Zoom: https://zoom.us/j/3167417956?pwd=Q2NoNWp2a3M2Y2hRSHBKZE1Wcml4Zz09
Materiāli:
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1511.06434.pdf5.2
Kods no iepriekšējiem gadiem: https://share.yellowrobot.xyz/quick/2024-5-28-3965B5B9-F3E9-40A6-8A73-953EE61402BA.zip
Iepriekšējā gada Video:
https://youtube.com/live/rD1R-GkrCxk?feature=share
Video: https://youtube.com/live/84eI97UjrDI?feature=share
Iepriekšējā gada Video: https://youtu.be/ftnIzUdNPYY
Implementēt DCGAN balstoties uz video instrukcijām
Sagatave: http://share.yellowrobot.xyz/quick/2023-5-18-EB1F688E-2225-47FD-BE8F-7FDE6255AAC4.zip
Iesniegt ekrānšāviņus ar labākajiem rezultātiem un programmas pirmkodu.
Implementēt WGAN balstoties uz video instrukcijām, izmantot iepriekšējo sagatavi
Implement WGAN based on video from 5.1. Use previous template.
Iesniegt ekrānšāviņus ar labākajiem rezultātiem un programmas pirmkodu.
Implementēt, izmantojot LFW datu kopu seju ģenerēšanai: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_lfw_people.html
Implementēt GAN hacks (Izvēlēties un pierakstīt pirmkoda komentāros 2 hacks): https://github.com/soumith/ganhacks#authors https://developers.google.com/machine-learning/gan/problems For example: 2.1. Implement soft labels 2.2. Implement Batches in separate passes of optimizer.step for x_real and x_fake
Iesniegt ekrānšāviņus ar labākajiem rezultātiem un programmas pirmkodu.
https://www.linkedin.com/pulse/exploring-stylegan-breakthrough-ai-powered-image-arpit-vaghela-6mzrc/
https://datascience.stackexchange.com/questions/32671/gan-vs-dcgan-difference
https://arxiv.org/pdf/1701.07875
⚠️ Šis strādā tikai kopā ar Gradient clipping citādi gradients dažu epohu laikā sabrūk
https://jonathan-hui.medium.com/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
Gan - the more params the better
Discriminator - too many params, loss 0 killed, too little params loss large do not work
Changing learning rates etc. not good idea
Might help, but not needed:
Discriminator warmup
Discriminator history
Demonstrate mode collapse
Estimate quality by embeddings - deep metric, inception score etc
GAN common problems: https://developers.google.com/machine-learning/gan/problems
GAN hacks https://github.com/soumith/ganhacks#authors
Gan - the more params the better
Discriminator - too many params, loss 0 killed, too little params loss large do not work
Changing learning rates etc. not good idea
Might help, but not needed:
Discriminator warmup
Discriminator history
Demonstrate mode collapse
Estimate quality by embeddings - deep metric, inception score etc
GAN common problems: https://developers.google.com/machine-learning/gan/problems
SOTA šobrid:
StyleGAN3 was officially released by NVIDIA on October 12, 2021 https://nvlabs.github.io/stylegan3/?utm_source=chatgpt.com
https://www.sabrepc.com/blog/Deep-Learning-and-AI/gans-vs-diffusion-models