptionNet