

SABIO 5 REST API

Documentation
Last Published: 2021-04-22 | Version: 2.0.11

Table of Contents

Overview ... 4

Code Formatting Conventions .. 4

REST Service Entry Point ... 5

Calling the REST API ... 5

Authentication ... 6

Response Format ... 6

Generic Response Object.. 6

Request/Response Field Values .. 6

Error Handling ... 7

Caching .. 7

Versioning ... 7

Standard Resources and Entities ... 8
Status .. 8
LightGroupResource ... 9
LightUserResource .. 9
LightViewResource.. 9
LightTreeNodeResource.. 10
LightDocumentResource ... 10

Authentication with OpenID Connect (OIDC) .. 11
Preface .. 11
General Authentication Steps ... 11
I. Authentication flow for Single Page Apps (SPA) .. 14
II. Authentication flow for Mobile Apps ... 15
III. Authentication flow for Backend Services ... 18

Standard Services... 21
User Authentication .. 21

Search Result Filtering: Introducing Filter and MappingResource ... 23
General Filter Process ... 23
Bidirectional Nature of Filter .. 23
MappingResource in Filter .. 23
Filter Types .. 24
Filter Properties .. 27

Search Fields .. 34
Common Search Fields .. 34

Changelog .. 36

Overview ... 37

Authentication ... 38
Available Paths .. 38
Response Format .. 39
Resource Fields ... 39

Api-key .. 41
Security hints... 41
Available Paths .. 41
Response Format .. 41
Resource Fields ... 42
How to create an api-key .. 43

Tree ... 45
Available Paths .. 45
Response Format .. 45
URL Query Parameters.. 46
Available Filters ... 46
Resource Fields ... 46

Text ... 48
Available Paths .. 48
Response Format .. 48
URL Query Parameters.. 49
Resource Fields ... 49
Sub-Resource TextFragmentResource .. 50

Document .. 52
Available Paths .. 52
Response Format .. 52
URL Query Parameters.. 53
Resource Fields ... 53
FileTokenResource .. 54
Sub-Resource TextElementDocumentMappingResource .. 54

Files ... 55
Available Paths .. 55
Multipart Format .. 55
Response Format .. 55
URL Query Parameters.. 56
FileTokenResource .. 56

Message / News ... 56
Available Paths .. 57
Response Format ... 57
URL Query Parameters ... 57
Resource Fields.. 58

Submission .. 59
Available Paths .. 59
Response Format .. 59
URL Query Parameters.. 59
Resource Fields ... 60
Sub-Resource SubmissionCommentResource .. 60

Message / News .. 62
Available Paths .. 62
Response Format .. 62
URL Query Parameters.. 63
Resource Fields ... 63

Search ... 64
Available Paths .. 64
Response Format .. 64
URL Query Parameters.. 65
Resource Fields ... 66

Session-key (supported until August 2018 - please use /api-key instead) ... 68
Available Paths .. 68
Response Format .. 68
Resource Fields (TokenResource) ... 68
How to create an session-key ... 69

 4

Overview

This chapter explains how to read this documentation, documents the REST service in general and
introduces basic concepts. For example, how to authenticate against the REST service.

Code Formatting Conventions

All code snippets in this documentation underlie the following formatting conventions:

Concept Examples Description

Source
code
fragment

filter, /tree, false All fragments of source code - a
variable, a REST resource path, literals …
- are written in mono-spaced font.

Standard

JavaScript
type

<NUMBER>, <STRING> All standard JavaScript types are written

in capitals, encapsulated with < and >

Resource
Entity

<TreeResource>, <TextResource> All REST resource entities are written in
“camel case”, encapsulated with < and >

Placeholder __USER_NAME__, __UUID__ All placeholders are written in capitals,
beginning and ending with two

underscores. Words are separated by a
single underscore.

 5

REST Service Entry Point

The entry point for all services is accessible from one, globally defined URL. To prevent cross-site errors
in web browsers, the service must reside in the same domain as the calling client. That is, each realm
uses its own service URL.

If not called by web browsers, the service may be reachable through a different domain. This depends on
the security policy of the client device.

The generic form of the REST service entry point looks like:

__PROTOCOL__://__SUBDOMAIN__.__HOSTNAME__.__TLD__/__APPLICATION_CONTEXT_PATH__/__SER

VICE_BASE_PATH___/__SERVICE_NAME__

where __APPLICATION_CONTEXT_PATH__ defaults to sabio depending on installation
and __SERVICE_BASE_PATH___ defaults to services.

Whenever a service is defined, the REST service entry point is omitted for sakes of readability. Given your
REST service entry point is https://mycompany.sabio.de/sabio/services and you want to request
a <TreeResource> via the /tree service - as stated by the REST API reference - the effective URL would
be:

https://mycompany.sabio.de/sabio/services/tree

Calling the REST API

In general, the provided services allow for

• requesting lists of all available resources or
• requesting single resources by passing a UUID in the service URL.

The call to a “write operation” (POST, PUT) always returns the written resource. Note that creating a
resource via POST never requires a UUID.

Querying the REST API follows the general conventions for RESTful services, where each CRUD operation
- create, read, update and delete - is mapped to its corresponding HTTP method:

• Requesting a single resource identified by the provided UUID.
o @GET
o SERVICE_NAME__/__UUID__

• Creating a new service resource. The resource fields are transmitted in the request body.
o @POST
o /__SERVICE_NAME__

• Deleting the resource identified by the provided UUID.
o @DELETE
o /__SERVICE_NAME__/__UUID__

• Modifying a single resource identified by the provided UUID. The resource fields are
transmitted in the request body.

o @PUT

o /__SERVICE_NAME__/__UUID__

 6

Authentication

See section “User Authentication” in “Standard Services”.

Response Format

The REST API returns JSON only.

For writing calls (PUT, POST), the Content-Type: application/json header field has to be set. In some
cases the response body contains a JSON encoded string, but with a content header set
to text/plain (e.g. after uploading files). However, such exceptions are documented in the REST API
reference.

Generic Response Object

With exceptions documented in the REST API reference, all services implement a generic response object
that implements the following structure:

{

 "data": {

 "result": <NULL>|<Resource>|<Resource>[]

 },

 "status": <Status>

}

• The data property makes the response accessible.

o Its result property holds the actual response payload, containing either
1. a single <Resource> entity,
2. an array of <Resource> entities or

3. <NULL>, if the request failed.
o Optionally, the data property may contain properties for convenient result

processing, e.g. providing the total number of results for a list of <Resource>s in

a total property field

o See the API Reference for detailed documentation about the concrete
returned <Resource> entities of each service

• The status property contains information, whether the request could be successfully handled by

the server.

See section “Standard Resources and Entities“ for more details.

Request/Response Field Values

All fields in the request/response body may only contain the following JavaScript types:

• <STRING>
• <NUMBER>
• (<INTEGER> - used for sakes of clarity to express API intent; handled as <NUMBER> internally)

 7

• (<FLOAT> - used for sakes of clarity to express API intent; handled as <NUMBER> internally)
• <BOOLEAN>
• <ARRAY>
• <OBJECT>
• <NULL>

• <UNDEFINED>

A field that is declared as UUID is of type <STRING> and has a length of 32 characters. An UUID uniquely
identifies a single resource across all services, that is, all resources share a “global ID namespace”.

A <DATE> is a <STRING>-field that must match one of the two patterns (where the letters have the
meaning specified in SimpleDateFormat)

• EEE MMM dd yyyy HH:mm:ss 'GMT'Z - For example "Sat Mar 13 2010 23:29:05 GMT+0200".
This is also the format that the REST API emits (e.g. in the created-fields, in case a
new /text resource entity is created).

• EEE, dd MMM yyyy HH:mm:ss Z (compliant with RFC 1123) - For example "Wed, 02 Oct 1991

22:59:00 GMT" or Tue, 20 Feb 18 15:01:52 -0100 using a numerical offset to UTC.

Further data types are defined as resources. Function calls or function definitions are not allowed.

Error Handling

Any errors at service level will be mapped to the corresponding HTTP status, for example, returning 403
FORBIDDEN if someone makes unauthorized service requests.

See “Standard Resources and Entities” for details.

Caching

The validity of the data provided by the service refers to the point of delivery. To prevent client-side
caching - especially for web browsers! - the web server has to be configured sending these HTTP header
fields:

Cache-Control: no-cache, no-store, must-revalidate, max-age=0

Pragma: no-cache

Expires: Thu, 01 Jan 1970 00:00:00 GMT

ROBOTS: NOARCHIVE

Versioning

At this point the API doesn’t support versioning.

https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
https://en.wikipedia.org/wiki/Coordinated_Universal_Time

 8

Standard Resources and Entities

This chapter briefly describes common resources/entities and their purpose. Consult the REST API
reference for detailed information and/or valid field values.

Status

Each response contains a <Status>that determines, whether a request succeeded or failed.

Field Type Description

httpCode Integer The HTTP status code

code String Beta: In the future, this field will contain a technical, four-character hex-status-

code (error codes will start with an f when converted to a HEX value). Currently,
this field contains the HTTP code or an empty string.

text String A description of what has happened.

success String Determines, if the service call was successful. In general, an HTTP status between
200 and 399 is considered to be a success.

Example of a successful response:

{

 "status": {

 "success": true,

 "code": 0,

 "httpCode": 200,

 "text": "Request successful submitted"

 }

}

Example of a failed response:

{

 "status": {

 "success": false,

 "code": 62465,

 "httpCode": 401,

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

 9

 "text": "Authorization required"

 }

}

LightGroupResource

A LightGroupResource is a resource with reduced properties of a group and used in an another resource,
e.g. in resource of /tree service.

Example:

Name Type
Read-
Only

Required
for POST Description

id UUID yes no The resources UUID.

name String no yes The name of the user group.

LightUserResource

A LightUserResource is a resource with reduced properties of an user and used in an another resource,
e.g. in resource of /tree service.

Example:

Name Type
Read-
Only

Required
for POST Description

id UUID yes no The resources UUID.

firstname String no yes The first name of the user.

lastname String no yes The lst name of the user.

LightViewResource

A LightViewResource is a resource with reduced properties of a view and used in an another resource,
e.g. in resource of /text service.

 10

Example:

Name Type

Read-

Only

Required

for POST Description

id UUID yes no The resources UUID.

title String no yes The title of the document.

LightTreeNodeResource

A LightTreeNodeResource is a resource with reduced properties of a tree node and used in an another
resource, e.g. in resource of /text service.

Example:

Name Type
Read-
Only

Required
for POST Description

id UUID yes no The resources UUID.

title String no yes The title of the document.

LightDocumentResource

A LightDocumentResource is a resource with reduced properties of a document and used in an another
resource, e.g. in resource of /text service.

Example:

Name Type
Read-
Only

Required
for POST Description

id UUID yes no The resources UUID.

title String no yes The title of the document.

 11

Authentication with OpenID Connect (OIDC)

Preface

OpenID Connect (and its base OAuth2) is a common industry standard for doing authentication as well as
for identity management. One of it’s core characteristics is a dedicated service (“Auth Server”) that deals
with several ways of (user) logins. As a result of a login, an access token is issued. Such token can be used
for accessing REST API of application (“Resource Server”) where this token has been issued for.

Authentication with OpenID Connect is supported by SABIO with Keycloak as an Auth Server
implementation. While previously described ways for authentication (such as classic username /
password, api key authentication , …) are still supported as well, these will be removed on long term and
entirely replaced with OpenID Connect authentication.

A lot of public documentations (such as this) exist for how to authenticate with OpenID Connect and its
different flows. For this reason, this documentation does not provide a deeper dive into OIDC’s core
concept and particularities but aims to provides examples for how to do authentication for SABIO
Knowledge only.

General Authentication Steps

This sections describes general authentication steps that are valid across all OIDC authentication flows.
Specific steps for certain flows are described separately below separately in sections “Authentication
flow for …”.

Preparation: Realm Setup (to be carried out by SABIO)

In order to be able to use OIDC authentications at all, some preparations and configurations need to be
done. Please contact SABIO support in order to initiate this setup. Anyway, this documentation provides
some hints (for internal usage) for what to do exactly

1. Keycloak integration needs to be enabled at all for particular SABIO Knowledge realm. This

requires to setup a Keycloak realm as well and to migrate existing SABIO users into this
Keycloak realm.

2. An additional client (e.g. mycompany_myapplication) needs to be set up and configured for

newly created Keycloak realm. This client represents customer’s application/client that is going
to authenticate via OIDC for SABIO Knowledge. This client’s setup depends on application’s
specific characteristics (e.g. whether it’s an UI or a service) and especially on which OIDC flow

(e.g. implicit flow, authorization code flow, …) is going to be used. It’s important to carefully
choose the right flow and configure the client properly (e.g. redirect_uri) to make
authentication flow as secure as possible.

Step 1: Fetch OIDC connection parameters

First of all, certain OIDC URLs need to be fetched from SABIO Knowledge (acting as a registry) via REST.
These URLs denote standard OIDC endpoints such as authorization_endpoint or token endpoint.

https://openid.net/connect/
https://www.keycloak.org/
https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660
https://openid.net/specs/openid-connect-core-1_0.html#AuthorizationEndpoint
https://openid.net/specs/openid-connect-core-1_0.html#TokenEndpoint

 12

Example for how to fetch URLs

<request>

GET https://mycompany.sabio.de/sabio/services/_client

<response>

HTTP/1.1 200 OK

Content-Type: application/json

{

 "data": {

 "authentication": {

 "openidConnect": {

 "authorization_endpoint": "https://auth.sabio.de/auth/realms/mycompany/protocol/openid-connec

t/auth",

 "token_endpoint": "https://auth.sabio.de/auth/realms/mycompany/protocol/openid-connect/token
",

 "end_session_endpoint": "https://auth.sabio.de/auth/realms/mycompany/protocol/openid-connect/
logout"

 }

 }

 },

 "status": {

 "httpStatus": 200,

 ...

 },

 ...

}

Step 2: Fetch Access Token

This is about running actual authentication flow and acquire an access_token. Specific steps for actual
flow are described below in sections “Authentication flow for … -> Fetch Access Token”.

 13

Step 3: Access REST API

After having acquired an access_token, this can be used for accessing SABIO Knowledge’s REST API by
sending it with every request via header, e.g. like

<request>

GET https://mycompany.sabio.de/sabio/services/user/profile

Authorization: Bearer <access_token_here>

<response>

HTTP/1.1 200 OK

Content-Type: application/json

...

Step 4: Refresh Access Token

Per design, an access_token has a limited time-to-life (e.g. several minutes) only. Once its TTL has been
reached, the token can’t be used anymore and would result in an 401 error on SABIO Knowledge side.
Thus, an accessing application (“client”) needs to take care about refreshing this token before expiration.

A token’s expiration date can be found out by inspecting token itself. Every token is encoded as JSON
Web Token (JWT) and is internally structured like

{

 "jti": "8f404ea0-9070-402b-b89a-5857f290af23",

 "exp": 1554898723,

 "nbf": 0,

 "iat": 1554897823,

 "iss": "https://auth.sabio.de/auth/realms/mycompany",

 "aud": "mycompany_myapplication",

 "sub": "0ad00435-8af8-4e9b-a9ff-b84fb1aa5091",

 "typ": "Bearer",

 "azp": "mycompany_myapplication",

 "auth_time": 1554897823,

 ...

}

https://jwt.io/introduction/
https://jwt.io/introduction/

 14

For instance, the field exp holds expiration date as “seconds since 1.1.1970”. Example
value 1554898723 might be translated into Wednesday, April 10, 2019 12:18:43 PM.

The way for keeping a token fresh depends on the actually used specific flow and is therefore described
in sections “Authentication flow for … -> Refresh Access Token” below.

I. Authentication flow for Single Page Apps (SPA)

For single page web apps it is suggested to use OIDC’s Implicit Grant flow for authentication. While this
flow’s steps are briefly described below, it is suggested to use Keycloak’s Javascript adapter rather than
implementing these steps ‘by hand’.

Keycloak Client Setup (to be carried out by SABIO)

These settings need to be configured by SABIO when setting up a client in Keycloak

• Client ID: Arbitrary ID for denoting this client. Example: mycompany_myapplication
• Implicit Flow Enabled: yes

• Public Client: yes
• Redirect Uri: URI that points to app’s entry point, e.g. https://mycompany.com/my_spa

Fetch Access Token

Authentication is initiated by redirecting SPA to an URL where user is asked for his credentials. This URL
is composed like

https://auth.sabio.de/auth/realms/mycompany/protocol/openid-connect/auth?

 response_type=token

 &client_id=mycompany_myapplication

 &redirect_uri=https://mycompany.com/my_spa

with

• <base_url> is taken from connection parameter authorization_endpoint (see above)
• <client_id> is ID from client/application that has been initially set up in Keycloak (see above)

• <redirect_uri> Registered redirect uri (see above)

Redirecting to this URL will eventually show a login screen where user may submit his credentials such
as login name and password. After that, one or more redirects will take place and above’s redirect_uri is
finally reached. This redirect URI is enriched with a access token as URI fragment. This token needs to be
extracted from URI then. Example:

...

<response>

HTTP/1.1 302 Moved Temporarily

Location: https://mycompany.com/my_spa#access_token=(...)TRmOTMtYmQ2MS04YzQ3MTY3YjIzZ(...)

In case of an error, redirect uri would contain a
parameter error like https://mycompany.com/my_spa#error=some-error-code instead.

https://auth0.com/docs/api-auth/which-oauth-flow-to-use
https://auth0.com/docs/api-auth/tutorials/implicit-grant
https://www.keycloak.org/docs/latest/securing_apps/index.html#_javascript_implicit_flow

 15

Refresh Access Token

Implicit grant flow needs to be re-run once token has expired because refresh_tokens are issued here for
security reasons. As it wouldn’t be a good option to force user to re-enter his credentials again and
again, this should be done as a silent authentication where an additional parameter prompt=none can be
sent like

<request>

https://auth.sabio.de/auth/realms/mycompany/protocol/openid-connect/auth?

 response_type=token

 &client_id=mycompany_myapplication

 &redirect_uri=https://mycompany.com/my_spa

 &prompt=none

...

<response>

HTTP/1.1 302 Moved Temporarily

Location: https://mycompany.com/my_spa#access_token=(...)TRmOTMtYmQ2MS04YzQ3MTY3YjIzZ(...)

This forces auth server to not show any UI but use an existing session (e.g. represented by implicitly sent
browser cookie) so that no manual login is necessary but an access token can be issued immediately. If
no active active session exists, then this flow is answered with an error
like https://mycompany.com/my_spa#error=some-error-code.

This silent flow should be executed in a “hidden way” (e.g. using a hidden iframe). Also, the client should
take care that session at auth server does not expire, e.g. by running this flow frequently and keeping
this session active. Keycloak’s Javascript adapter comes with a out-the-box implementation for this.

II. Authentication flow for Mobile Apps

For (native) mobile apps it is suggested to use OIDC’s Authorization Code with PKCE flow for
authentication. This flow requires several sub-steps that include user interaction as well. While these
steps are briefly described below, it is suggested to use an OIDC aware SDK such as AppAuth for iOS and
for Android rather than implementing these steps ‘by hand’.

Keycloak Client Setup (to be carried out by SABIO)

These settings need to be configured by SABIO when setting up a client in Keycloak

• Client ID: Arbitrary ID for denoting this client. Example: mycompany_myapplication
• Standard Flow Enabled: yes
• Public Client: yes
• Redirect Uri: Redirect URI to be defined by customer. While this callback URI may be arbitrary, it

is suggested for Mobile Apps to use an URI with custom URI scheme such

as myapp123://oidc_callback.

https://auth0.com/docs/api-auth/tutorials/silent-authentication
https://auth0.com/docs/api-auth/which-oauth-flow-to-use
https://auth0.com/docs/api-auth/tutorials/authorization-code-grant-pkce
https://github.com/openid/AppAuth-iOS
https://github.com/openid/AppAuth-Android

 16

Fetch Access Token

Step A: Generate Code Verifier and Code Challenge

This is about randomly generating a (so called) code verifier and hashed code challenge out of it. This
needs to be done on device like

String codeVerifier = encodeBase64url(generateRandom64Bytes()); // e.g. eXvTUmTrVunfPmr-0UaIvTjSHJJ
9O9ZZqfWiBOKs3QD-1oddxfRWutkQjxqFbmoxNYIAZyNr91Y_k9DiwW6w_Q

String codeChallenge = encodeBase64url(hashSha256(codeVerifier.getBytes())); // e.g. fFC-SQZc26fo9hIJ6ji
HkeOBcwZC6ADbFBeLAXP8B5M

Step B: Initiate Authentication with UI

Authentication needs to be initiated by opening a certain URL in mobile device’s web browser UI (such as
a web view). This URL is composed like

https://auth.sabio.de/auth/realms/mycompany/protocol/openid-connect/auth?

 response_type=code

 &client_id=mycompany_myapplication

 &code_challenge=fFC-SQZc26fo9hIJ6jiHkeOBcwZC6ADbFBeLAXP8B5M

 &code_challenge_method=S256

 &redirect_uri=myapp123://oidc_callback

with

• <base_url> is taken from connection parameter authorization_endpoint (see above)
• <client_id> is ID from client/application that has been initially set up in Keycloak (see above)

• <code_challenge> is generated code challenge (see above).
• <redirect_uri> is an (arbitrary) callback URI. For mobile apps, it is suggested to use an URI with

custom URI scheme such as myapp123://oidc_callback. Note: That this uri is also required to be

registered in Keycloak for this client/application!

Opening this URL in a web view will eventually show a login screen where user may submit his
credentials such as login name and password. After that, one or more redirects will take place and
above’s redirect_uri is finally reached. This redirect URI is enriched with a query parameter code that
holds the so called authorization code. Example:

...

<response>

HTTP/1.1 302 Moved Temporarily

Location: myapp123://oidc_callback?code=CyvsiQ4fr85oSFpx37FVYFNMQ

In case of an error, redirect uri would contain a
parameter error like myapp123://oidc_callback?error=some-error-code instead.

 17

Step C: Exchange Authorization Code into Access Token

The received authorization code needs to be exchanged into final access_token immediately. This is
done by POSTing it directly (e.g. not via UI / web view) to token_endpoint (see above). Example:

<request>

POST https://auth.sabio.de/auth/realms/mycompany/protocol/openid-connect/token

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code

&client_id=mycompany_myapplication

&redirect_uri=myapp123://oidc_callback

&code=CyvsiQ4fr85oSFpx37FVYFNMQ

&code_verifier=eXvTUmTrVunfPmr-0UaIvTjSHJJ9O9ZZqfWiBOKs3QD-1oddxfRWutkQjxqFbmoxNYIAZyNr91
Y_k9DiwW6w_Q

<response>

HTTP/1.1 200 OK

Content-Type: application/json

{

 "access_token": "(...)TRmOTMtYmQ2MS04YzQ3MTY3YjIzZ(...)",

 "token_type": "bearer",

 "expires_in": 300,

 "refresh_token": "(...)YTktOWYwNi1lODQ1NTk1MjQ5Y(...)",

 "refresh_expires_in": 1800,

 ...

}

with

• <base_url> is taken from connection parameter token_endpoint (see above)
• <client_id> (see above)
• <redirect_uri> needs to be exactly same than redirect_uri that is used by above

described authorization_endpoint call
• <code> authorization code that is extracted from URL in previous step

• <code_verifier> is generated code verifier (see above).

Keep in mind that parameters have to be encoded as x-www-form-urlencoded and sent via request body
according to HTTP specification.

 18

Resulting access token can be extracted from JSON body and used for subsequent REST calls then.

Refresh Access Token

Besides the short-lived access_token, this flow exposes a longer lived refresh_token as well. This can be
used for refreshing an expired access token without running re-running above’s flow where user has to
re-enter his credentials.

<request>

POST https://auth.sabio.de/auth/realms/mycompany/protocol/openid-connect/token

Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token

&client_id=mycompany_myapplication

&redirect_uri=<original_redirect_uri_here>

&refresh_token=<refresh_token_here>

<response>

HTTP/1.1 200 OK

Content-Type: application/json

{

 "access_token": "(...)TRmOTMtYmQ2MS04YzQ3MTY3YjIzZ(...)",

 "token_type": "bearer",

 "expires_in": 3600,

 ...

}

Note that a refresh_token needs to be kept secret under all circumstances and must not be used or
exposed in a shared environment such as a web browser. Also note, that a refresh token has a limited
lifetime as well so that it is required to run original flow from time to time.

III. Authentication flow for Backend Services

Above described authentication steps for Mobile Apps or Single Page Apps are UI based, e.g. real persons
have to enter their credentials via a UI. Proposed authentication flows are designed to take special care
that credentials are not leaked and accounts are not compromised.

In opposite, backend services can be assumed to run a secured environment where credentials can
stored securely. Thus, password grant with additional client_secret protection shall be used here.

 19

Keycloak Client Setup (to be carried out by SABIO)

These settings need to be configured by SABIO when setting up a client in Keycloak

• Client ID: Arbitrary ID for denoting this client. Example: mycompany_myapplication

• Access Type: confidential
• Direct Access Grants Enabled: yes
• Credentials

o Client Authenticator: Client Id and Secret
o Secret: Any unguessable secret. Example: my-client-secret123

In addition, a service user incl. a password needs to be set up in Users section.

• Username: A login name, e.g. my-service-user
• Credentials -> Password: An unguessable password, e.g. my-service-user-password456

 20

Fetch Access Token

Fetching an access_token can be done by a single REST call like

<request>

POST https://auth.sabio.de/auth/realms/mycompany/protocol/openid-connect/token

Content-Type: application/x-www-form-urlencoded

grant_type=password

&client_id=mycompany_myapplication

&client_secret=my-client-secret123

&username=my-service-user

&password=my-service-user-password456

<response>

HTTP/1.1 200 OK

Content-Type: application/json

{

 "access_token": "(...)TRmOTMtYmQ2MS04YzQ3MTY3YjIzZ(...)",

 "token_type": "bearer",

 "expires_in": 300,

 "refresh_token": "(...)YTktOWYwNi1lODQ1NTk1MjQ5Y(...)",

 "refresh_expires_in": 1800,

 ...

}

with

• <base_url> is taken from connection parameter token_endpoint (see above)

• <client_id> (see above)
• <client_secret> A secret that is bound to client_id
• <username> Name of service user
• <password> Service user’s password

Refresh Access Token

Although this flow exposes a refresh_token, there is no advantage in making use of this. Instead,
password grant flow can be re-run once token has expired.

 21

Standard Services

This section briefly describes “general purpose services”. For detailed documentation refer to the REST
API reference, e.g. valid values for a certain field.

User Authentication

General Authentication Mechanism

Since the REST service is stateless, the user has to be authenticated with each request. This is achieved
by sending an authentication token in the HTTP header field sabio-auth-token. The token is generated by
the server and then sent to the client. To authenticate, the client simply sends the token in addition to
the the actual request payload for each request. So, the client doesn’t have to do any computation with
the token sent by the server.

To learn more about the /authentication service - for example supported authentication methods -
consult the REST API reference.

Requesting an Authentication Token (POST method)

Authentication against the REST service happens in two steps:

1. Requesting an authentication token by calling the service named /authentication/credentials
2. Requesting arbitrary services thereafter and sending this token for subsequent API calls.

A typical request body looks like this:

{

 "realm": <STRING|UNDEFINED>,

 "type": <STRING>,

 "login": <STRING|UNDEFINED>,

 "key": <STRING>,

 "persistent": <BOOLEAN|UNDEFINED>

}

• The realm property is optional and will be read from the sub-domain by the backend most of

the time. Setting it is required when the REST service is accessed from a different domain, what
might be relevant for mobile devices.

• The property type could contain one of the following strings: credentials or token.

• The properties key and login contain login information.

 22

A typical response body looks like this:

{

 "data": {

 "key": <STRING>

 }

 ...

}

• The key property contains the actual authentication token, that has to be sent we each
subsequent API call (if non-public resources are accessed)

 23

Search Result Filtering: Introducing Filter and MappingResource

General Filter Process

For all resources, that have the filter URL query parameter documented, the following server-side filter
process can be applied:

1. Client sends GET request for a list of resources with some filters set (which are of type Filter)
2. For a successful request, the server sends

1. the effective, filtered resource list (in the result field of the data property) and

2. an array of MappingResource (in the filter field of the data property) that may be
used as filters on this result list’s resources in subsequent API calls

3. Optional step: Client may send new request filtered according to resource specific filters (e.g.
for even finer grained resource filtering)

Bidirectional Nature of Filter

Although implicitly depicted in the “General Filter Process” above, note how the Filter concept applies
for both:

1. Requests being sent to the server and

2. responses being sent from the server.

However, the main difference is:

• When requesting a service, Filters are defined as a filter URL query parameter
• When consuming a server response, Filters are transmitted in the filter field of the server’s

response body (on the same level as the requested fields of the queried resource)

MappingResource in Filter

Maps a filter property to the corresponding resource field.

Field Type Description

property <STRING> Name of the filter property.

value see filter type Type of the associated resource field.

 24

An example request looks like this:

filter=[{

 "property": "id",

 "value": "10cc93453cf232d8013cf264cccd007a"

 }, {

 "property": "name",

 "value": "a name"

 }]

Filter Types

Date Filter

Date Filter are used to filter the search result for date based fields. The value can be a predefined value
key or a dynamic date expression. See Predefined filter values the for more information about available
predefined value keys.

The date expression is used to filter the search result with a date range. The syntax of the date pattern
is:

SAB_PATTERN: <FROM Date Expression> TO <TO Date Expression>

The prefix to mark the value as a date expression is SAB_PATTERN. The expression starts with an
“anchor” date, which can be either NOW or a date string. It can then follow by a math expression,
supporting +, - and / (rounding). The units supported are

• YEAR
• MONTH
• WEEK

• DAY
• HOUR
• MINUTE

• SECOND
• MILLI (milli second)

• * (unlimited future or past date)

Examples for the maths expressions:

• +1h - add one hour
• -1d - subtract one day
• /d - round down to the nearest day

 25

Examples

• Last 30 days until today (including exact time, for example: today, 15:41:32):
SAB_PATTERN:NOW-30DAY TO *

• Last 30 days until today (rounded to end of day): SAB_PATTERN:NOW/DAY-30DAY TO

NOW/DAY+0DAY-1MILLI
• From today to 30 days in future: SAB_PATTERN:NOW TO NOW+30DAY

{

 "property": "created",

 "value": "SAB_PATTERN:NOW TO NOW+30DAY"

}

Term Filter

Term Filter are used to filter the search result on string based fields. The value must be a single term.
Whitespace is not possible. A common usage for Term Filter is filtering for ids or tags. Only search items
are contained in search result which match the Term Filter. The Term Filter can also be negated, that
means only search items are contained in search result which don’t match the filter. To negate the filter
property simply add a leading - character.

Examples

Only include search items for a given content view:

• Field: branchIds
• Value: ID of content view (In this example: 4374ef464668853c014694590b175831)

{

 "property": "elements.branchIds",

 "value": "4374ef464668853c014694590b175831"

}

Only include search items with a tag “foobar”:

• Field: tags
• Value: foobar

{

 "property": "elements.tags",

 "value": "foobar"

}

 26

Exclude search items with are of type “pdf”:

• Field: type
• Value: pdf

{

 "property": "-elements.tags",

 "value": "pdf"

}

Predefined filter values

The predefined value keys can be used to filter the result with a simple keyword. This is an easy way to
filter the search with common filters. The syntax of predefined filter values are:

{short}<predefined value key>

Example

{

 "property": "created",

 "value": "{short}today"

}

 27

Filter Properties

Created Date

Field can be used to filter the search result by created timestamp.

Field: created

Predefined
value key Description

today Shows only content, which has been created today. Today means, from 00:00 in the
beginning of the day until now.

last_week Shows only content, which has been created in the last week, starting by now -7 Days

at 0:00 o’clock.

last_two_weeks Shows only content, which has been created in the last two week, starting by now -14
Days at 0:00 o’clock.

last_month Shows only content, which has been created in the last month, starting at 0:00
o’clock.

older Shows only content, which has a created timestamp older than a month.

Example:

{

 "property" : "averageRating",

 "value" : "{short}last_month"

}

 28

Last Modification Date

Field can be used to filter the search result by the last modification time.

Field: lastModified

Predefined
value key Description

today Shows only content, which has been modified today. Today means, from 00:00 in the
beginning of the day until now.

last_week Shows only content, which has been modified in the last week, starting by now -7
Days at 0:00 o’clock.

last_two_weeks Shows only content, which has been modified in the two last week, starting by now -
14 Days at 0:00 o’clock.

last_month Shows only content, which has been modified in the two last month, starting at 0:00
o’clock.

older Shows only content, which has a modified timestamp older than a month.

Example:

{

 "property" : "lastModified",

 "value" : "{short}last_month"

}

 29

Average Rating filter

Field can be used to filter the search for content with a given average rating range.

Field: averageRating

Predefined
value key Description

excellent Shows only content, which has an average rating between 4.5 and 5.1.

good Shows only content, which has an average rating between 3.5 and 4.49.

average Shows only content, which has an average rating between 2.5 and 3.49.

bad Shows only content, which has an average rating between 1.5 and 2.49.

awful Shows only content, which has an average rating between 1 and 1.49.

none Shows only content, without an average rating.

Example:

{

 "property" : "averageRating",

 "value" : "excellent"

}

Write permission filter

Field can be used to filter the search for content which is created by current user or for content which
can be edited by current user.

Field: writePermission

Predefined value
key Description

my_content Shows only content, which is created by current user.

write_permission Shows only content, which could be modified by current user.

 30

Example:

{

 "property" : "writePermission",

 "value" : "{short}my_content"

}

Valid to Time

Field can be used to filter the search result for expiring content.

Field: elements.validTo

Predefined
value key Description

today Shows only content, which has become invalid today. Today means, from 00:00 in the
beginning of the day until now.

week Shows only content, which has become invalid in the next week, starting by now -7 Days at
0:00 o’clock.

two_weeks Shows only content, which has become invalid in the next two week, starting by now -14
Days at 0:00 o’clock.

month Shows only content, which has become invalid in the next month, starting at 0:00 o’clock.

later Shows only content, which has become invalid in the next later then a month.

unlimited Shows only content, which has no configured valid to time.

Example:

{

 "property" : "elements.validTo",

 "value" : "{short}today"

}

 31

Valid from Time

Field can be used to filter the search items for content that is not valid, yet.

Field: elements.validFrom

Predefined
value key Description

today Shows only content, which has become valid today. Today means, from 00:00 in the
beginning of the day until now.

week Shows only content, which will become valid in the next week, starting by now -7 Days at
0:00 o’clock.

two_weeks Shows only content, which will become valid in the next week, starting by now -14 Days
at 0:00 o’clock.

month Shows only content, which will become valid in the next month, starting at 0:00 o’clock.

later Shows only content, which will become valid after the next month.

Example:

{

 "property" : "elements.validFrom",

 "value" : "{short}today"

}

Tags

Field can be used to filter the search items for content that contains the given tags.

Field: elements.tags

Example:

{

 "property" : "elements.tags",

 "value" : "myTag"

}

 32

View

Field can be used to filter the search items for content that is assigned to the given view id.

Field: elements.branchIds

Example:

{

 "property" : "elements.branchIds",

 "value" : "viewId"

}

Document Type

Field can be used to filter the search items for content of the given type

Field: type

Example:

Possible values are file endings of uploaded documents or images, but also SABIO specific elements like
Sabio-Texts, Sabio-News, …

[

 {

 "property" : "type",

 "value" : "pdf"

 },

 {

 "property" : "type",

 "value" : "text"

 }

]

 33

Resource

Field can be used to filter the search items for specific resources. Resources are views, users, reports,
texts, documents and a lot of others.

Field: resource

Example:

[

 {

 "property" : "resource",

 "value" : "branch"

 },

 {

 "property" : "resource",

 "value" : "user"

 }

]

 34

Search Fields

Common Search Fields

The common search fields can be used for filtering or sorting in every resource, which is included in
search. Currently the following resources are searchable: text, document, submission and message.

Field Type Filter Type Can be sorted Description

id String none no Unique ID of entity. Can be used to load
the entity itself

created Date Date Filter yes Timestamp of entity’s creation date.
See Introduction and Basic Concepts

details on date format.

lastModified Date Date Filter yes Timestamp of entity’s last modification
date. See Introduction and Basic
Concepts for details on date format.

validTo Date Date Filter yes Date until when the resource is valid. Has
to be an RFC822 formatted date string.
See Introduction and Basic Concepts for

details on date format.

validFrom Date Date Filter yes Date from when the resource is valid. Has
to be an RFC822 formatted date string.
See Introduction and Basic Concepts for

details on date format.

branchIds String[] Term Filter no Array of all ids of branches, which are
assigned to this entity. Can be used to
filter all content for a given branch

lastModifiedById String Term Filter yes ID of user who modified the resource.

resource String Term Filter yes Discriminator for the type of the SABIO

resource that corresponds to the search
item. Legal values are text, message,
document and submission

Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html

 35

Field Type Filter Type Can be sorted Description

type String Term Filter yes Discriminator for the binary data type of
the indexed resource. Only applies to

SABIO Document resources.

tags String[] Term Filter no Array of keywords used to tag this
resource.

writePermission String Predefined
Filter

no A field to filter the search for content
owned by the current user or for content,
which can be modified by the current

user.

 36

Changelog

• v2.0.6 (SABIO Knowledge 5.16)
o cleaned up section session-key and api-key
o added section changelog
o added menu Deprecations

• v2.0.5 (SABIO Knowledge 5.16)
o added sabio-client to section Authentication, Token and ApiKey

• v2.0.4 (SABIO Knowledge 5.16)
o added search field
o added search filtering

• v2.0.2 (SABIO Knowledge 5.16)
o deprecated /token/login
o cleaned up section session-key and api-key
o added How to use to section api-key

• v2.0.1 (SABIO Knowledge 5.15)
o added How to use to section session-key

 37

Overview

This chapter describes each service in detail, giving documentation about
1. Whether access to the service is protected or public,
2. which methods and paths are available,
3. which URL query parameters are consumed,
4. which Filter can be applied to a resource list returned by the service
5. and which fields can be requested and/or sent and how to use them.

 38

Authentication

URL /authentication/credentials

Access public

Methods POST, DELETE

Service for authenticating users against SABIO. On success, an authentication token is returned,
contained in an UserAuthResponse.

This service supports three types of authentication:

1. With credentials,

2. by an already existing token
3. by an api-key created via api-key service

In general, the generated token has to be send as sabio-auth-token header in each request that requires
a user. In some cases the token needs to be appended as a sabio-auth-token query parameter (e.g. when
downloading documents). Also, each client has to add a sabio-client header with the name of it’s client
type for each request it makes. This client type string has to be added to a (comma separated list)
named Settings/System/Key for multiple log-in (Side note: Our SABIO web client always sends a header
like this for REST calls sabio-client: {"name":"SABIO 5","version":"1.23.0"}).

curl --request GET \

 --url 'https://mycompany.sabio.de/sabio/services/user/profile' \

 --header 'sabio-auth-token: 1jefzdq4yq2i8urp4zccavwvs1hrawpta3f9etr1ix1brax9ie' \

 --header 'sabio-client: {"name":"MyCompanyApp","version":"1.2.3"}'

Available Paths

Method Path Segment
Returne
d Value Description

POST /authentication/credential

s

single Consumes

an UserAuthRequest an
d returns an

UserAuthResponse. On
authentication

success, UserAuthResponse contain
s a valid authentication token.

 39

Response Format

{

 "data": {

 "key": <STRING>

 }

 ...

}

• See section “Resource Fields” for documentation about properties
o key

Resource Fields

UserAuthRequest

Name Type
Required
for POST Description

type String yes Authentication type. Possible values are credentials or token.

login String special Represents the user’s login name when type is set to credentials.
In this case, this field is mandatory for POST requests!

key String yes Value depends on type field: If type is token it contains an

authentication token or api-key, if type is credentials it contains
the user’s password.

realm String yes Identifier of the realm, the user lives in. This property will be auto-
detected from the request URL if omitted.

persistent Boolean no Indicates, whether the server should create a persistent token.

UserAuthResponse

Name Type Description

key String The token to authenticate with for subsequent service calls.

 40

Name Type Description

user LightUserResource The authenticated user.

 41

Api-key

URL /api-key

Access protected

Methods POST, PUT, DELETE, GET

Service for creating an api-key to authenticate requests against SABIO. On success, an api-key as token is
returned.

Security hints

The api-keys should be created only with validTo dates. Renew the keys every 30 days or more often.

Users assigned to api-keys should not be able to access critical services like create user, edit roles, ….

Available Paths

Method Path Segment
Protected by
Role

Returned
Value Description

POST /api-key APIKEY_CREATE single Creates an ApiKey, on success, response
contains a valid api-key token.

PUT /api-

key/__UUID__

APIKEY_UPDATE single Updates an existing ApiKey with given Id.

DELETE /api-
key/__UUID__

APIKEY_DELETE single Deletes an existing ApiKey with given Id.

GET /api-key APIKEY_READ List Returns a list of ApiKeys.

GET /api-
key/__UUID__

APIKEY_READ single Returns an ApiKey with given Id if exists.

Response Format

{

 "data": {

 42

 "id": <STRING>,

 "name": <STRING>,

 "token": <STRING>,

 "userId": <STRING>,

 "login": <STRING>

 }

 ...

}

• See section “Resource Fields” for documentation about properties
o id
o name

o token

o userId
o login

o validTo

Resource Fields

Name Type
Read-
Only Required for POST Description

id String yes no Id of the api-key.

name String no yes Name of the api-key.

token String yes no Token of the api-key.

userId String no yes

(when login empty)

ID of the user assigned to this api-key.

login String no yes
(when id empty)

Login of the user assigned to this api-key.
(since 5.16)

validTo Date no yes End date of the validity period of this api-

key. See Introduction and Basic Concepts for
details on date format.

Chapter-01-Section-02-basic-concepts.html

 43

How to create an api-key

The following section demonstrates how an api-key is created step by step. The created api-key is
assigned to user 4nils and valid until 20 July 2017 10am. To perform this example, you need an SABIO
user with admin-rights (CREATE_ROLE, CREATE_USER) and curl. Also, all users have to be on the
same realm.

Create role Tokencreator

First create a new role. This role contains only the required rights to create api-keys for any users.

1. Login as admin
2. Go to the settings tab and click on Add user role
3. Set name to Tokencreator
4. Select all rights in the API Keys section
5. Click on Save

Create user Tokengenerator

Second create a new user. This user is only to create api-keys for any users.

1. Login as admin
2. Go to the settings tab and click on Add user

3. Set Firstname, Lastname, Language and Email
4. Set Login name to Tokengenerator
5. Set Password to s3cr3t
6. Select all groups
7. Remove all roles
8. Select role Tokencreator

9. Click on Save

Authenticate user Tokengenerator

Third authenticate user Tokengenerator against SABIO. The example is using the credentials method, but
you can use any method you want. The point is, that you get an authentication token back to make
further requests as user Tokengenerator.

The login property is the login of the user Tokengenerator, the key property is the password of this user
and the realm property is qa-test.

curl --request POST \

 --url "https://mycompany.sabio.de/sabio/services/authentication/credentials" \

 --header 'sabio-client: {"name":"MyCompanyApp","version":"1.2.3"}' \

 --header 'Content-Type: application/json' \

 --data '{"login":"Tokengenerator","key":"s3cr3t","realm":"qa-test"}'

The resulting JSON contains a key property. This is the authentication token assigned to
user Tokengenerator.

{

 "data": {

 44

 "key": "vbemy9kt36t4vbeo1q7xxut0sobuh5vezbxuus067j29pr1v",

 ...

 }

 ...

}

Create an api-key

Fourth create an api-key for user 4nils. The value of the header attribute sabio-auth-token is
the authentication token of user Tokengenerator created in the previous step. The login property is the
login of the user, the api-key will be assigned to (in this case 4nils) and the validTo property is the end
date of the validity period for this api-key. The start date of the validity period is now and not
configurable.

curl --request POST \

 --url "https://mycompany.sabio.de/sabio/services/api-key" \

 --header 'sabio-client: {"name":"MyCompanyApp","version":"1.2.3"}' \

 --header 'sabio-auth-token: vbemy9kt36t4vbeo1q7xxut0sobuh5vezbxuus067j29pr1v' \

 --header 'Content-Type: application/json' \

 --data '{"login":"4nils", "validTo":"Mon Jul 24 2017 10:00:00 GMT+0200"}'

The resulting JSON contains a token property. The value of this property is the generated authentication
token assigned to this api-key.

{

 "data": {

 result : {

 "token": "1jefzdq4yq2i8urp4zccavwvs1hrawpta3f9etr1ix1brax9ie",

 ...

 }

 }

 ...

}

Now you can execute requests as user 4nils.

curl --request GET \

 --url "https://mycompany.sabio.de/sabio/services/user/profile" \

 --header 'sabio-client: {"name":"MyCompanyApp","version":"1.2.3"}' \

 --header 'sabio-auth-token: 1jefzdq4yq2i8urp4zccavwvs1hrawpta3f9etr1ix1brax9ie'

Note: The value of the header attribute sabio-auth-token is the authentication token of
user 4nils created in the previous step.

 45

Tree

URL /tree

Access protected

Methods POST, GET, PUT, DELETE

Service for managing SABIO TreeResources. Can be used to load single nodes or complete trees.

A TreeResource is a hierarchical object representing a node in the tree, containing all its child-
TreeResources.

Available Paths

Method Path Segment

Protected by

Role

Returned

Value Description

GET /tree/0 TREE_READ single Returns the root tree with all child nodes,
visible for the user.

GET /tree/__UUID__ TREE_READ single Returns one specific TreeResource,
identified by its UUID.

POST /tree TREE_CREATE single Returns the newly created TreeResource.

PUT /tree/__UUID__ TREE_UPDATE single Returns the modified TreeResource,

identified by its UUID.

DELETE /tree/__UUID__ TREE_DELETE single Deletes the TreeResource identified by its
UUID. Only a Status is returned.

Response Format

{

 "data": {

 "result": <TreeResource>

 },

 46

 ...

}

URL Query Parameters

Name Type Methods Description

filter MappingObject[] GET A Filter to reduce the returned result set. For concrete
available filters, see corresponding section below.

Available Filters

The following values are valid for the filter query parameter:

Name Type Description

depths Number The number of nested children to load. Default value is set to 0. For unlimited
depths this needs to be set to -1.

branchIds UUID[] The UUIDs of views to load.

Resource Fields

Name Type

Read-

Only

Required

for POST Description

objectType String yes yes Identifier of this resource’s type. Fixed
value is ‘TreeResource’.

title String no yes Title of this resource.

description String no no Detailed description of this resource.

createdBy LightUserResource no yes The user who created the resource.

group LightGroupResource no yes A user group that has access to this
resource.

 47

Name Type
Read-
Only

Required
for POST Description

validFrom Date no no Date from when the resource is valid.

See Introduction and Basic Concepts for
details on date format.

validTo Date no no Date until when the resource is valid.

See Introduction and Basic Concepts for
details on date format.

children Tree[] yes no An array of sub nodes.

attachments ResourceReference[] yes no An array of available attachments. Currently
only text resources can be added as

attachments.

tags String[] no no Array of keywords used to tag this resource.

parentId String no yes The UUID of this tree node’s parent tree
node. Is null for the root tree.

branches LightViewResource[] no yes Array of branches, that restrict which
resources can be attached to this tree. Only

resources - /text resources in particular -
that have a subset of the views (previously
known as branches) the tree has can be

attached to it.

Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html

 48

Text

URL /text

Access protected

Methods GET, PUT, POST, DELETE

Service for managing SABIO TextResources.

Available Paths

Method Path Segment

Protected by

Role

Returned

Value Description

GET /text/__UUID__ TEXT_READ single Returns one specific TextResource,
identified by its UUID.

POST /text TEXT_CREATE single Returns the newly
created TextResource.

PUT /text/__UUID__ TEXT_UPDATE single Returns the modified TextResource,

identified by its UUID.

DELETE /text/__UUID__ TEXT_DELETE single Deletes the TextResource identified by
its UUID. Only a Status is returned.

Response Format

{

 "data": {

 "result": <TextResource>

 },

 ...

}

 49

URL Query Parameters

None.

Resource Fields

Name Type
Read-
Only

Required
for POST Description

objectType String yes yes Identifier of this resource’s
type.

title String no yes Title of this resource.

createdBy LightUserResource no yes The user who created the

resource.

group LightGroupResource no yes User group assigned to this

resource.

validFrom Date no no Date from when the
resource is valid.

See Introduction and Basic
Concepts for details on date
format.

validTo Date no no Date until when the

resource is valid.
See Introduction and Basic
Concepts for details on date
format.

paths LightTreeNodeResource[][] no yes A two-dimensional array
of LightTreeNodeResources,
representing the multiple
possible paths to this
resource in the tree.

fragments TextFragmentResource[] no yes An array
of TextFragmentResources,

Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html

 50

Name Type
Read-
Only

Required
for POST Description

defining the actual content

of this TextResource.

Sub-Resource TextFragmentResource

The TextFragmentResource is a sub-entity used to represent the actual content of a TextResource.

A TextFragmentResource cannot be directly accessed via URL, that is, there intentionally exists no explicit
service for TextFragmentResources.

Resource Fields

Name Type
Read-
Only

Required
for POST Description

objectType String yes yes Identifier of this resource’s
type.

content String no yes The actual content as
HTML.

branches LightViewResource[] no yes Array of views (previously
known as branches) which

restrict which usergroups
are allowed to see the text.

tags String[] no no Array of keywords used to

tag this resource.

attachments LightDocumentResource[] yes no An array of available

attachments
(LightDocumentResource,
see chapter Standard
resources).

submissionId UUID no no UUID of the submission

belonging to
this TextFragmentResource.

 51

Name Type
Read-
Only

Required
for POST Description

contextValues ContextValue[] no no Values for a context type. A

context type is associated
to a resource type and can
be optional or mandatory.
If mandatory it must be set.

 52

Document

URL /document

Access protected

Methods GET, PUT, POST, DELETE

Service for managing SABIO DocumentResources.

Available Paths

Metho

d Path Segment Protected by Role

Returne

d Value Description

GET /document/__UUID_
_

DOCUMENT_READ single Returns one
specific DocumentResource,
identified by its UUID.

POST /document DOCUMENT_CREATE single Returns the newly
created DocumentResource.

PUT /document/__UUID_
_

DOCUMENT_UPDAT
E

single Returns the
modified DocumentResource,
identified by its UUID.

DELETE /document/__UUID_

_

DOCUMENT_DELETE single Deletes

the DocumentResource identifie
d by its UUID. Only a Status is

returned.

Response Format

{

 "data": {

 "result": <DocumentResource>

 },

 ...

 53

}

URL Query Parameters

None.

Resource Fields

Name Type

Rea
d-

Only

Requir
ed for

POST Description

objectTy

pe

String yes yes Identifier of this resource’s type.

title String no yes Title of this resource.

descripti
on

String no no Detailed description of this resource.

token FileTokenResource no yes FileTokenResource identifying the
temporary uploaded file in the file
system.

fileName String no yes Name of the associated document in
the file system.

tags String[] no no Array of keywords used to tag this

resource.

links TextElementDocumentMappingRe
source[]

no yes A one-dimensional array
of TextElementDocumentMappingRe

sources, representing the multiple

possible “text elements” this
document is linked to.

createdB
y

LightUserResource no yes The user who created the resource.

group LightGroupResource no yes User group assigned to this resource.

 54

Name Type

Rea
d-
Only

Requir
ed for
POST Description

validFro
m

Date no no Date from when the resource is valid.
See Introduction and Basic
Concepts for details on date format.

validTo Date no no Date until when the resource is valid.
See Introduction and Basic
Concepts for details on date format.

branches LightViewResource[] no yes Array of views (previously known as

branches) which restrict which
usergroups are allowed to see the

text.

FileTokenResource

See chapter for service /files

Sub-Resource TextElementDocumentMappingResource

The TextElementDocumentMappingResource is a sub-entity used to link the document to
a TextFragmentResource the actual content of a TextResource.

A TextElementDocumentMappingResource cannot be directly accessed via URL, that is, there
intentionally exists no explicit service for TextElementDocumentMappingResources.

Resource Fields

Name Type
Read-
Only

Required
for POST Description

objectType String yes yes Identifier of this resource’s type. static value:

‘TextElementDocumentMappingResource’

id String no yes UUID of
a TextFragmentResourceTextFragmentResource the
document is or should be linked to.

Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html
Chapter-02-Section-15-files.html#FileTokenResource

 55

Files

URL /files

Access protected

Methods POST

Interface to manage SABIO file resources. As files are binary data and thereby not presentable in JSON
format. However, when you upload a new file, a JSON string is send with a Content-Type header set
to text/plain to confirm success. This construct is required to be able to upload a file from within an
iframe. Temporary created files also contain a token for later usage. The token may be used by other
resources (e.g. documents) to reference the file.

To create a file, the request needs to be send as multipart.

The sabio-auth-token needs to be set as query parameter.

Available Paths

Method
Path
Segment Protected by Role

Returned
Value Description

POST /files DOCUMENT_CREATE single Returns the newly created FileResource.

Multipart Format

Name Type Writable Required Description

file String yes yes Contains the file data.

Response Format

{

 "data": {

 "result": <FileTokenResource>

 },

 ...

}

 56

URL Query Parameters

Name Type Methods
Available
for paths Description

sabio-
auth-
token

String POST /files authentication
token

Additional Header to use for posting a file Accept:text/html, Content Type set to multipart/form-data

FileTokenResource

Name Type

Read-

Only

Required

for POST Description

objectType String yes yes Identifier of this resource’s type.

token String yes yes token of uploaded attachment.

Message / News

URL /message

Access protected

Methods GET, PUT, POST, DELETE

Service for managing SABIO NewsResources.

Throughout the whole section, treat “news” as a synonym for “message”.

 57

Available Paths

Method Path Segment
Protected by
Role

Returned
Value Description

GET /message/__UUID__ MESSAGE_READ single Returns one
specific NewsResource,
identified by its UUID.

POST /message MESSAGE_CREATE single Returns the newly
created NewsResource.

PUT /message/confirm/__UUID__ MESSAGE_READ single Marks

the NewsResource identified
by UUID as confirmed and

returns it.

DELETE /message/__UUID__ MESSAGE_DELETE single Deletes

the NewsResource identified
by its UUID. Only a Status is
returned.

Response Format

{

 "data": {

 "result": <NewsResource>

 },

 ...

}

URL Query Parameters
None.

 58

Resource Fields

Name Type
Read-
Only

Required
for POST Description

objectType String yes yes Identifier of this resource’s type.

title String no yes Title of this resource.

content String no yes The NewsResource’s text content.

targetGroups LightGroupResource[] no yes An array of GroupResources that

defines the user groups that will
receive this news in SABIO internally.

validFrom Date no no Date from when the resource is valid.
See Introduction and Basic

Concepts for details on date format.

validTo Date no no Date until when the resource is valid.
See Introduction and Basic
Concepts for details on date format.

contextValues ContextValue[] no no Values for a context type. A context

type is associated to a resource type
and can be optional or mandatory. If

mandatory it must be set.

Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html

 59

Submission

URL /submission

Access protected

Methods GET, PUT, POST

Service for managing SABIO SubmissionResources. A SubmissionResource represents a user created
submission concerning a certain TextResource.

Available Paths

Method Path Segment Protected by Role
Returned
Value Description

GET /submission/__UUID__ SUBMISSION_READ single Returns one
specific SubmissionResource,

identified by its UUID.

POST /submission SUBMISSION_CREATE single Returns the newly
created SubmissionResource.

PUT /submission/__UUID__ SUBMISSION_UPDATE single Returns the
modified SubmissionResource,

identified by its UUID.

Response Format

{

 "data": {

 "result": <SubmissionResource>

 },

 ...

}

URL Query Parameters

None.

 60

Resource Fields

Name Type

Read
-

Only

Require
d for

POST Description

objectType String yes yes Identifier of this resource’s type.
Fixed value is ‘SubmissionResource’.

title String yes yes Title of this resource.

targetId UUID yes yes UUID of the resource,
the SubmissionResource is created

for.

targetResourc
e

String yes yes Identifier of the type of the
resource, the SubmissionResource is
created for. At the moment,

only text is supported.

comments SubmissionCommentResourc
e[]

no no An array of comments, associated
with

this SubmissionResource. Important:
 At the moment, it is only possible to
add comments to

a SubmissionResource, but not to
modify existing comments!

status String yes no Identifier of the status of
this SubmissionResource. Valid
values

are closed, inprogress and pending.

Sub-Resource SubmissionCommentResource

The SubmissionCommentResource is a sub-entity used to represent a comment of
a SubmissionResource.

A SubmissionCommentResource cannot be directly accessed via URL, that is, there intentionally exists no
explicit service for SubmissionCommentResources.

 61

Resource Fields

Name Type
Read-
Only

Required
for POST Description

id UUID yes no The resources UUID. Automatically assigned on
creation.

text String no yes The comment’s content

created Date yes no The creation date of this resources.
See Introduction and Basic Concepts for details
on date format.

createdBy LightUserResource yes no The user who created the resource.

Chapter-01-Section-02-basic-concepts.html

 62

Message / News

URL /message

Access protected

Methods GET, PUT, POST, DELETE

Service for managing SABIO NewsResources.

Throughout the whole section, treat “news” as a synonym for “message”.

Available Paths

Method Path Segment Protected by Role
Returned
Value Description

GET /message/__UUID__ MESSAGE_READ single Returns one

specific NewsResource,
identified by its UUID.

POST /message MESSAGE_CREATE single Returns the newly
created NewsResource.

PUT /message/confirm/__UUID__ MESSAGE_READ single Marks

the NewsResource identified
by UUID as confirmed and
returns it.

DELETE /message/__UUID__ MESSAGE_DELETE single Deletes

the NewsResource identified
by its UUID. Only a Status is
returned.

Response Format

{

 "data": {

 "result": <NewsResource>

 },

 63

 ...

}

URL Query Parameters

None.

Resource Fields

Name Type

Read-

Only

Required

for POST Description

objectType String yes yes Identifier of this resource’s type.

title String no yes Title of this resource.

content String no yes The NewsResource’s text content.

targetGroups LightGroupResource[] no yes An array of GroupResources that
defines the user groups that will
receive this news in SABIO internally.

validFrom Date no no Date from when the resource is valid.
See Introduction and Basic
Concepts for details on date format.

validTo Date no no Date until when the resource is valid.

See Introduction and Basic
Concepts for details on date format.

contextValues ContextValue[] no no Values for a context type. A context
type is associated to a resource type

and can be optional or mandatory. If
mandatory it must be set.

Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html

 64

Search

URL /search

Access protected

Methods GET

Service for performing searches within SABIO. Results only contain contents that are accessible for the
current user.

Available Paths

Method Path Segment
Protected by
Role

Returned
Value Description

GET /search SEARCH_READ list Returns a non-
generic SearchResultResource.

GET /search/suggest SEARCH_READ list Returns a list
of AutoCompleteResources, which are
suggested based on query
parameter q.

Response Format

• total contains the total number of available results for the fired request (in general, larger result
sets are paginated)

• The properties limit and start are values of applied “URL Query Parameters” (see below)
• See section “Resource Fields” for documentation about property filter
• The property autoReSearch contains a boolean value indicating if an auto re-search is executed.

An auto re-search is executed if the search does not find any result for the given query. In this

case the Search API determines an alternative query and executes this query.
• The property queryTerm contains the query term for the effectively executed search. In the

case when autoReSearch is false it contains the submitted query, otherwise it contains the
alternative query term.

• The property originalQueryTerm contains the query term which is submitted with the query. It
is null in the case when the search returns results for the submitted query.

Path /search

{

 65

 "data": {

 "result": <NULL>|<SearchResultResource>[],

 "total": <INTEGER>,

 "limit": <INTEGER>,

 "start": <INTEGER>,

 "filter": <MappingObject>[],

 "autoReSearch" : <BOOLEAN>,

 "queryTerm" : <STRING>,

 "originalQueryTerm" : <STRING>

 },

 ...

}

Path /search/suggest

{

 "data": {

 "result": <NULL>|<AutoCompleteResource>[],

 "total": <INTEGER>,

 "limit": <INTEGER>,

 "start": <INTEGER>

 },

 ...

}

URL Query Parameters

Name Type Methods Available for paths Description

filter MappingObject[] GET /search, /search/suggest A Filter to reduce the
returned result set.
For concrete
available filters,
see Search Result
Filtering.

filterList String GET /search A comma separated
list of resource

Chapter-01-Section-05-result-filtering.html
Chapter-01-Section-05-result-filtering.html

 66

Name Type Methods Available for paths Description

properties. This list is
used to request

facets for given
property list.

q String GET /search, /search/suggest A search query

string.

start Integer GET /search, /search/suggest Index of the fist
returned resource

within the request’s

result set, starting
with 0.

limit Integer GET /search, /search/suggest Number of resources
effectively returned

from the request’s
result set. Interpret
as “result chunk
size”.

Resource Fields

SearchResultResource

Name Type Description

resource String Resource type.

title String Title of this resource.

id UUID UUID identifying this resource.

excerpt String An excerpt of the search result item, in the form on a HTML

fragment.

 67

Name Type Description

authorId UUID The UUID of the user who has created or is the current owner of
the indexed resource.

branches Object[] An array of branches, the indexed resource is associated with.

validFrom Date Date from when the resource is valid. See Introduction and Basic

Concepts for details on date format.

validTo Date Date until when the resource is valid. See Introduction and Basic

Concepts for details on date format.

lastModifiedById UUID The UUID of the user who modified the resource the last time.

AutoCompleteResource

Name Type Description

text String The suggestion’s text.

count Integer Number of expected results.

Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html
Chapter-01-Section-02-basic-concepts.html

 68

Session-key (supported until August 2018 - please use /api-key instead)

URL /token/login

Access protected

Methods GET

Service for creating a session-key to authenticate requests against SABIO. A session-key is assigned to a
user and a user may have multiple session-keys at the same time (Mehrfachanmeldung). On success,
a session-key ìs created, valid for hour and returned to the caller.

Available Paths

Method Path Segment Protected by Role

Returned

Value Description

GET /token/login/__LOGIN__ USER_CAN_CAPTURE_OTHER_USER single Returns a

TokenResource.

Response Format

{

 "data": {

 "result": {

 "token": <STRING>

 }

 }

 ...

}

Resource Fields (TokenResource)

Name Type
Read-
Only

Required for
POST Description

token String yes no Authentication token of this session-key.

 69

How to create an session-key

The following section demonstrates how a session-key is created step by step. The created session-key is
assigned to user 4nils and valid for one hour. To perform this example, you need an SABIO user with
admin-rights (CREATE_ROLE, CREATE_USER) and curl. Also, all users have to be on the same realm.

Create role Tokencreator

First create a new role. This role contains only the required rights to create session-keys for other users.

1. Login as user with admin-rights

2. Go to the settings tab and click on Add user role
3. Set name to Tokencreator
4. Select May create token for other user in the User section
5. Click on Save

Create user Tokengenerator

Second create a new user. This user is only to create session-keys for other users.

1. Login as user with admin-rights
2. Go to the settings tab and click on Add user
3. Set Firstname, Lastname, Language, Email

4. Set Login name to Tokengenerator
5. Set Password to s3cr3t
6. Select all groups
7. Remove all roles
8. Select role Tokencreator
9. Click on Save

Add sabio-client MyCompanyApp

Third add your client application to the sabio-client list. This is necessary because the session-key will be
assigned to a given user and sabio-client. Each time a session-key is created, the existing session-key will
be overwritten. If the sabio-client header attribute is empty, the default name will be used. The default
name (unknown) and the name of the SABIO web client (SABIO 5) do not have to be added explicitly.

1. Login as user with admin-rights
2. Go to the settings tab and click on Settings

3. Select System and go to the text field labeled with Key for multiple log-in
4. Add to the comma separated list the name of your client (e.g. MyCompanyApp)

5. Click on Save

Authenticate user Tokengenerator

Fourth authenticate user Tokengenerator against SABIO. The example is using the credentials method,
but you can use any method you want. The point is, that you get an authentication token back to make
further requests as user Tokengenerator.

The login property is the login of the user Tokengenerator, the key property is the password of this user
and the realm property is my. There is also the header attribute sabio-client with the name and version

 70

of your application. This client type string has to be added for each request (Side note: Our SABIO web
client always sends a header like this for REST calls sabio-client: {"name":"SABIO 5", "version":"1.23.0"}).

curl --request POST \

 --url "https://mycompany.sabio.de/sabio/services/authentication/credentials" \

 --header 'sabio-client: {"name":"MyCompanyApp","version":"1.2.3"}' \

 --header 'Content-Type: application/json' \

 --data '{"login":"Tokengenerator","key":"s3cr3t","realm":"my"}'

The resulting JSON contains a key property. This property is the authentication token assigned to
user Tokengenerator.

{

 "data": {

 "key": "s5056vzx288ptocv0t9s9ug6rhlmid6krbz6s4p20wbfrol1",

 ...

 }

 ...

}

Create a session-key

Fifth create a session-key for user 4nils. The value of the header attribute sabio-auth-token is
the authentication token of user Tokengenerator created in the previous step. The value of the header
attribute sabio-client is the name and version of your application . The last parameter of the path is the
login of the user. The session-key will be assigned to to the given user and sabio-client (in this
case 4nils and MyCompanyApp).

curl --request GET \

 --url "https://mycompany.sabio.de/sabio/services/token/login/4nils" \

 --header 'sabio-client: {"name":"MyCompanyApp","version":"1.2.3"}' \

 --header 'sabio-auth-token: qxg0o98bzy2et4hsskwia14msknawx2fsxtkqxtdjibgwm5w'

The resulting JSON contains a token property. The value of this property is the generated authentication
token assigned to this session-key.

{

 "data": {

 result : {

 "token": "1jefzdq4yq2i8urp4zccavwvs1hrawpta3f9etr1ix1brax9ie",

 ...

 }

 }

 71

 ...

}

Now you can execute requests as user 4nils.

curl --request GET \

 --url "https://mycompany.sabio.de/sabio/services/user/profile" \

 --header 'sabio-client: {"name":"MyCompanyApp","version":"1.2.3"}' \

 --header 'sabio-auth-token: 1jefzdq4yq2i8urp4zccavwvs1hrawpta3f9etr1ix1brax9ie'

Note: The value of the header attribute sabio-auth-token is the authentication token of
user 4nils created in the previous step.

	Overview
	Code Formatting Conventions
	REST Service Entry Point
	Calling the REST API
	Authentication
	Response Format
	Generic Response Object
	Request/Response Field Values
	Error Handling
	Caching
	Versioning
	Standard Resources and Entities
	Status
	LightGroupResource
	LightUserResource
	LightViewResource
	LightTreeNodeResource
	LightDocumentResource

	Authentication with OpenID Connect (OIDC)
	Preface
	General Authentication Steps
	Preparation: Realm Setup (to be carried out by SABIO)
	Step 1: Fetch OIDC connection parameters
	Step 2: Fetch Access Token
	Step 3: Access REST API
	Step 4: Refresh Access Token

	I. Authentication flow for Single Page Apps (SPA)
	Keycloak Client Setup (to be carried out by SABIO)
	Fetch Access Token
	Refresh Access Token

	II. Authentication flow for Mobile Apps
	Keycloak Client Setup (to be carried out by SABIO)
	Fetch Access Token
	Step A: Generate Code Verifier and Code Challenge
	Step B: Initiate Authentication with UI
	Step C: Exchange Authorization Code into Access Token

	Refresh Access Token

	III. Authentication flow for Backend Services
	Keycloak Client Setup (to be carried out by SABIO)
	Fetch Access Token
	Refresh Access Token

	Standard Services
	User Authentication
	General Authentication Mechanism
	Requesting an Authentication Token (POST method)

	Search Result Filtering: Introducing Filter and MappingResource
	General Filter Process
	Bidirectional Nature of Filter
	MappingResource in Filter
	Filter Types
	Date Filter
	Examples

	Term Filter
	Examples

	Predefined filter values
	Example

	Filter Properties
	Created Date
	Example:

	Last Modification Date
	Example:

	Average Rating filter
	Example:

	Write permission filter
	Example:

	Valid to Time
	Example:

	Valid from Time
	Example:

	Tags
	Example:

	View
	Example:

	Document Type
	Example:

	Resource
	Example:

	Search Fields
	Common Search Fields

	Changelog
	Overview
	Authentication
	Available Paths
	Response Format
	Resource Fields
	UserAuthRequest
	UserAuthResponse

	Api-key
	Security hints
	Available Paths
	Response Format
	Resource Fields
	How to create an api-key
	Create role Tokencreator
	Create user Tokengenerator
	Authenticate user Tokengenerator
	Create an api-key

	Tree
	Available Paths
	Response Format
	URL Query Parameters
	Available Filters
	Resource Fields

	Text
	Available Paths
	Response Format
	URL Query Parameters
	Resource Fields
	Sub-Resource TextFragmentResource
	Resource Fields

	Document
	Available Paths
	Response Format
	URL Query Parameters
	Resource Fields
	FileTokenResource
	Sub-Resource TextElementDocumentMappingResource
	Resource Fields

	Files
	Available Paths
	Multipart Format
	Response Format
	URL Query Parameters
	FileTokenResource

	Message / News
	Available Paths
	Response Format
	URL Query Parameters
	Resource Fields

	Submission
	Available Paths
	Response Format
	URL Query Parameters
	Resource Fields
	Sub-Resource SubmissionCommentResource
	Resource Fields

	Message / News
	Available Paths
	Response Format
	URL Query Parameters
	Resource Fields

	Search
	Available Paths
	Response Format
	Path /search
	Path /search/suggest

	URL Query Parameters
	Resource Fields
	SearchResultResource
	AutoCompleteResource

	Session-key (supported until August 2018 - please use /api-key instead)
	Available Paths
	Response Format
	Resource Fields (TokenResource)
	How to create an session-key
	Create role Tokencreator
	Create user Tokengenerator
	Add sabio-client MyCompanyApp
	Authenticate user Tokengenerator
	Create a session-key

